• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2

    2021-04-02 02:23:50HuiLiShuangyuLiuTianciYuanBoWangPengShengLiXuGuangyaoZhaoHuitaoBaiXinChenZhongxueChenYuliangCao
    物理化學(xué)學(xué)報(bào) 2021年3期

    Hui Li , Shuangyu Liu , Tianci Yuan , Bo Wang , Peng Sheng , Li Xu , Guangyao Zhao ,Huitao Bai , Xin Chen , Zhongxue Chen , Yuliang Cao ,*

    1 State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co.Ltd.,Beijing 102211, China.

    2 Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University,Wuhan 430072, China.

    3 Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering,Wuhan University, Wuhan 430072, China.

    Abstract: Aqueous sodium ion batteries (ASIBs) have attracted considerable attention for large-scale energy storage because of their prominent advantages of low cost, high safety, and environment-friendliness.Among the reported cathode materials for ASIBs, Na0.44MnO2 exhibits outstanding structural and hydrochemical stability, and hence is of much interest to research scholars.However, the reversible capacity of Na0.44MnO2 in most of the reported ASIBs was only 40 mAh·g-1 due to the restriction of stable working windows, although the in spite of theoretical capacity is121 mAh·g-1.Recently, we reported a Zn/Na0.44MnO2 dual-ion battery (AZMDIB) based on a Na0.44MnO2 positive electrode, Zn negative electrode, and 6 molL-1 NaOH electrolyte.The alkaline solution lowered the proton insertion potential and expanded the stable working window of the Na0.44MnO2 electrode, thus enhancing the reversible capacity to 80 mAh·g-1.Previous studies have demonstrated that the composition, concentration,and pH of the electrolytes have significant effects on the stable electrochemical window, rate performance, cycling performance, and other electrochemical properties of aqueous batteries.In addition, it has been reported that the cointercalation of hydrogen ions can be inhibited by increasing the pH of the electrolyte in order to improve the cyclic stability of the electrode.Therefore, exploring the effect of electrolyte concentration and pH on the electrochemical performance of Na0.44MnO2 can provide insight into the design and optimization of high-performance Zn/Na0.44MnO2 aqueous batteries.Hence, in this work, rod-like Na0.44MnO2 was synthesized by ball milling and subsequent high-temperature calcination, and the influence of NaOH concentration on the electrochemical performance of the Na0.44MnO2 electrode was investigated by adopting five different concentrated electrolytes, 1, 3, 6, 8, and 10 mol·L-1 NaOH.The results showed that an increase in NaOH concentration is beneficial for preventing the insertion of protons and improving the cycling performance and the rate performance of the electrode; however, it also leads to premature triggering of the oxygen evolution reaction.Moreover,the rate performance would decrease at high NaOH concentration.The Na0.44MnO2 electrode showed optimal electrochemical performance in 8 mol·L-1 NaOH.At a current density of 0.5C (1C = 121 mA·g-1), a reversible specific capacity of 79.2 mAh·g-1 was obtained, and a capacity of 35.3 mAh·g-1 was maintained even at a high current density of 50C.In the potential window of 0.2–1.2 V (vs.NHE), the capacity retention after 500 weeks was 64.3%, which increased to 78.2% when the potential window was reduced to 0.25–1.15 V, because of the fewer side reactions.In addition,Na0.44MnO2 showed an exceptional ability to sustain overcharging up to 30% in a concentrated alkaline electrolyte (based on the reversible capacity of 79.2 mAh·g-1), and the discharge capacity within 80 cycles was almost steady.The above mentioned results form the basis for possible technical directions toward the development of low-cost cathode materials to be used in ASIBs.

    Key Words: Sodium ion battery; Na0.44MnO2; Electrochemical performance; Concentration; Overcharging

    1 Introduction

    Sodium-ion battery (SIB) emerges as an appealing battery technology in recent years due to its similar operation mechanism to rocking chair lithium-ion battery (LIB).Contrastive to lithium resources, sodium reserves are more abundant, ubiquitous and easily accessible, SIB therefore shows great promising application prospect in large-scale energy storage systems (ESS).Despite the merit of potentially low cost,the use of non-aqueous electrolyte in SIBs will inevitably trigger safety concerns as raised in LIBs.Compared to nonaqueous batteries, aqueous SIBs show prominent advantages of high safety, toxicity free, environment-friendliness and low cost, thus have attracted considerable attentions as a promising battery technology for ESS1–3.In recent years, aqueous sodium-ion batteries (ASIBs) have developed rapidly and a variety of positive electrode materials have been found stable in aqueous system, such as Mn-based oxides4–6, polyanionic compounds7–9and Prussian blue analogs10–14, providing ample options for ASIBs.

    Among these cathode materials, Na0.44MnO2with outstanding structural and hydrochemical stability attracts the keen interest of many researchers.Na0.44MnO2owns three-dimensional tunnel structure, which is not only favorable for the fast intercalation/de-intercalation of Na+ions, but also could relief the structural strain generated during charge-discharge process,thus improving the cyclic stability.It has been revealed that 0.44 Na+could be reversibly de/intercalated in the tunnel structure of Na0.44MnO2, corresponding to a theoretical capacity of 121 mAh·g-115–18.Whitacre et al.first revealed the electrochemical behavior of Na0.44MnO2in Na2SO4solution19.However, the reversible capacity of Na0.44MnO2in almost all the ASIBs was only 40 mAh·g-1, far lower than its theoretical capacity20–22.Recently, we reported a Zn/Na0.44MnO2dual-ion battery(denoted AZMDIB) based on Na0.44MnO2positive electrode, Zn negative electrode and 6 mol·L-1NaOH electrolyte.The alkaline solution lowered the proton insertion potential and expanded the stable working window of Na0.44MnO2electrode, thus enhancing the reversible capacity to 80 mAh·g-123.It has been demonstrated in some previous studies that the composition,concentration, and pH of electrolytes have significant effects on the electrochemical properties of aqueous batteries.Electrolytes with different concentrations have different ionic conductivities,leading to different rate performances of battery24.And highly concentrated electrolyte can reduce the reactivity of water and inhibit the dissolution of electrode materials, thus widening the stable electrochemical window and improving the cycling performance of electrode materials25,26.In addition, the pH of electrolyte would also affect the hydrogen/oxygen evolution potentials.And, it has been reported that the co-intercalation of hydrogen ions could be inhibited by tuning pH of electrolyte27–29in order to improve the cyclic stability of the electrode30,31.Therefore, exploring the effect of electrolyte concentration and pH on the electrochemical performance of Na0.44MnO2can provide insight into the design and optimization of highperformance Zn/Na0.44MnO2aqueous battery.

    In this work, a three-electrode system was set up by using Na0.44MnO2as working electrode and zinc sheet as the counter and reference electrode.The electrochemical performances of Zn/Na0.44MnO2battery with five different concentrated electrolytes (1, 3, 6, 8 and 10 mol·L-1NaOH) were investigated and the influences of electrolyte concentration and pH on the stable working window, rate performance and cycle performance of Na0.44MnO2electrode were studied.

    2 Experimental

    2.1 Material preparation

    Na0.44MnO2was prepared by a solid-state method.Firstly,Na2CO3(AR, ≥99.8%, Sinopharm) and MnCO3(AR,Sinopharm) were put into the agate grinding tank with a stoichiometric ratio of 0.242 : 1, the excess sodium source was to compensate the sodium loss upon high-temperature calcination, and acetone (AR, ≥99.5%, Sinopharm) was added as the dispersant at once.Then, the tanks were fixed on a planetary mill (XGB2, BYT) for 3 h at a speed of 300 r·min-1to obtain a homogeneous slurry.After milling, the slurry was transferred to oven, and dried for 10 h at 80 ℃.Finally, the solid was fully ground into a powder and heated in air atmosphere at 850 ℃ for 10 h with a heating rate of 3 ℃·min-1to obtain final product.

    2.2 Material characterization

    The morphology of Na0.44MnO2was characterized by scanning electron microscope (SEM, ZEISS Merlin 132 Compact) and high-resolution transmission electron microscope(HRTEM, JEM-2100FEF).And the structure characterization was conducted on X-ray powder diffractometer (XRD, Bruker D8 ADVANCE).

    2.3 Electrochemical measurements

    The working electrode was prepared with rod-like Na0.44MnO2as the active material, Super P as conductive carbon and 60% (mass fraction) polytetrafluoroethylene (PTFE)emulsion as the binder in a weight ratio of 8 : 1 : 1.Firstly, the Na0.44MnO2and Super P were well mixed by grounding in an agate mortar.Then, PTFE emulsion and isopropanol (AR,≥99.7%, Sinopharm) were added into the above powder and stirred to form a gum-like mixture under infrared lamp.Finally,the electrode was obtained after rolled with twin rollers and was subsequently dried for 10 h at 100 ℃ in a vacuum drying oven.The current collector is stainless steel net and the mass loading of working electrode is about 5 mg·cm-2.Both counter and reference electrodes were Zn sheets with a thickness of about 180 μm.NaOH (AR, ≥96%, Sinopharm) solution with different concentrations was used as the electrolyte.Galvanostatic charge/discharge tests and cyclic voltammetry were carried out on LANDCT2001A and electrochemical workstation (Autolab PGSTAT128N,Eco Chemie,Switzerland), respectively, and the specific capacity of the battery was calculated based on the mass of active material of working electrode.

    3 Results and discussion

    Fig.1a is the XRD pattern of as-synthesized Na0.44MnO2.It can be seen that all diffraction peaks could be indexed to orthorhombic Na0.44MnO2(Pbamspace group, JCPDS No.27-0750) indicating that highly pure Na0.44MnO2was synthesized by solid-state method.Fig.1b displays the crystal structure of Na0.44MnO2.The structural framework is composed of double and triple rutile-type chains of edge-sharing MnO6 octahedra and corner-sharing MnO5square pyramids, forming two types of tunnels: large S-shaped tunnel and small pentagon tunnel.Na2 sites and Na3 sites are located in the large S-shaped tunnel, while Na1 is situated in the small pentagon tunnel.The large S-shaped tunnel is approximately half filled where sodium ions can be reversibly de/intercalated.The small pentagon tunnel is almost entirely occupied by sodium ions, but these sodium ions cannot be utilized32–34.

    Fig.1 (a) The XRD pattern of Na0.44MnO2, (b) the schematic crystal structure of orthorhombic Na0.44MnO2.

    We used SEM and HRTEM to characterize the morphology of Na0.44MnO2.As presented in Fig.2a, Na0.44MnO2consists of many short rods with a diameter of about 0.5 μm and length ranging from 2 to 5 μm.A lattice fringe with a spacing distance of 0.26 nm can be clearly observed from the HRTEM images in Fig.2b, corresponding to the (350) lattice plane of Na0.44MnO2.

    Fig.2 (a) The SEM image, (b) the high-resolution TEM image of Na0.44MnO2.

    In order to determine the stable electrochemical window of NaOH solutions with different concentrations, the AZMDIB was charged to 2.0 V (vs.NHE) and discharged to 0 V, respectively.As shown in Fig.3a, all the batteries displayed multiple charge voltage plateaus below 2.0 V, corresponding to the Na+deintercalation from Na0.44MnO2.However, a quite flat voltage plateau appeared at ~1.2 V (vs.NHE) as the batteries were further charged, which should be attributed to the oxygen evolution reaction.The oxygen evolution potential varied as the concentration of electrolyte changed, the relative order is generally summarized asφ1>φ3>φ6>φ8>φ10.According to the Nernst equation:

    The oxygen evolution potential decreases as the [OH-]increases.Whereas the concentration of OH-varies within a small range (from 1 to 10 mol·L-1), the difference of oxygen evolution potential between each battery is not obvious.In this regard, the upper charge potential was limited to 1.2 V.The discharge profiles of the above five batteries are shown in Fig.3b.As is seen, multiple discharge voltage plateaus above 0.2 V,which are related to the Na+intercalation into Na0.44MnO2are clearly observed.Note that a flat discharge plateau emerged at~0.2 V (vs.NHE) as the batteries were further discharged, which is ascribed to the insertion of hydrogen ions into Na0.44MnO2.The proton insertion potential also varied with the alterations of electrolyte concentrations, and the relative order isφ1>φ3>φ6>φ8>φ10.This variation can also be interpreted by Nernst equation: boosting the concentration of OH–in the electrolyte means decreasing the concentration of H+, resulting in the delay of proton insertion process.

    Fig.3 The electrochemical performances of AZMDIB in different electrolytes with various NaOH concentrations (1, 3, 6, 8 and 10 mol·L-1 NaOH).

    Based on the preliminary battery results, we can determine that the stable working voltage window of AZMDIB should be confined between the oxygen evolution potential and proton insertion potential due to the poor reversibility of proton insertion21,35.Therefore, the potential window of AZMDIB in 1 mol·L-1NaOH was set as 0.25–1.2 V, and the other systems (3,6, 8 and 10 mol·L-1NaOH) used 0.2–1.2 V.Fig.3c presents the typical charge-discharge curves of AZMDIB in the above five electrolytes, and the typical discharge potentials of five batteries at the same discharge depth were marked, respectively.It can be found that the relative order of potential isφ10>φ8>φ6>φ3>φ1.The operating potential is affected by the activity of sodium ions in the electrolyte36.According to the Nernst equation, the potential of sodium ions insertion into Na0.44MnO2electrode should climb when the concentration of sodium ions increases.The relative order of reversible capacity for five batteries is 6 mol·L-1(82.5 mAh·g-1) > 3 mol·L-1(80.6 mAh·g-1) > 8 mol·L-1(79.2 mAh·g-1) > 1 mol·L-1(69.3 mAh·g-1) > 10 mol·L-1(67.9 mAh·g-1).Among them, 3, 6 and 8 mol·L-1possess similar discharge capacity, which is about 80 and ~10 mAh·g-1higher than that of 1 and 10 mol·L-1.The specific discharge capacity is mainly affected by the thermodynamics of sodium ions de/intercalation.When the concentration of sodium ions is low,the activity of sodium ions falls, resulting in lower operating potential.Therefore, the amount of sodium ions that could be reversibly de/intercalated in higher voltage range diminished,leading to lower specific capacity.For instance, there is hardly obvious charge-discharge potential platform in the potential range of 1.0–1.2 V for AZMDIB in 1 mol·L-1NaOH.Likewise,when the concentration of sodium ion grows, both the activity of sodium ion and potential platform increase accordingly.As a result, the number of reversibly inserted sodium ions drops in the lower voltage range, bringing lower specific capacity.For example, no obvious potential platform was observed in the potential range of 0.05–0.2 V for AZMDIB in 10 mol·L-1NaOH.Thus, the discharge capacity of Na0.44MnO2electrode firstly increases and then decreases as the NaOH concentration varies from 1 to 10 mol·L-1.It should be noted that the ionic conductivity of electrolyte has little influence on the discharge capacity of Na0.44MnO2electrode since the charge-discharge current density is as low as 0.5C.Fig.3d–h display the cyclic voltammograms of Na0.44MnO2electrode in different concentrated NaOH solutions.It can be seen that redox peaks potential affected by the activity of sodium ions shift to the higher potential with the increase of NaOH concentration and more redox peaks appear in 3, 6 and 8 mol·L-1NaOH corresponding to the higher reversible capacity which are consistent the result observed form the typical charge-discharge profiles.

    Fig.3i shows the rate performances of AZMDIB in five different electrolytes.The potential range for 1 mol·L-1NaOH is 0.25–1.2 V, and the others is 0.2–1.2 V.As can be seen, the relative order of rate performance is 6 mol·L-1≈ 8 mol·L-1> 10 mol·L-1> 3 mol·L-1> 1 mol·L-1.At the current density of 50C,Na0.44MnO2can still release a specific capacity of about 30 mAh·g-1in 6 and 8 mol·L-1NaOH.However, when the NaOH concentration is 1 or 10 mol·L-1, the specific capacity at 50Cis only 13 mAh·g-1.Obviously, the high rate performance is related to the ionic conductivity of electrolyte.When the concentration of electrolyte is low, the ionic conductivity of electrolyte gradually improves with the increase of concentration from 1 to 6 mol·L-1.However, when the concentration of electrolyte exceeds 6 mol·L-1, the viscosity increases, leading to the decrease of ionic conductivity.Therefore, the rate performance of Na0.44MnO2electrode firstly increases and then decreases as the NaOH concentration varies from 1 to 10 mol·L-1.

    Fig.4a is the cyclic performance of AZMDIB at the current density of 5Cin different electrolytes with various NaOH concentrations.It can be seen that the capacity retention of AZMDIB after 500 cycles in 10, 8, 6, 3 and 1 mol·L-1NaOH is 65.8%, 64.3%, 54.2%, 33.2% and 27.4%, respectively.The battery in higher NaOH concentration exhibited better cyclic stability, this is because increasing the concentration can reduce the redox activity of water, and inhibit the side reactions during charge-discharge process37–42.In general, as shown in Table 1,AZMDIB in 8 mol·L-1NaOH showed the most outstanding electrochemical performance in terms of high reversible capacity, outstanding rate performance and superior cyclic stability

    Fig.4 (a) The cycling performance of AZMDIB in different concentrated NaOH solutions (1, 3, 6, 8 and 10 mol·L-1 NaOH) at a current density of 5C,the potential range for 1 mol·L-1 is 0.25–1.2 V, and the others is 0.2–1.2 V; (b) the cycling performance and Coulombic efficiencies of AZMDIB in 8 mol L-1 NaOH at a current density of 5C, the potential range is 0.25–1.15 V.

    Table 1 Sodium-storage performance of Na0.44MnO2 in different concentrated electrolyte.

    In order to verify whether the charge-discharge voltage window has an impact on the cyclic performance, we tested AZMDIB in 8 mol·L-1NaOH within a narrower window of 0.25–1.15 V.As shown in Fig.4b, the capacity retention after 500 cycles is 78.2%, 13.9% higher than that in 0.2–1.2 V (64.3% after 500 cycles).Widening the potential window will result in more side reactions, such as oxygen evolution and proton insertion, which might lead to the deterioration of electrode material and corrosion of current collector.

    In the practical application of battery, there will inevitably be some transitory overcharge conditions.For neutral aqueous batteries, overcharging will cause oxygen evolution reaction on the surface of positive electrode.Even a slight overcharge may significantly change the pH of the electrolyte, accelerating the corrosion of the current collector and other metal components,finally resulting in the dissolution of electrode materials.In addition, when the generated oxygen diffuses to the negative electrode, it can easily oxidize anode in the discharge state,resulting in the deactivation of the anode material1,30.In order to investigate the ability of AZMDIB against overcharge, we overcharged the battery until 30% higher than the nominal capacity (75 mAh·g-1) of the battery.As shown in Fig.5a, the battery can maintain exceptional cycle stability in 80 cycles,indicative of a high overcharging tolerance.Fig.5b displays the corresponding charge-discharge curves of AZMDIB.As can be seen, the charge-discharge profiles kept almost unchanged in 80 cycles, demonstrating the AZMDIB has high tolerance for overcharging.Several factors may contribute to the high tolerance.Firstly, Na0.44MnO2itself has an outstanding structural stability in aqueous electrolyte.Secondly, there are sufficient OH-in highly concentrated NaOH electrolyte to maintain alkaline environment, consequently the transitory oxygen evolution reaction can hardly change the pH of the electrolyte.Lastly, the alkaline system has self-protection function; the oxygen generated at the cathode side can be consumed by anode,the same mechanism is demonstrated in Ni-Cd and Ni-MH batteries43,44.Therefore, the reactions of Na0.44MnO2cathode and Zn anode upon overcharge could be speculated as follows:

    OH-was oxidized to O2at the cathode side and [Zn(OH)4]2-was reduced to Zn at the anode side.The overcharge product, O2diffused to anode, and was reduced to OH-again by Zn.The overall reaction almost could be considered as zero.

    Fig.5 (a) The cycling performance of AZMDIB in 8 mol L-1 upon 30% overcharge; (b) the corresponding charge-discharge profiles.

    4 Conclusions

    Na0.44MnO2was synthesized by solid-state method and its electrochemical properties in NaOH solutions with different concentrations were investigated.The Zn/Na0.44MnO2dual-ion battery in 8 mol·L-1NaOH showed the most outstanding electrochemical performance in terms of high reversible capacity, outstanding rate performance and superior cyclic stability.A reversible capacity of 79.2 and 35.3 mAh·g-1can be obtained at the current density of 0.5Cand 50C, respectively.When the potential window is narrowed from 0.2–1.2 V to 0.25–1.15 V, the capacity retention after 500 cycles is improved from 64.3% to 78.2% due to the lessened side reactions.In addition,the AZMDIB shows high tolerance for overcharging in alkaline electrolyte.Our work not only demonstrates that the electrochemical performance of AZMDIB can be greatly improved by optimizing the electrolyte and working potential window, but also justifies its potential use as a low cost and high safe battery technology for large-scale energy storage system.

    av在线播放精品| 国产一区有黄有色的免费视频 | 国产成人免费观看mmmm| 日本午夜av视频| 日韩制服骚丝袜av| 午夜a级毛片| 五月玫瑰六月丁香| 亚洲自偷自拍三级| 18禁在线播放成人免费| 久久综合国产亚洲精品| 久久韩国三级中文字幕| 舔av片在线| 国产伦精品一区二区三区视频9| 亚洲国产精品sss在线观看| 久久精品国产自在天天线| av免费在线看不卡| 久久精品夜夜夜夜夜久久蜜豆| 美女国产视频在线观看| 亚洲av福利一区| 免费大片18禁| 99久久无色码亚洲精品果冻| 毛片女人毛片| 国产亚洲一区二区精品| 亚洲国产精品国产精品| 亚洲精华国产精华液的使用体验| 亚洲av二区三区四区| 永久网站在线| 午夜日本视频在线| 久久精品人妻少妇| 人妻系列 视频| 99久国产av精品国产电影| 美女高潮的动态| 成人鲁丝片一二三区免费| av线在线观看网站| 特级一级黄色大片| 亚洲精品亚洲一区二区| 26uuu在线亚洲综合色| 亚洲av福利一区| 最近中文字幕高清免费大全6| 禁无遮挡网站| 麻豆乱淫一区二区| 亚洲国产成人一精品久久久| 一区二区三区四区激情视频| 国产免费又黄又爽又色| 国产精品麻豆人妻色哟哟久久 | 麻豆av噜噜一区二区三区| 99久国产av精品| 欧美一级a爱片免费观看看| 欧美高清成人免费视频www| 床上黄色一级片| 久久人人爽人人爽人人片va| 国产一级毛片七仙女欲春2| 国产极品天堂在线| 蜜臀久久99精品久久宅男| 人人妻人人澡欧美一区二区| 亚洲第一区二区三区不卡| 午夜福利网站1000一区二区三区| 色吧在线观看| 能在线免费观看的黄片| 啦啦啦观看免费观看视频高清| www.av在线官网国产| 中文字幕av成人在线电影| 日韩制服骚丝袜av| 丰满乱子伦码专区| 亚洲欧美精品综合久久99| 青春草视频在线免费观看| 亚洲经典国产精华液单| 亚洲美女视频黄频| 亚洲av福利一区| 99久久无色码亚洲精品果冻| 内地一区二区视频在线| 99久久精品一区二区三区| 午夜福利高清视频| 变态另类丝袜制服| 亚洲va在线va天堂va国产| 成人亚洲精品av一区二区| 少妇的逼水好多| 2022亚洲国产成人精品| 男女边吃奶边做爰视频| 亚洲va在线va天堂va国产| 又黄又爽又刺激的免费视频.| 久久久久国产网址| 亚洲乱码一区二区免费版| 偷拍熟女少妇极品色| 午夜爱爱视频在线播放| 一级毛片aaaaaa免费看小| 日韩av在线免费看完整版不卡| 99热网站在线观看| 深爱激情五月婷婷| 久久精品国产亚洲av天美| 搞女人的毛片| 亚洲欧美日韩无卡精品| 久久久久久久午夜电影| 成人鲁丝片一二三区免费| 大又大粗又爽又黄少妇毛片口| 免费av不卡在线播放| 国产成人91sexporn| 成人漫画全彩无遮挡| 亚洲国产最新在线播放| 国产色爽女视频免费观看| 欧美不卡视频在线免费观看| 久久99蜜桃精品久久| 麻豆国产97在线/欧美| 午夜福利在线观看吧| 久久久久性生活片| 黄色配什么色好看| 国内揄拍国产精品人妻在线| 岛国在线免费视频观看| 极品教师在线视频| 亚洲国产日韩欧美精品在线观看| 26uuu在线亚洲综合色| 国产黄片视频在线免费观看| 国产精品永久免费网站| 色5月婷婷丁香| 国产乱人视频| 亚洲欧美日韩卡通动漫| 国产91av在线免费观看| 成年女人看的毛片在线观看| 黑人高潮一二区| 日本爱情动作片www.在线观看| 欧美极品一区二区三区四区| 人妻制服诱惑在线中文字幕| 日韩中字成人| 午夜福利视频1000在线观看| 国产探花在线观看一区二区| 黄色配什么色好看| 国产精品一区二区性色av| 日韩精品有码人妻一区| 亚洲国产精品成人综合色| 国产淫片久久久久久久久| 国产又色又爽无遮挡免| 日韩av在线免费看完整版不卡| 日韩欧美三级三区| 麻豆乱淫一区二区| 国产精品蜜桃在线观看| 99热全是精品| 免费观看的影片在线观看| 欧美成人一区二区免费高清观看| 亚洲av免费高清在线观看| 国产麻豆成人av免费视频| 99热6这里只有精品| 麻豆av噜噜一区二区三区| 亚洲av电影不卡..在线观看| 一级毛片久久久久久久久女| 我的女老师完整版在线观看| 国国产精品蜜臀av免费| 一二三四中文在线观看免费高清| 91精品伊人久久大香线蕉| 极品教师在线视频| 成人午夜精彩视频在线观看| 色5月婷婷丁香| 久久精品国产亚洲av涩爱| 亚洲精品aⅴ在线观看| 哪个播放器可以免费观看大片| 日韩精品青青久久久久久| 亚洲精品色激情综合| 午夜亚洲福利在线播放| 2021少妇久久久久久久久久久| 国产69精品久久久久777片| 亚洲久久久久久中文字幕| 高清毛片免费看| 亚洲人成网站高清观看| 亚洲在线自拍视频| 午夜视频国产福利| 国产精品人妻久久久久久| 日本熟妇午夜| 日本免费在线观看一区| 你懂的网址亚洲精品在线观看 | 久久久久精品久久久久真实原创| 国产精品,欧美在线| 五月玫瑰六月丁香| 一边亲一边摸免费视频| 国产高清国产精品国产三级 | 国产午夜福利久久久久久| 黄片wwwwww| 亚洲国产欧美在线一区| 亚洲高清免费不卡视频| 蜜桃亚洲精品一区二区三区| 国产精品美女特级片免费视频播放器| 熟女人妻精品中文字幕| 精品少妇黑人巨大在线播放 | videos熟女内射| 久久精品国产鲁丝片午夜精品| 亚洲成色77777| 久久婷婷人人爽人人干人人爱| 色播亚洲综合网| 成人二区视频| 成年女人看的毛片在线观看| av免费在线看不卡| 欧美xxxx性猛交bbbb| 亚洲丝袜综合中文字幕| 国产女主播在线喷水免费视频网站 | 国产极品天堂在线| 我要看日韩黄色一级片| 不卡视频在线观看欧美| 久久国产乱子免费精品| 日韩高清综合在线| 亚洲天堂国产精品一区在线| 国产毛片a区久久久久| 久久久成人免费电影| 亚洲精品国产av成人精品| 级片在线观看| 亚洲国产高清在线一区二区三| 舔av片在线| 男人狂女人下面高潮的视频| 国语自产精品视频在线第100页| 亚洲一级一片aⅴ在线观看| 国产淫片久久久久久久久| 麻豆一二三区av精品| 亚洲中文字幕一区二区三区有码在线看| 免费看美女性在线毛片视频| 99热这里只有精品一区| 久久精品国产亚洲av涩爱| 村上凉子中文字幕在线| 最近手机中文字幕大全| 日韩一区二区视频免费看| 男人舔奶头视频| av卡一久久| 久久人妻av系列| 永久网站在线| 日本爱情动作片www.在线观看| 99热这里只有精品一区| 亚洲av二区三区四区| 男女国产视频网站| 插阴视频在线观看视频| 日韩高清综合在线| 日韩中字成人| 欧美日韩综合久久久久久| 亚洲在久久综合| 国产高潮美女av| 精品国产三级普通话版| 噜噜噜噜噜久久久久久91| 99国产精品一区二区蜜桃av| 午夜激情福利司机影院| 中文字幕人妻熟人妻熟丝袜美| 18+在线观看网站| 欧美又色又爽又黄视频| 国产成人精品婷婷| 日本免费a在线| 精品一区二区三区视频在线| 国产91av在线免费观看| 亚洲电影在线观看av| 色哟哟·www| 国产精品国产三级国产专区5o | 久久这里只有精品中国| 日本一二三区视频观看| 中国美白少妇内射xxxbb| 国产不卡一卡二| 一个人观看的视频www高清免费观看| 直男gayav资源| 夫妻性生交免费视频一级片| 亚洲欧洲日产国产| 午夜久久久久精精品| 日韩欧美 国产精品| 中国国产av一级| 亚洲国产成人一精品久久久| 亚洲av日韩在线播放| 国产精品三级大全| a级毛色黄片| 夫妻性生交免费视频一级片| 99在线人妻在线中文字幕| 国产黄色视频一区二区在线观看 | 亚洲av熟女| 国产综合懂色| 日韩人妻高清精品专区| 久久精品久久精品一区二区三区| 99久久成人亚洲精品观看| 免费观看在线日韩| 18禁在线播放成人免费| 人人妻人人看人人澡| 亚洲精品成人久久久久久| 亚洲国产最新在线播放| 亚洲三级黄色毛片| 久久99精品国语久久久| 日本一二三区视频观看| 欧美人与善性xxx| 亚洲国产欧美人成| 极品教师在线视频| 国产高潮美女av| 久久综合国产亚洲精品| 国产乱人偷精品视频| 亚洲成人精品中文字幕电影| 能在线免费看毛片的网站| 美女被艹到高潮喷水动态| 亚洲乱码一区二区免费版| 精品久久久久久久末码| 国产激情偷乱视频一区二区| 亚洲美女视频黄频| 欧美高清性xxxxhd video| 午夜福利在线观看免费完整高清在| 有码 亚洲区| 久久精品国产亚洲网站| 一个人看的www免费观看视频| 看非洲黑人一级黄片| 一区二区三区乱码不卡18| 联通29元200g的流量卡| 久久精品国产自在天天线| 亚洲精品影视一区二区三区av| 久久久国产成人免费| 亚洲成人av在线免费| 成年女人永久免费观看视频| 蜜桃亚洲精品一区二区三区| 日本黄大片高清| 99九九线精品视频在线观看视频| 久久久久久久国产电影| 在线观看av片永久免费下载| 欧美成人a在线观看| 久久精品熟女亚洲av麻豆精品 | 国产免费男女视频| 亚洲欧洲国产日韩| 熟女人妻精品中文字幕| 人人妻人人澡人人爽人人夜夜 | 亚洲国产精品专区欧美| 建设人人有责人人尽责人人享有的 | 边亲边吃奶的免费视频| 狂野欧美白嫩少妇大欣赏| 色5月婷婷丁香| 我的女老师完整版在线观看| 桃色一区二区三区在线观看| 大话2 男鬼变身卡| 春色校园在线视频观看| 亚洲最大成人中文| 天堂√8在线中文| 一级av片app| 日本-黄色视频高清免费观看| 国产精品爽爽va在线观看网站| 国产黄色小视频在线观看| 男人的好看免费观看在线视频| 久久久久免费精品人妻一区二区| 国产精品,欧美在线| 国产亚洲一区二区精品| 精品国产一区二区三区久久久樱花 | 成人欧美大片| 内射极品少妇av片p| 国产高潮美女av| 久久99蜜桃精品久久| 精品久久国产蜜桃| 一本一本综合久久| 别揉我奶头 嗯啊视频| 黄色配什么色好看| 亚洲精品,欧美精品| 国产精品,欧美在线| 18禁在线无遮挡免费观看视频| 亚洲欧美精品综合久久99| 国产伦理片在线播放av一区| 欧美又色又爽又黄视频| 色综合站精品国产| 国产精品久久久久久av不卡| 热99re8久久精品国产| 久久久久久久亚洲中文字幕| 日本免费a在线| 国产一区二区三区av在线| 亚洲精品久久久久久婷婷小说 | 夜夜看夜夜爽夜夜摸| 美女黄网站色视频| 一区二区三区乱码不卡18| 亚洲不卡免费看| 亚洲欧美日韩东京热| 国产av在哪里看| 青春草亚洲视频在线观看| 最近的中文字幕免费完整| 免费人成在线观看视频色| 永久免费av网站大全| 免费观看性生交大片5| a级毛色黄片| 亚洲中文字幕日韩| 国产成人精品婷婷| 又爽又黄a免费视频| ponron亚洲| 人妻少妇偷人精品九色| 国产熟女欧美一区二区| av视频在线观看入口| 少妇熟女aⅴ在线视频| 色哟哟·www| 亚洲美女搞黄在线观看| 亚洲精品日韩av片在线观看| 国产亚洲一区二区精品| 日本黄色视频三级网站网址| av视频在线观看入口| 国产精品野战在线观看| 中文字幕熟女人妻在线| 日韩视频在线欧美| 最近最新中文字幕免费大全7| 欧美3d第一页| 免费观看a级毛片全部| 国产片特级美女逼逼视频| 黄色日韩在线| av国产久精品久网站免费入址| 伦精品一区二区三区| 在线免费观看的www视频| 老司机福利观看| 人妻夜夜爽99麻豆av| 国产精品一区www在线观看| .国产精品久久| 亚洲国产精品sss在线观看| 亚洲五月天丁香| 99热精品在线国产| 亚洲精品国产成人久久av| 亚洲天堂国产精品一区在线| 亚洲精品亚洲一区二区| 亚洲一区高清亚洲精品| 亚洲精品自拍成人| 亚洲综合精品二区| 两个人的视频大全免费| 国模一区二区三区四区视频| 身体一侧抽搐| 午夜激情欧美在线| 97人妻精品一区二区三区麻豆| 女人被狂操c到高潮| 亚洲精品亚洲一区二区| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩高清专用| 在线天堂最新版资源| 亚洲国产精品成人综合色| 赤兔流量卡办理| av又黄又爽大尺度在线免费看 | 午夜福利网站1000一区二区三区| 最后的刺客免费高清国语| 国产伦一二天堂av在线观看| 亚洲av熟女| 色5月婷婷丁香| 国产精品女同一区二区软件| 色5月婷婷丁香| a级毛片免费高清观看在线播放| 亚洲成av人片在线播放无| 亚洲自偷自拍三级| 国产综合懂色| 日本wwww免费看| 蜜桃亚洲精品一区二区三区| 亚洲乱码一区二区免费版| 成人亚洲精品av一区二区| 神马国产精品三级电影在线观看| 非洲黑人性xxxx精品又粗又长| 国产一区二区三区av在线| 一级黄片播放器| 国产真实伦视频高清在线观看| 热99re8久久精品国产| 成年女人看的毛片在线观看| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 欧美xxxx黑人xx丫x性爽| 不卡视频在线观看欧美| 好男人视频免费观看在线| 久久鲁丝午夜福利片| 国产精品精品国产色婷婷| 国产毛片a区久久久久| 观看美女的网站| 免费无遮挡裸体视频| 我要搜黄色片| 伦理电影大哥的女人| 91在线精品国自产拍蜜月| 国产伦一二天堂av在线观看| 91精品伊人久久大香线蕉| 久久鲁丝午夜福利片| 噜噜噜噜噜久久久久久91| 国产欧美日韩精品一区二区| 九色成人免费人妻av| 亚洲精华国产精华液的使用体验| 91久久精品国产一区二区三区| 亚洲无线观看免费| 国产精品精品国产色婷婷| 国产精品电影一区二区三区| 在线观看美女被高潮喷水网站| 日韩中字成人| 1024手机看黄色片| 国产精品99久久久久久久久| 综合色av麻豆| 大香蕉久久网| 亚洲精品影视一区二区三区av| 色网站视频免费| av卡一久久| 女人久久www免费人成看片 | 美女脱内裤让男人舔精品视频| 欧美激情在线99| 亚洲国产高清在线一区二区三| 秋霞在线观看毛片| 久久欧美精品欧美久久欧美| 久久久久久久国产电影| 哪个播放器可以免费观看大片| 久久精品国产亚洲网站| 91aial.com中文字幕在线观看| 麻豆av噜噜一区二区三区| 欧美一区二区精品小视频在线| 日本黄色片子视频| av国产免费在线观看| 欧美成人免费av一区二区三区| 1000部很黄的大片| 丰满乱子伦码专区| 成人亚洲精品av一区二区| 亚洲真实伦在线观看| 精品一区二区三区视频在线| 日本黄色视频三级网站网址| 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 日韩中字成人| 精品人妻熟女av久视频| 麻豆成人av视频| 亚洲最大成人av| 国产大屁股一区二区在线视频| 日产精品乱码卡一卡2卡三| 久久国内精品自在自线图片| 国产日韩欧美在线精品| 97人妻精品一区二区三区麻豆| 国产亚洲一区二区精品| 中文亚洲av片在线观看爽| a级毛片免费高清观看在线播放| av线在线观看网站| 国产真实伦视频高清在线观看| 在现免费观看毛片| 日本熟妇午夜| 国产精品一区二区三区四区久久| 99热这里只有精品一区| 男女下面进入的视频免费午夜| 国产精品久久电影中文字幕| 日本午夜av视频| 成人亚洲精品av一区二区| www日本黄色视频网| 观看免费一级毛片| 国产av不卡久久| kizo精华| 免费大片18禁| 亚洲在久久综合| 99久国产av精品国产电影| 纵有疾风起免费观看全集完整版 | 99久久无色码亚洲精品果冻| 国产成人freesex在线| 一本久久精品| 三级国产精品欧美在线观看| 在线免费十八禁| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 国产精品无大码| 特大巨黑吊av在线直播| 一边亲一边摸免费视频| 看黄色毛片网站| 嫩草影院精品99| 成人高潮视频无遮挡免费网站| 91精品伊人久久大香线蕉| 中文字幕av成人在线电影| 一级黄片播放器| 婷婷色麻豆天堂久久 | 非洲黑人性xxxx精品又粗又长| 色噜噜av男人的天堂激情| 欧美潮喷喷水| 欧美性猛交╳xxx乱大交人| 99久久精品一区二区三区| 久久精品综合一区二区三区| 一个人看的www免费观看视频| 一区二区三区免费毛片| 国产精品久久久久久久电影| 国内精品宾馆在线| 成人毛片60女人毛片免费| 国产精华一区二区三区| 精品一区二区三区人妻视频| 狂野欧美白嫩少妇大欣赏| 日韩av不卡免费在线播放| 日本黄色片子视频| 97人妻精品一区二区三区麻豆| 成人综合一区亚洲| 九九热线精品视视频播放| 久久亚洲国产成人精品v| 日本wwww免费看| 特大巨黑吊av在线直播| 精华霜和精华液先用哪个| 国产黄a三级三级三级人| 国产亚洲精品久久久com| 国产精品乱码一区二三区的特点| 97人妻精品一区二区三区麻豆| 好男人视频免费观看在线| 成人欧美大片| 国产精品无大码| 国产亚洲av嫩草精品影院| 欧美+日韩+精品| 免费av毛片视频| 最近2019中文字幕mv第一页| 大香蕉久久网| 国产高清国产精品国产三级 | 免费黄网站久久成人精品| 亚洲经典国产精华液单| 婷婷色麻豆天堂久久 | 日本爱情动作片www.在线观看| 精品99又大又爽又粗少妇毛片| 欧美一区二区精品小视频在线| 丰满少妇做爰视频| 亚洲国产精品合色在线| 亚洲精品乱久久久久久| av又黄又爽大尺度在线免费看 | 日本五十路高清| 精品欧美国产一区二区三| www.av在线官网国产| 日韩强制内射视频| 欧美高清性xxxxhd video| 美女黄网站色视频| 直男gayav资源| 日本与韩国留学比较| 男人和女人高潮做爰伦理| 欧美日本视频| 久久久成人免费电影| 啦啦啦啦在线视频资源| 一区二区三区高清视频在线| 综合色丁香网| 亚洲不卡免费看| 少妇人妻一区二区三区视频| 最近2019中文字幕mv第一页| 国产亚洲5aaaaa淫片| 久久久久网色| 国产熟女欧美一区二区| 麻豆成人午夜福利视频| 26uuu在线亚洲综合色| 亚洲人成网站高清观看| 国产黄片视频在线免费观看| 高清午夜精品一区二区三区| 男人的好看免费观看在线视频| 国产毛片a区久久久久|