• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photocathodic Protection on Stainless Steel by Heterostructured NiO/TiO2 Nanotube Array Film with Charge Storage Capability

    2021-04-02 02:23:50PiaoJinZichaoGuanYanLiangKaiTanXiaWangGuanglingSongRongguiDu
    物理化學(xué)學(xué)報 2021年3期

    Piao Jin ,Zichao Guan ,Yan Liang , Kai Tan , Xia Wang ,Guangling Song , Ronggui Du ,*

    1 Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province,China.

    2 Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen 361005, Fujian Province,China.

    Abstract: Photocathodic protection by TiO2 semiconductor materials for metals has interested many corrosion researchers for years.However, a pure TiO2 semiconductor anode can only absorb ultraviolet light and cannot maintain the photocathodic protection in the dark.This has limited its practical applications to a great extent.Overcoming these limitations is significant as well as challenging.Therefore, the objective of this work is to prepare a modified TiO2 composite film with visible light absorption and charge storage capabilities for application in photocathodic protection.First, we fabricated an ordered TiO2 nanotube array film on a Ti substrate by electrochemical anodization.Then, we prepared NiO nanoparticles on the film via a hydrothermal reaction to obtain a p-n heterostructured NiO/TiO2 nanotube array composite film.The properties of the prepared films were investigated by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis absorption spectroscopy, photoluminescence spectroscopy, and photoelectrochemical techniques.The results indicated that the electrochemically anodized TiO2 film had an anatase phase structure and consisted of vertically ordered nanotubes with an inner diameter of about 80 nm and length of 250 nm.After the NiO nanoparticles were deposited on the film, the TiO2 nanotube array structure remained intact.The main phase of TiO2 was still anatase, but the light absorption of the NiO/TiO2 composite film was extended into the visible region, which was in contrast to that of the simple TiO2 film.Moreover, the composite film showed lower photoluminescence intensities than the TiO2 film, implying that a higher charge carrier separation efficiency could be achieved by modification with NiO.Under white light illumination, the photocurrent density of the NiO/TiO2 composite film in a mixed solution of 0.5 mol·L-1 KOH and 1 mol·L-1 CH3OH reached 176 μA·cm-2, which was 2 times higher than that of the simple TiO2 nanotube film, indicating that the composite film had improved photoelectric conversion efficiency and photoelectrochemical properties.The potential of 403 stainless steel (403SS) in 0.5 mol·L-1 NaCl solution decreased by 380 and 440 mV relative to its corrosion potential when coupled to the TiO2 film and NiO/TiO2 composite film, respectively,under white light illumination.This indicated that the heterostructured NiO/TiO2 film as a photoanode could produce more effective photocathodic protection on the steel as compared with the pure TiO2 film.Even after 2.5 h of illumination, the composite film could continuously provide photocathodic protection to 403SS for about 15.5 h in the dark, suggesting that the NiO/TiO2 composite film had a charge storage capability that was significant for its practical applications.

    Key Words: Anodic oxidation; Hydrothermal treatment; TiO2 nanotube; NiO; Photoelectrochemistry;Photocathodic protection; Stainless steel

    1 Introduction

    Titanium dioxide (TiO2), a wide-bandgap (3.0–3.2 eV)semiconductor, has many superior properties, such as low toxicity, low cost, good photosensitivity, and high stability.However, the inability of TiO2to utilize visible light limits its practical applications.In order to extend the optical absorption range of the TiO2semiconductor and improve its photoelectrochemical properties, researchers have modified TiO2by noble metal loading, ion doping and semiconductor coupling1–11,etc.Among these modifications, the coupling with semiconductors with suitable electronic band structures is considered to be one of the most effective methods to promote the separation of photoinduced electron-hole pairs and enhance the photoelectrochemical conversion efficiencies of TiO2composites6–15.NiO with a bandgap of about 3.55 eV is ap-type semiconductor with high hole mobility and cost effectiveness.Besides, its conduction band position is higher than that of TiO2,which is beneficial to the transfer of photoinduced electrons from NiO to TiO2.Ifp-type NiO is combined withn-type TiO2,ap-nheterojunction will form at their interface, which can enhance the photoelectrochemical activity of the NiO/TiO2composites14,16–19.For example, Kuetal.14used the NiO/TiO2composite as a photocatalyst to reduce Cr(VI) in the aqueous solution, and found that this composite showed high photocatalytic activity.Lietal.17synthesized the NiO/TiO2composite nanofibers to produce hydrogen by the photolysis, and found that the H2production rate of the composite reached to 337 μmol·h-1·g-1, which was 7 times higher than that of the pure TiO2sample.This was because NiO as a cocatalyst could suppress the recombination of photoinduced electron-hole pairs in the NiO/TiO2composite, lower the overpotential of H2production and accelerate the H2production.In the future, more cost-effective NiO/TiO2composite films will be pursued in the field of photoelectrochemistry.

    Herein, in this study, a facile approach involving electrochemical anodization and hydrothermal treatment was developed to fabricate a heterostructured NiO/TiO2nanotube array film with charge storage capability in order to further improve its photocathodic protection property.

    2 Experimental

    2.1 Fabrication of NiO/TiO2 nanotube composite film

    All the chemicals used in this work were of analytical grade.An electrochemical anodization combined with hydrothermal treatment method was used to fabricate a heterostructured NiO/TiO2nanotube array film, which would serve as a composite photoanode.An anatase TiO2nanotube array film was first prepared on a Ti substrate by anodization as reported in our earlier works7,10.Briefly, a Ti foil (purity 99.7%, dimensions 15 mm × 10 mm × 0.1 mm) was anodized in a 0.5% (mass fraction)HF solution for 30 min at a voltage of 20 V, and then the sample was calcined at 450 ℃ for 2 h to obtain an anatase TiO2film7,10.Then, NiO nanoparticles were preparedviahydrothermal treatment.Namely, the prepared TiO2film sample was immersed in a mixed solution of 6 mmol·L-1Ni(NO3)2·6H2O and 60 mmol·L-1CON2H4in a Teflon-lined autoclave and heated at 100 ℃ for 1 h.Finally, the film sample was calcined at 500 ℃ for 3 h to obtain a desired NiO/TiO2nanotube composite film.

    2.2 Characterization of films

    The morphologies of the prepared films were observed by scanning electron microscopy (SEM, Hitachi FE-SEM S4800).The chemical compositions were obtained by X-ray diffraction(XRD, Rigaku Ultima IV) with CuKαradiation (λ= 0.154 nm)and X-ray photoelectron spectroscopy (XPS, Qtac-100 LEISSXPS, AlKαradiation).The UV-Vis absorption and photoluminescence (PL) spectra of the films were obtained by a Varian Gray 5000 UV-Vis-NIR spectrophotometer and a fluorescence spectrometer (Hitachi F-7000, excitation wavelength 370 nm), respectively.

    2.3 Photoelectrochemical measurements

    The transient photocurrent responses of the TiO2and NiO/TiO2films were examined under open circuit conditions upon intermittent light illumination.The photocurrent density measurements were conducted by an electrochemical workstation (Ivium CompactState) in a photoelectrochemical cell with the prepared film (namely photoanode) as the working electrode, a Pt foil as the counter electrode and a saturated calomel electrode (SCE) as the reference electrode.A mixed aqueous solution with 0.5 mol·L-1KOH and 1 mol·L-1CH3OH served as the electrolyte in the cell.The film photoanode was illuminated with a LHX 150 W Xe lamp.

    Photocathodic protection measurements were performed by a home-built measurement system, as described in detail in our previous studies7,10.The prepared film served as a photoanode in a photoelectrochemical cell containing a mixed solution of 0.5 mol·L-1KOH and 1 mol·L-1CH3OH.403 stainless steel (403SS,exposed area of 1 cm2) served as the metal (namely working electrode) to be protected in a corrosion cell containing a 0.5 mol·L-1NaCl solution with a Pt foil counter electrode and an SCE reference electrode.The potentials of the 403SS uncoupled and coupled with the prepared film were measured to examine the photocathodic protection property of the film.The electrochemical impedance spectroscopy (EIS) tests on the 403SS at the corrosion potentials were also performed by using this system over the frequency range of 100 kHz to 10 mHz with an AC amplitude of 10 mV.

    3 Results and discussion

    3.1 Characterization of the prepared films

    Fig.1 presents the SEM images of the prepared films,showing that the ordered nanotube array films were formed on their Ti substrate surfaces.The TiO2film consisted of vertically oriented nanotubes with about 80 nm inner diameter and 10 nm wall thickness (shown in Fig.1a), and the nanotube length was about 250 nm.As shown in Fig.1b, after the deposition of NiO,many nanoparticles were formed on the TiO2film surface.The nanotube array structure remained unchanged, but the nanotube surfaces became obviously rough.

    Fig.1 SEM images of (a) the TiO2 nanotube film and (b) the NiO/TiO2 nanotube composite film.

    Fig.2 displays the XRD patterns of the two nanotube films.Two diffraction peaks located at 25.3° and 48.1° were ascribed to the (101) and (200) crystal faces of anatase TiO2(JCPDS No.71-1166), respectively, indicating that the TiO2prepared by the anodization and 450℃ calcination was in the anatase phase (Fig.2a).As shown in Fig.2b, after the deposition of NiO nanoparticles, the diffraction peaks of 37.4°, 43.4°, and 63.0°were attributed to the (111), (200) and (220) crystal faces of NiO(JCPDS No.75-0197), suggesting that NiO was prepared on the film.Besides the main peaks corresponding to anatase TiO2, the two small peaks at 27.4° and 36.0° were indexed to the (110) and(101) plans of rutile TiO2(JCPDS No.72-1148), suggesting that small amounts of the anatase TiO2in composite film was converted into rutile TiO2after the 500 ℃ calcination.

    Fig.2 XRD patterns of (a) the TiO2 nanotube film and (b) the NiO/TiO2 nanotube composite film.

    The high-resolution XPS spectra of the NiO/TiO2composite film for Ti 2p, Ni 2p, and O 1sare displayed in Fig.3.As shown in Fig.3a, the two peaks at 458.8 and 464.5 eV corresponded to the Ti 2p3/2and Ti 2p1/2, respectively, demonstrating that Ti in the film was in a Ti4+state9,10.In Fig.3b, all the peaks belonged to Ni2+, among which the peaks at 855.9 and 873.4 eV corresponded to Ni 2p3/2and Ni 2p1/2, respectively.Satellite peaks due to shake-up processes appeared at 861.9 and 880.9 eV for the composite film20,21.In Fig.3c, the peaks at 530.0 eV22and 530.8 eV19resulted from the lattice oxygen of TiO2and NiO, respectively, and the peak at 531.5 eV was attributed to the adsorption oxygen23.The above XRD and XPS results indicated that a NiO/TiO2composite film had been successfully synthesized.

    Fig.3 XPS spectra of the NiO/TiO2 composite film: (a) Ti 2p, (b) Ni 2p and (c) O 1s.

    Fig.4a exhibits the UV-Vis absorption spectra of the prepared films.The absorption edge of the NiO/TiO2composite film showed an obvious red shift towards the visible region relative to the simple TiO2film, and its photoabsorption was stronger in the 400–550 nm range, which was probably due to the conduction band of the Ti 3dorbital overlapping with that of the Ni 3dorbital and narrowing the band gap of the NiO/TiO2composite film24,25.Fig.4b displays the PL spectra of the prepared films.Peaks in the PL spectra were mainly derived from the electron-hole recombination26,27.Obviously, the NiO/TiO2film showed a weaker peak intensity than the TiO2film, indicating that the deposition of NiO on the TiO2nanotubes could effectively inhibit the electron-hole recombination in the NiO/TiO2composite film, which is of significance to improve the photoelectrochemical properties of the composite film.

    Fig.4 (a) UV-Vis absorption spectra and (b) PL spectra of the different nanotube films.

    3.2 Photoelectrochemical properties

    The time evolution of the photocurrent densities of the TiO2and NiO/TiO2films upon white light illumination on/off cycles was recorded at open circuit conditions for evaluating their photoelectrochemical responses.As presented in Fig.5, the reproducible photocurrent responses clearly showed the good photostability of the two films.Particularly, the photocurrent densities of the TiO2film and NiO/TiO2composite film upon the illumination were about 89 and 176 μA·cm-2, respectively,illustrating that the photoelectric conversion efficiency of the NiO/TiO2film was much higher than that of the TiO2film.Namely, the NiO/TiO2composite photoanode showed better photoelectrochemical property, which is of importance for improving its photocathodic protection effect.

    Fig.5 Time evolution of the photocurrent densities of the different nanotube films: (a) TiO2 and (b) NiO/TiO2.

    The photocathodic protection properties of the prepared films were investigated when they were coupled with the 403SS specimen.Fig.6 shows the potential variation of the 403SS coupled with the TiO2or NiO/TiO2film photoanode.The 403SS corrosion potential (Ecorr) was about 100 mVvsSCE before coupling.After coupling with TiO2film or NiO/TiO2composite film, the 403SS potential decreased owing to the galvanic action.When the light was turned on, the 403SS potentials were further decreased, and were 380 and 440 mV lower than the corrosion potential for coupling with the TiO2and NiO/TiO2films (Fig.6a,b), respectively, suggesting that the 403SS was under photocathodic protection, and the NiO/TiO2film had a more effective cathodic protection effect.After the light was turned off, the 403SS potential was immediately shifted back to the level before illumination for coupling with the TiO2film (Fig.6a), indicating that the photocathodic protection disappeared because of the recombination of photoinduced electrons and holes in the film.It is noteworthy that the potential of the 403SS coupled with the NiO/TiO2composite film increased only slightly from -340 to -320 mVvs.SCE after the first illumination was stopped, and the potential was lower than the level before illumination, indicating that the composite film could maintain the photocathodic protection resulting from its charge storage capability.After about 2.0 h, the illumination was provided again, the potential of the 403SS decreased as before,showing good reproducibility for the photocathodic protection effect of the composite film.After about 2.5 h illumination, the light was turned off again, the potential of the 403SS coupled with the NiO/TiO2film rose slowly back to the level before the first illumination in 15.5 h (Fig.6b).It indicated that the composite film had a charge storage capacity and provided some photocathodic protection in the dark for about 15.5 h.

    Fig.6 Variation of the potential of 403SS coupled to the different films under intermittent white light illumination.

    The photocathodic protection properties of the prepared films were further investigated by the EIS analyses.EIS spectra of the 403SS specimen in the 0.5 mol·L-1NaCl solution in the corrosion cell under different conditions are presented in Fig.7,and they could be modeled by using the equivalent circuit given in the inset28,29.In the equivalent circuit,RsandRctare the solution resistance and the charge transfer resistance,respectively.CPE is the constant phase element representing the electric double layer capacitance of the 403SS electrode28–30.TheRctvalues of the uncoupled and coupled 403SS specimens could be used for examining photocathodic protection effects of the different films.For the uncoupled 403SS, itsRctvalue was 451.2 kΩ·cm2by fitting the EIS data.For coupling with the TiO2and NiO/TiO2films, theRctvalues of the 403SS were 95.4 and 47.6 kΩ·cm2, respectively, which were much lower than that of the uncoupled 403SS.These results indicated that large numbers of photoinduced electrons were transferred from the illuminated TiO2or NiO/TiO2film to the coupled 403SS, which promoted the cathodic reaction on the 403SS surface and inhibited the steel corrosion.Therefore, the two films could offer photocathodic protection to the 403SS, but the heterostructured NiO/TiO2composite film showed a better photocathodic protection effect because of the lowerRctvalue corresponding to the 403SS coupled with the composite film.

    Fig.7 Impedance spectra of 403SS in the 0.5 mol·L-1 NaCl solution.

    3.3 Mechanism

    The enhanced photocathodic protection mechanism of the NiO/TiO2composite film and its charge storage capacity is illustrated schematically in Fig.8.As described in the schematic,the combination ofn-TiO2andp-NiO in the composite film formedp-nheterojunctions, which created an internal electric field at their interface, and resulted in the diffusion of electrons to the positive side and the diffusion of holes to the negative side31,32.Under white light illumination, the semiconductors absorbed light and generated the photoinduced electron-hole pairs.The electrons of the semiconductors were excited from the valence bands to the conduction bands.Subsequently, in the NiO/TiO2heterojunction electric field, the photoinduced electrons in the NiO conduction band migrated to the TiO2conduction band, and meanwhile the photoinduced holes were transferred from the TiO2valence band to the NiO valence band.This effectively inhibited the recombination of photoinduced charge carriers.Therefore, the photoelectric conversion efficiency and photocathodic protection performance of the NiO/TiO2composite film were enhanced.Besides the electric field effects, NiO also served as holes recombination centers.When the light illumination was turned on, the photoinduced holes might react with NiO according to the equation as follows33:

    Fig.8 Schematic diagram of the separation and migration of electron-hole pairs in the heterostructured NiO/TiO2 composite film.

    NiO + OH-+ h+? NiOOH

    As a result, the holes were stored in the NiO so that more photoinduced electrons were accumulated in the TiO2and/or transferred to the 403SS, which contributed to the metal charge transfer from Ni2+to Ni3+.After the illumination was turned off,the holes were released and mainly consumed by hole scavengers in the electrolyte, and the accumulated electrons were released slowly from the TiO2to the 403SS to maintain the cathodic protection33.This was the possible reason that the NiO/TiO2composite film could provide a certain photocathodic protection effect in the dark.Further study is needed in this respect.

    4 Conclusions

    The NiO/TiO2nanotube composite film prepared by anodization combined with hydrothermal treatment showed the enhanced photoelectrochemical properties compared with the simple TiO2nanotube film.The absorption edge of the composite film was red-shifted to the visible region, and its photocurrent density was 2 times that of the TiO2film.Under white light illumination, the composite film could offer better photocathodic protection to the 403SS in a 0.5 mol·L-1NaCl solution, which made the 403SS potential decrease by 440 mV relative to the corrosion potential.Especially, after the illumination was stopped, the NiO/TiO2composite film was able to continuously provide the photocathodic protection in the dark for about 15.5 h due to its charge storage capability.

    在线 av 中文字幕| 亚洲精品国产av蜜桃| 精品视频人人做人人爽| 中文字幕精品免费在线观看视频| 国产精品 欧美亚洲| 免费不卡黄色视频| 国产熟女午夜一区二区三区| 一级,二级,三级黄色视频| 波野结衣二区三区在线| 国产91精品成人一区二区三区 | 美女高潮到喷水免费观看| videos熟女内射| 欧美 日韩 精品 国产| 亚洲一区中文字幕在线| 啦啦啦中文免费视频观看日本| 久久久久视频综合| 大香蕉久久成人网| 亚洲av欧美aⅴ国产| 熟女av电影| 精品亚洲成a人片在线观看| 亚洲精品一区蜜桃| 亚洲精品成人av观看孕妇| 国产片特级美女逼逼视频| 欧美性长视频在线观看| 黄片播放在线免费| 自拍欧美九色日韩亚洲蝌蚪91| 成人国语在线视频| 最新在线观看一区二区三区 | 亚洲国产精品一区三区| 少妇的丰满在线观看| 亚洲欧洲国产日韩| 亚洲欧洲国产日韩| 国产精品偷伦视频观看了| 1024视频免费在线观看| 亚洲激情五月婷婷啪啪| 亚洲国产精品一区二区三区在线| 中国美女看黄片| 久久免费观看电影| 美女大奶头黄色视频| 亚洲欧美精品自产自拍| 久久鲁丝午夜福利片| 亚洲精品美女久久av网站| 亚洲人成网站在线观看播放| 男女无遮挡免费网站观看| 亚洲精品久久成人aⅴ小说| 美女中出高潮动态图| 少妇精品久久久久久久| 自线自在国产av| 男人舔女人的私密视频| 国产在线一区二区三区精| 日韩视频在线欧美| 国产野战对白在线观看| 狠狠精品人妻久久久久久综合| 晚上一个人看的免费电影| 久久久精品区二区三区| 亚洲中文字幕日韩| 国产在视频线精品| 人妻人人澡人人爽人人| 黄色a级毛片大全视频| 国产高清国产精品国产三级| 91麻豆av在线| bbb黄色大片| 99香蕉大伊视频| 久久性视频一级片| 久久久亚洲精品成人影院| 一级毛片黄色毛片免费观看视频| 亚洲国产精品一区二区三区在线| 大话2 男鬼变身卡| 欧美精品一区二区大全| 欧美xxⅹ黑人| 国产免费福利视频在线观看| 久久久久久久久久久久大奶| 亚洲精品自拍成人| 最新的欧美精品一区二区| 国产黄频视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩一级在线毛片| 69精品国产乱码久久久| 免费观看a级毛片全部| 美女主播在线视频| 欧美日韩一级在线毛片| 亚洲欧洲国产日韩| 又大又黄又爽视频免费| 国产成人一区二区三区免费视频网站 | 秋霞在线观看毛片| 美女视频免费永久观看网站| 飞空精品影院首页| 三上悠亚av全集在线观看| 日韩制服丝袜自拍偷拍| 午夜免费成人在线视频| 精品亚洲乱码少妇综合久久| 久久久国产欧美日韩av| 国产野战对白在线观看| avwww免费| 日韩,欧美,国产一区二区三区| 夫妻性生交免费视频一级片| 欧美日本中文国产一区发布| 午夜福利,免费看| 少妇被粗大的猛进出69影院| 久热这里只有精品99| 久久天堂一区二区三区四区| 欧美黑人精品巨大| 久久亚洲精品不卡| 欧美在线黄色| 一个人免费看片子| 人人妻人人爽人人添夜夜欢视频| 1024香蕉在线观看| 久久女婷五月综合色啪小说| 一本一本久久a久久精品综合妖精| 两个人免费观看高清视频| avwww免费| 国产午夜精品一二区理论片| 97在线人人人人妻| 久久久久久人人人人人| 欧美日韩黄片免| 国产日韩欧美视频二区| 亚洲精品一卡2卡三卡4卡5卡 | 久久精品国产综合久久久| 午夜免费鲁丝| svipshipincom国产片| 久久久精品94久久精品| 香蕉国产在线看| 国产精品久久久久久人妻精品电影 | 99国产综合亚洲精品| 久久女婷五月综合色啪小说| 黄色一级大片看看| 九草在线视频观看| 老汉色av国产亚洲站长工具| 蜜桃在线观看..| 精品视频人人做人人爽| 欧美在线黄色| avwww免费| 熟女av电影| 成人午夜精彩视频在线观看| 亚洲国产毛片av蜜桃av| 女人高潮潮喷娇喘18禁视频| 国产高清视频在线播放一区 | 又黄又粗又硬又大视频| 午夜福利视频精品| 在线观看免费高清a一片| 国产免费视频播放在线视频| 美国免费a级毛片| 久久国产精品影院| 日韩一区二区三区影片| 日韩中文字幕欧美一区二区 | 男女之事视频高清在线观看 | 性少妇av在线| 欧美日韩一级在线毛片| 国产极品粉嫩免费观看在线| 中文字幕人妻熟女乱码| 观看av在线不卡| 日本一区二区免费在线视频| 日本av免费视频播放| 一区二区av电影网| 国产欧美日韩综合在线一区二区| 只有这里有精品99| 国产精品二区激情视频| 国产精品香港三级国产av潘金莲 | 91麻豆精品激情在线观看国产 | 亚洲国产精品成人久久小说| 欧美国产精品一级二级三级| 久久精品久久久久久噜噜老黄| 一级片免费观看大全| 久久鲁丝午夜福利片| 国产成人精品在线电影| 久热这里只有精品99| 天天躁狠狠躁夜夜躁狠狠躁| 免费黄频网站在线观看国产| 亚洲精品国产av蜜桃| 日本欧美国产在线视频| 国产成人啪精品午夜网站| 亚洲男人天堂网一区| 一级毛片电影观看| 最新的欧美精品一区二区| 精品少妇黑人巨大在线播放| 国产成人系列免费观看| 老汉色∧v一级毛片| 欧美精品av麻豆av| 亚洲熟女精品中文字幕| 国产熟女欧美一区二区| 日韩精品免费视频一区二区三区| 悠悠久久av| 手机成人av网站| 91精品伊人久久大香线蕉| 一边亲一边摸免费视频| 又大又黄又爽视频免费| 成人手机av| 国产亚洲精品久久久久5区| 高清视频免费观看一区二区| 久久久久久久国产电影| 王馨瑶露胸无遮挡在线观看| 国产精品亚洲av一区麻豆| 国产av精品麻豆| 宅男免费午夜| 久久毛片免费看一区二区三区| 男女床上黄色一级片免费看| 国产在线观看jvid| 国产精品一二三区在线看| 人人妻人人添人人爽欧美一区卜| 伦理电影免费视频| 少妇的丰满在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜av观看不卡| 这个男人来自地球电影免费观看| 国产91精品成人一区二区三区 | 一级片'在线观看视频| 在线av久久热| 久久久国产一区二区| 欧美人与性动交α欧美精品济南到| 久久久亚洲精品成人影院| 国产男女超爽视频在线观看| 亚洲人成77777在线视频| 国产欧美亚洲国产| www.999成人在线观看| 嫩草影视91久久| 国产爽快片一区二区三区| 女人被躁到高潮嗷嗷叫费观| 在线观看www视频免费| 精品亚洲乱码少妇综合久久| 精品一区二区三卡| 天天影视国产精品| 国产亚洲精品第一综合不卡| 天天躁夜夜躁狠狠躁躁| 99热全是精品| 9191精品国产免费久久| 国产1区2区3区精品| 啦啦啦中文免费视频观看日本| 咕卡用的链子| 曰老女人黄片| 亚洲精品中文字幕在线视频| 亚洲国产欧美日韩在线播放| 亚洲欧美激情在线| 九色亚洲精品在线播放| 狂野欧美激情性bbbbbb| 国产老妇伦熟女老妇高清| 精品久久久精品久久久| 日本欧美国产在线视频| 欧美国产精品va在线观看不卡| 亚洲精品国产区一区二| 亚洲av综合色区一区| 丝袜美足系列| 免费一级毛片在线播放高清视频 | 国产精品一区二区在线观看99| 十八禁网站网址无遮挡| av有码第一页| 黄色一级大片看看| 亚洲精品久久成人aⅴ小说| 午夜福利一区二区在线看| 午夜福利乱码中文字幕| 国产午夜精品一二区理论片| 一本一本久久a久久精品综合妖精| 中文字幕人妻丝袜一区二区| 国产伦理片在线播放av一区| 熟女av电影| 国产在线视频一区二区| 美女脱内裤让男人舔精品视频| 尾随美女入室| 麻豆乱淫一区二区| 一边亲一边摸免费视频| 久久综合国产亚洲精品| 久久综合国产亚洲精品| 人人妻人人添人人爽欧美一区卜| 校园人妻丝袜中文字幕| 十分钟在线观看高清视频www| 亚洲精品乱久久久久久| 成人三级做爰电影| 国精品久久久久久国模美| 精品福利观看| 国产在线观看jvid| 精品人妻熟女毛片av久久网站| 亚洲人成电影免费在线| 激情五月婷婷亚洲| 99久久99久久久精品蜜桃| 国产精品久久久久久精品电影小说| av电影中文网址| 9热在线视频观看99| 成年av动漫网址| 涩涩av久久男人的天堂| 一级a爱视频在线免费观看| 国产亚洲av高清不卡| 伊人久久大香线蕉亚洲五| 午夜精品国产一区二区电影| 欧美+亚洲+日韩+国产| 亚洲中文日韩欧美视频| 男女高潮啪啪啪动态图| 中文字幕最新亚洲高清| www.熟女人妻精品国产| 99久久99久久久精品蜜桃| 水蜜桃什么品种好| 欧美日韩精品网址| 一级a爱视频在线免费观看| 日本五十路高清| 丝袜喷水一区| 久久久欧美国产精品| 亚洲,欧美精品.| 99国产精品免费福利视频| 国产三级黄色录像| 久久国产精品大桥未久av| 黑丝袜美女国产一区| 男女之事视频高清在线观看 | 久久久久久免费高清国产稀缺| 亚洲 国产 在线| 丝袜喷水一区| av视频免费观看在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费观看性视频| 精品人妻在线不人妻| 久久毛片免费看一区二区三区| 国产精品久久久人人做人人爽| 欧美在线黄色| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻丝袜一区二区| 国产亚洲精品久久久久5区| 精品福利永久在线观看| 超色免费av| 亚洲国产av影院在线观看| 熟女少妇亚洲综合色aaa.| 亚洲情色 制服丝袜| 精品卡一卡二卡四卡免费| 国产在视频线精品| 久久国产精品影院| 老熟女久久久| 久久久精品免费免费高清| 精品免费久久久久久久清纯 | 免费观看a级毛片全部| 亚洲天堂av无毛| 一区二区av电影网| av在线播放精品| 精品久久久精品久久久| 中文字幕制服av| videos熟女内射| a级片在线免费高清观看视频| 精品人妻熟女毛片av久久网站| 麻豆av在线久日| 18禁黄网站禁片午夜丰满| 亚洲av男天堂| 久久午夜综合久久蜜桃| 亚洲人成电影观看| 国产高清不卡午夜福利| 欧美精品人与动牲交sv欧美| 国产一区亚洲一区在线观看| 久久ye,这里只有精品| 日日夜夜操网爽| 王馨瑶露胸无遮挡在线观看| 亚洲国产欧美在线一区| 欧美另类一区| 久久精品久久精品一区二区三区| 99久久99久久久精品蜜桃| 狂野欧美激情性bbbbbb| 纯流量卡能插随身wifi吗| 亚洲第一av免费看| 天天添夜夜摸| 亚洲人成电影免费在线| 欧美中文综合在线视频| 欧美日韩国产mv在线观看视频| 国产亚洲av高清不卡| 极品少妇高潮喷水抽搐| 亚洲av美国av| 丝袜人妻中文字幕| 一本色道久久久久久精品综合| 搡老乐熟女国产| 国产精品一区二区在线不卡| 亚洲欧美激情在线| 日本91视频免费播放| 久久亚洲国产成人精品v| 亚洲一码二码三码区别大吗| 美女主播在线视频| 人人妻人人添人人爽欧美一区卜| 在线观看www视频免费| 精品一区二区三卡| 国产女主播在线喷水免费视频网站| 黄色a级毛片大全视频| 一级黄色大片毛片| 乱人伦中国视频| 久久精品熟女亚洲av麻豆精品| 亚洲七黄色美女视频| 少妇人妻 视频| 国产精品一区二区在线不卡| 黄色毛片三级朝国网站| 国产精品熟女久久久久浪| 一区二区三区激情视频| 久久天堂一区二区三区四区| 99精国产麻豆久久婷婷| 亚洲欧洲国产日韩| 黄色怎么调成土黄色| 午夜两性在线视频| 在线观看人妻少妇| 最近最新中文字幕大全免费视频 | 国产精品 国内视频| 久久99精品国语久久久| 精品一区二区三区四区五区乱码 | 国产精品免费大片| 久久国产亚洲av麻豆专区| 免费在线观看视频国产中文字幕亚洲 | 9色porny在线观看| 亚洲中文日韩欧美视频| 大片免费播放器 马上看| 我要看黄色一级片免费的| 亚洲一区中文字幕在线| 免费看av在线观看网站| 免费在线观看影片大全网站 | 亚洲天堂av无毛| 亚洲精品国产一区二区精华液| 91精品国产国语对白视频| 韩国高清视频一区二区三区| 亚洲成人免费av在线播放| 国产欧美亚洲国产| 中国美女看黄片| 国产男人的电影天堂91| 欧美国产精品va在线观看不卡| 日本黄色日本黄色录像| 精品国产乱码久久久久久小说| 国产免费视频播放在线视频| 午夜福利影视在线免费观看| av在线老鸭窝| 在线天堂中文资源库| 色网站视频免费| 操美女的视频在线观看| 国产成人av激情在线播放| 亚洲一区中文字幕在线| av线在线观看网站| 亚洲,欧美,日韩| 视频在线观看一区二区三区| 欧美日韩视频高清一区二区三区二| 国产精品久久久久成人av| 婷婷成人精品国产| 亚洲人成网站在线观看播放| 丝袜美腿诱惑在线| 久久99一区二区三区| 亚洲国产中文字幕在线视频| 亚洲国产欧美网| 热re99久久精品国产66热6| 国产日韩欧美在线精品| 国产免费现黄频在线看| 欧美日韩成人在线一区二区| av又黄又爽大尺度在线免费看| 男男h啪啪无遮挡| 免费看av在线观看网站| 80岁老熟妇乱子伦牲交| 久久人妻熟女aⅴ| 亚洲av男天堂| 97人妻天天添夜夜摸| 国产精品麻豆人妻色哟哟久久| 亚洲中文av在线| 成人手机av| 国产精品一区二区在线不卡| 18禁观看日本| 久久精品国产亚洲av涩爱| 亚洲av国产av综合av卡| 欧美少妇被猛烈插入视频| 国产在线一区二区三区精| 天天添夜夜摸| 首页视频小说图片口味搜索 | 侵犯人妻中文字幕一二三四区| avwww免费| 中文字幕人妻丝袜制服| e午夜精品久久久久久久| 中文乱码字字幕精品一区二区三区| 男女午夜视频在线观看| 亚洲中文av在线| 一边摸一边抽搐一进一出视频| av在线播放精品| 一二三四在线观看免费中文在| 成年动漫av网址| 久久九九热精品免费| 免费av中文字幕在线| 欧美性长视频在线观看| 国产一区有黄有色的免费视频| 免费观看av网站的网址| 桃花免费在线播放| av国产精品久久久久影院| 午夜两性在线视频| 国产欧美日韩一区二区三 | 日本午夜av视频| 亚洲av男天堂| 欧美日韩国产mv在线观看视频| 国产成人欧美| 免费看不卡的av| 国产极品粉嫩免费观看在线| 国精品久久久久久国模美| 热re99久久精品国产66热6| 亚洲,欧美精品.| 亚洲精品美女久久av网站| 国产精品成人在线| 中国国产av一级| 亚洲第一av免费看| 亚洲av日韩在线播放| 久久久国产一区二区| 曰老女人黄片| 日韩精品免费视频一区二区三区| 亚洲av日韩在线播放| 啦啦啦在线观看免费高清www| 超碰成人久久| 亚洲第一av免费看| 两个人免费观看高清视频| 1024视频免费在线观看| 欧美久久黑人一区二区| 亚洲国产欧美网| 国产视频一区二区在线看| 热99久久久久精品小说推荐| 嫁个100分男人电影在线观看 | 久久久久久久久免费视频了| 国产亚洲av高清不卡| 熟女av电影| 这个男人来自地球电影免费观看| 日韩一卡2卡3卡4卡2021年| 亚洲av片天天在线观看| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久男人| 免费在线观看黄色视频的| 国产成人免费无遮挡视频| av在线app专区| 亚洲一码二码三码区别大吗| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 自线自在国产av| 男女之事视频高清在线观看 | 免费av中文字幕在线| 一边摸一边抽搐一进一出视频| 一区福利在线观看| 天堂中文最新版在线下载| 国产激情久久老熟女| 亚洲欧美精品综合一区二区三区| 1024香蕉在线观看| 欧美亚洲 丝袜 人妻 在线| 黄色怎么调成土黄色| 成年人午夜在线观看视频| 青春草视频在线免费观看| 欧美精品一区二区大全| 一级毛片电影观看| 欧美成人午夜精品| 丝袜喷水一区| 大话2 男鬼变身卡| 国产欧美日韩综合在线一区二区| 女人精品久久久久毛片| 久久久国产一区二区| 美女国产高潮福利片在线看| 日韩视频在线欧美| 51午夜福利影视在线观看| 久久久久视频综合| 欧美性长视频在线观看| 人人妻,人人澡人人爽秒播 | 精品久久久久久电影网| 久久99热这里只频精品6学生| 新久久久久国产一级毛片| 大型av网站在线播放| 午夜免费鲁丝| 精品人妻1区二区| 免费观看人在逋| 两人在一起打扑克的视频| 亚洲一区中文字幕在线| 午夜免费男女啪啪视频观看| 天天操日日干夜夜撸| 丰满人妻熟妇乱又伦精品不卡| 欧美 亚洲 国产 日韩一| av视频免费观看在线观看| 免费看十八禁软件| 亚洲情色 制服丝袜| 亚洲国产欧美网| 蜜桃国产av成人99| 99精国产麻豆久久婷婷| 女人精品久久久久毛片| 亚洲精品日本国产第一区| 蜜桃在线观看..| 亚洲熟女精品中文字幕| 中文字幕高清在线视频| 一二三四在线观看免费中文在| 亚洲精品自拍成人| 老司机在亚洲福利影院| 亚洲,欧美,日韩| 交换朋友夫妻互换小说| 最新在线观看一区二区三区 | 中国美女看黄片| 爱豆传媒免费全集在线观看| 一级a爱视频在线免费观看| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久| 一级毛片我不卡| 91麻豆精品激情在线观看国产 | 欧美黑人精品巨大| 中文精品一卡2卡3卡4更新| 国产在线观看jvid| 国产男女内射视频| 午夜免费男女啪啪视频观看| 精品一区在线观看国产| 午夜福利一区二区在线看| 国产精品欧美亚洲77777| av欧美777| 夫妻午夜视频| 国产av一区二区精品久久| 黑人猛操日本美女一级片| av视频免费观看在线观看| www.熟女人妻精品国产| 99国产精品免费福利视频| 亚洲精品av麻豆狂野| 国产在线视频一区二区| av国产精品久久久久影院| 看免费成人av毛片| 国精品久久久久久国模美| 成人免费观看视频高清| 午夜日韩欧美国产| 满18在线观看网站| 国产亚洲av高清不卡| 国产精品偷伦视频观看了| 性色av一级| 日本午夜av视频| 久久人人97超碰香蕉20202| 亚洲国产av新网站| 97在线人人人人妻| 亚洲成国产人片在线观看| 精品一区二区三卡| 制服人妻中文乱码| 亚洲中文av在线| 欧美乱码精品一区二区三区| 亚洲九九香蕉|