• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dissection of the Genetic Architecture of Plant Height and Ear Height in Maize(Zeamays L.)

    2016-11-25 05:03:25ZHANGNingZHANGQiangZHANGYunaLIXinHUANGXueqing
    關(guān)鍵詞:穗位株高貢獻率

    ZHANG Ning, ZHANG Qiang, ZHANG Yuna, LI Xin, HUANG Xueqing

    (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China)

    ?

    Dissection of the Genetic Architecture of Plant Height and Ear Height in Maize(ZeamaysL.)

    ZHANG Ning, ZHANG Qiang, ZHANG Yuna, LI Xin, HUANG Xueqing

    (State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China)

    Maize(ZeamaysL.) is among the crops with the greatest worldwide economic importance. Plant height(PH) and ear height(EH) are two very important traits which are considered necessary in maize breeding and are related to morphology, lodging, and yield. To explore the genetic mechanism of PH and EH, an F3:4recombinant inbred lines(RILs) population with 165 lines was generated from a cross between inbred line(Zheng58) and inbred line(B73). 189 polymorphic simple sequence repeat(SSR) markers were used to map quantitative trait loci(QTLs) for PH and EH. A total of 11 QTLs(5 QTLs for PH and 6 QTLs for EH) detected were located on 8 chromosomes except chromosome 2 and 6. Single QTL explained from 4.3% to 14.2% of the phenotypic variance. Interestingly, the novel plant height QTL(qPH04-01) was specific to the population, which was detected near umc0371 and could explain 8.8% of phenotypic variation. It is worthy of further research and utilization.

    maize; plant height; ear height; quantitative trait loci; genetic architecture

    1 Introduction

    Maize(ZeamaysL.) is one of the most important cereal crops worldwide, and increasing the grain yield and biomass has been the most important goals of maize production[1]. Among the various traits that are normally considered in maize breeding programs, plant height and ear height are two important traits affecting plant architecture and yield potential. On the one hand, they are not only closely correlated with grain yield, leaf number, flowering time[2]and other important agronomic traits, including biomass production and forage yield in maize[3], but also directly affects and determines resistance to stalk lodging. Low PH and EH can lower the center of gravity of the plant, which is considered to be important in the determination of stalk lodging[4]. On the other hand, excessively high plant will decrease planting density, lodging resistance and harvest index; too short plant will influence the permeability of population, susceptibility to diseases and insect pests and reduce biomass. Excessively high ear height will easily cause lodging; too short ear height will affect the efficient transport of the photosynthetic product to the ear. Therefore, an appropriate plant height and ear height is a prerequisite for attaining the desired yield in maize-breeding programs.

    Genetic studies have indicated that plant height and ear height in maize are complex traits controlled by both qualitative genes and quantitative genes. Plant height loci have been cloned and resolved by molecular tagging of large effect alleles often induced by mutagenesis[5-6]. Over 40 maize genes at which mutations have large effects on plant height have been identified. These are involved in hormone synthesis, transport, and signaling pathway[7]. Well-characterized maize height genes include:brachytic2, influencing polar auxin transport[8-9];dwarf-1(dt), controlling the three gibberellin-biosynthetic steps[10];dwarf3, mediating gibberellin synthesis[11];dwarf8 anddwarf9, regulating DELLA proteins of gibberellin signal transduction pathways[12-13]; andnanaplant1, impacting brassinosteroid synthesis[14]. In addition to the semi-dwarfing and dwarfing genes, the PH and EH variation in maize breeding populations is mostly controlled by a set of quantitative trait loci(QTLs) with minor effects. Over the last two decades, genetic dissection of maize PH and EH by classical QTL mapping using biparental populations has resulted in identification of numerous PH and EH QTLs[15-37]. Nevertheless, different studies provided different results, including QTL number, distribution, and genetic effect. For instance, Lima et al used maize inbred lines L-20-01F and L-02-03D as parental lines, and 9 QTLs for ear height were located on chromosomes 2(two), 3(two), 4(one), 7(one), 9(two), and 10(one)[27], while in the report by Li et al, Mo17 and Huangzao4 were employed as parents, and only 1 QTL was identified on chromosomes 1[34]. Inconsistent detection of QTLs in different research reflects the necessity and importance of QTL mapping with various parents and populations, and in various environments, to reveal the complicated heredity of plant height and ear height. Therefore, taking the complex and polygenic inheritance nature of plant architecture of maize into account, further investigations of the QTLs underlying the phenotypic variance of these traits are needed.

    In the present study, an F3:4recombinant inbred lines(RILs) population derived from a cross between inbred line Zheng58 and B73, was used to identify QTLs for two traits affecting plant architecture:plant height and ear height. The objectives were to i) better understand the genetic basis of plant architecture and ii) identify molecular markers for MAS in maize breeding projects.

    2 Materials and Method

    2.1 Plant materials

    The recombination inbred line(RIL) populations were obtained by crossing B73 with Zheng58. The parents were chosen on the basis of their different plant architecture and maize germplasm groups. B73 with the higher plant stature is the common parent in NAM population and has been sequenced. Zheng58 is an elite foundation inbred line with dwarf architecture, which is used broadly in China. From the F2progeny, a single seed descent was applied to generate 165 RILs at the F4generation.

    2.2 Field experiments and statistical analyses

    The field experiments were performed at the experimental station located in Songjiang District, Shanghai during 2014 and 2015. A randomized complete block design with two replications was applied. Each plot had one row that was 3 m long and 0.67 m wide, with a total of 10 plants at a density of 50000 plants/ha. The field management followed common agricultural practice in maize production in China. Five representative plants from the middle of each plot were chosen to measure the plant height(PH) and ear height(EH) at grain maturity stage. PH was measured as the distance(cm) from the soil surface to the tip of the tassel; EH was measured as the distance(cm) from the soil surface to the node of attachment of the primary ear. The trait value for each RIL was averaged for the five measured plants in each replication.

    Based on the means of the phenotypic data of the population, the SPSS20 software was used to perform statistics analysis. For each trait, broad-sense heritability(h2) was estimated as the proportion of variance explained by between RIL(genotypic) variance and RIL by block(error) variance. The correlation coefficients among the traits were obtained with the “cor” function in the SPSS software package.

    2.3 Genetic map construction and QTL mapping

    Young leaf samples were collected at the seedling stage from the four RIL populations, and genomic DNA was extracted using the CTAB method[38]. The F3population individuals were analyzed using Simple Sequence Repeats(SSRs) markers. In order to select the most informative SSR primer pairs, the parental lines, B73 and Zheng58, and an F1 individual were screened with 393 SSR markers chosen from Maize Genetics and Genomic Database(MaizeGDB) based on their repeat unit and physical position. This resulted in the selection of 189 pairs of SSR markers that clearly show codominant segregation. They were used to genotype the F3 individuals. Primer sequences are available from the MaizeGDB website(http:∥www. maizegdb. org). PCR reactions were run in 10μL total volume and the final concentration of each compositions as follows:1μL 10×PCR buffer, 0.2μmol/L of the forward and reverse primers, and 1.5mmol/L MgCl2, 0.2μmol/L dNTP, and 0.1 units of Taq polymerase, 50—100 ng template DNA, then metered volume to 10μL with ddH2O.

    The touchdown PCR(TD PCR) cycling programs were as follows:94℃ for 3min, 94℃ for 30s, 36 cycles with 94℃ for 30s, Tm for 30s, and 72℃ for 30s, and in the first 16 cycles the annealing temperature was reduced by 1℃ per cycle from 65℃ to 50℃, the last 20 cycles run at the constant Tm 50℃, then followed by 72℃ for 10 min.

    According to the physical position of the SSR markers obtained from the genome sequencing results of B73, a physical map was constructed through assigning the informative markers to the corresponding chromosome. The software package MapQTL 5.0 was used to identify and locate QTL on the linkage map by using interval mapping and multiple-QTL model(MQM) mapping methods as described in its reference manual(http:∥www. kyazma. nl). In a first step, putative QTL were identified using interval mapping. Thereafter, the closest marker at each putative QTL was selected as a cofactor and the selected markers were used as genetic background controls in the approximate multiple QTL model of MapQTL 5.0.LOD threshold values applied to declare the presence of QTL were estimated by performing permutation tests implemented in MapQTL 5.0 using at least 1000 permutations of the original data set, resulting in a 95% LOD threshold of 2.9. The estimated additive genetic effect and the percentage of variance explained by each QTL and the total variance explained by all the QTL affecting a trait were obtained using MQM mapping.

    3 Results

    3.1 Analysis plant architecture traits in F3:4population and parental lines

    There are significant differences between the two inbred maize varieties B73 and Zheng58 in plant architecture traits used in this study. Zheng58 had dwarf architecture with an average PH of 172.6 and EH of 58.4, whereas B73 displayed a higher plant stature with an average PH of 228.4 and EH of 92.1(Tab.1). Table 1 presents a number of descriptive statistics of the two plant architecture traits for the two parents and the F3:4population. Large differences were found for these traits between the two parents,and the wider range of variation for the traits in the F3:4population, normal distributions with transgressive segregation suggested polygenic inheritance of the traits(
    Fig.1). The estimated broad-sense heritability(h2) values for traits were generally high and ranged from 82.5 to 86.4(Tab.1). Additionally, the significant positive correlation was observed between PH and EH.

    Tab.1 Descriptive statistics of the plant architecture traits in parental lines (B73 and Zheng58) and the population of F3:4 at grain maturity stage

    1) PH, plant height; EH, ear height; 2) All the differences between the two parents are statistically significant at the 0.01 probability level.

    3.2 Linkage maps of F3:4populations

    A survey of 393 SSR primer pairs identified 189 loci polymorphic between the parents. According to the physical position of the SSR markers obtained from the genome sequencing results of B73, a physical map with 189 SSR markers was constructed through assigning the informative markers to the corresponding chromosome. The number of markers placed in different chromosomes ranged from 13—29 with averages of 18.9. The longest marker distance was 38.98 Mb, and the shortest 1.41 Mb. The average genetic distance of 10.89 Mb between two neighbouring markers and the distribution of markers in all chromosomes was relatively even without crowding(
    Fig.2).

    3.3 Identification of QTLs for plant architecture traits

    Quantitative trait loci analysis of plant architecture traits was conducted using MAPQTL 5.0 software and 11 detected QTLs were distributed on 8 chromosomes except for chromosome 2 and 6(Tab.2,
    Fig.2). Among them, two QTLs were detected on each of chromosomes 1(qPH01-01 and qEH01-01), 3(qPH03-01 and qEH03-01), 5(qPH05-01 and qEH05-01); and one QTL was detected on each of chromosomes 4(qPH04-01), 7(qEH07-01), 8(qEH08-01), 9(qEH09-01) and 10(qPH10-01). Some QTLs detected at different traits were found located in the same interval. For example, two QTLs were simultaneously detected in PH and EH and located on chromosome 3(bnlg1035-umc1644 interval) and chromosome 5(umc1155-umc1072 interval), respectively. It is notable that most QTLs for PH and EH had positive additive effects except for qPH10-01 and qEH07-01 with negative additive effects, indicating that the B73 parent contributed most alleles for increasing plant height and ear height.

    Five QTLs on chromosome 1, 3, 4, 5 and 10, respectively, were identified for PH(
    Fig.2, Tab.2), which explained 55.4% of the total phenotypic variance, and single QTL accounted for from 6.4% to 17.2% of the phenotypic variance.

    Six QTLs for EH, accounting for 58.8% of the total phenotypic variance, were identified on chromosome 1, 3, 5, 7, 8 and 9, respectively(
    Fig.2, Table 2). Single QTL explained from 6.6% to 14.1% of the phenotypic variance.

    Tab.2 QTL analysis of maize plant height and ear height in the F3:4 population of B73×Zheng58

    Additive effect:effect of the substitution of the Zheng58 allele by the B73 allele. A positive value indicates that the B73 allele increases the value of the trait; A negative value indicates that the Zheng58 allele increases the value of the trait.

    4 Discussion

    PH and EH are two important agronomic traits in the maize breeding project. They are related to morphology, lodging, and grain yield; therefore, understanding their genetic basis has important theoretical and practical meaning[39]. Quantitative trait locus(QTL) mapping is a well-reasoned solution to realize the genetic basis of traits in crop breeding. In the past few decades, to increase planting density and prevent plants from lodging, studies on the genetic mechanism of plant and ear height were given great attention. Until now, a number of QTL conferring plant height and ear height are reported to be located on all ten chromosomes in maize. In this research, we chose a dwarf-type inbred line Zheng58 and a normal inbred line B73 as the parents of mapping population and detected 11 QTLs on chromosomes 1, 3, 4, 5, 7, 8, 9 and 10 for PH and EH in an F3:4population(
    Fig.3). Compared to previous studies, ten of the 11 QTLs for PH and EH were found to have similar chromosomal locations with different mapping experiments or different genetic background, which demonstrated that the chromosome regions for these consistent QTLs might be hot spots for the important QTLs for PH and EH. Also the congruence in QTLs detected in this study with previous reports indicates the robustness of our results. However, in our study, no QTL was detected on chromosome 2 and 6; the cause of this was probably the too small genetic effects or no allelic difference between the two parents. Interestingly, one QTL for PH, qPH04-01, was detected in chromosome 4, which has not been reported in maize by previous researchers. The novel QTL may be due to the specific genetic background from dwarf-type parent Zheng58. Furthermore, newly detected major QTLs may serve a complementary role in revealing the genetic nature of plant-height traits.

    The analyses also revealed high phenotypic correlations between plant height and ear height. The genetic basis of such high correlations can largely be explained by the co-localization of the QTLs for the two traits, either due to pleiotropic effects or tight linkage. Examples of such genomic regions included:the interval marked by bnlg1035-umc1644on chromosome 3 and umc1155-umc1072 where QTLs for PH and EH were simultaneously detected. The similar co-localization QTL was widely reported[23-25]. Zhou et al detected 4 pQTLs regions that control both plant height and ear height[37]. The co-localization of the QTLs for PH and EH is of great relevance in understanding the plant architecture. Whether genes in these regions have pleiotropic effects or the plant architecture expression is due to the effect of linked genes needs to be investigated. To achieve this objective, developing heterogeneous inbred families(HIFs) for this QTL region for fine mapping and cloning of these QTLs is in progress. Undoubtedly, this will lead to better understanding of the mechanism of plant architecture in maize.

    [1] DUVICK D N, SMITH J S C, COOPER M. Long-term selection in a commercial hybrid maize breeding program [J].PlantBreedRev, 2004,24:109-151.

    [2] TROYER A F, LARKINS J R. Selection for early flowering in corn:10 late synthetics [J].CropSci, 1985,25:695-697.

    [3] LüBBERSTEDT T, MELCHINGER A E, FAHR S,etal. QTL mapping in testcrosses of flint lines of maize:Ⅲ. Comparison across populations for forage traits [J].CropSci, 1998,38(5):1278-1289.

    [4] FLINT-GARCIA S A, MCMULLEN M D, DARRAH L L. Genetic relationship of stalk strength and ear height in maize [J].CropSci, 2003,43(1):23-31.

    [5] SALAS-FERNANDEZ M G S, BECRAFT P W, YIN Y H,etal. From dwarves to giants? Plant height manipulation for biomass yield [J].TrendsinPlantSci, 2009,14(8):454-461.

    [6] ANDORF C M, LAWRENCE C J, HARPER L C,etal. The locus lookup tool at MaizeGDB:Identification of genomic regions in maize by integrating sequence information with physical and genetic maps [J].Bioinformatics, 2010,26(3):434-436.

    [7] WANG Y, LI J. Molecular basis of plant architecture [J].AnnuRevPlantBiol, 2008,59:253-279.

    [8] MULTANI D S, BRIGGS S P, CHAMBERLIN M A,etal. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants [J].Science, 2003,302(5642):81-84.

    [9] XING A, GAO Y, YE L,etal. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize [J].JExpBot, 2015,66(13):3791-3802.

    [10] SPRAY C R, KOBAYASHI M, SUZUKI Y,etal. The dwarf-1(dt) mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway [J].ProcNatlAcadSciUSA, 1996,93(19):10515-10518.

    [11] WINKLER R G, HELENTJARIS T. The maize Dwarf 3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis [J].PlantCell, 1995,7(8):1307-1317.

    [12] THORNSBERRY J M, GOODMAN M M, DOEBLEY J,etal. Dwarf8 polymorphisms associate with variation in flowering time [J].NatureGenetics, 2001,28(3):286-289.

    [13] LAWIT S J, WYCH H M, XU D,etal. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development [J].PlantCellPhysiol, 2010,51(11):1854-1868.

    [14] HARTWIG T, CHUCK G S, FUJIOKA S,etal. Brassinosteroid control of sex determination in maize [J].ProcNatlAcadSciUSA, 2011,108(49):19814-19819.

    [15] BEAVIS W D, GRANT D, ALBERTSEN M,etal. Quantitative trait loci for plant height in four maize populations and their associations with quantitative genetic loci [J].TheorApplGenet, 1991,83(2):141-145.

    [16] AJMONE-MARSAN P, MONFREDINI G, LUDWIG W F,etal. Identification of genomic affecting plant height and their relationship with grain yield and elite maize cross [J].Maydica, 1994,39:133-139.

    [17] BEAVIS W D, SMITH O S, GRANT D,etal. Identification of quantitative trait loci using a small sample of using a small sample of topcrossed and F4 progeny from maize [J].CropSci, 1994,34:882-892.

    [18] BERKE T G, ROCHEFORD T R. Quantitative trait loci for flowering, plant and ear height and kernel traits in maize [J].CropSci, 1995,35:1542-1549.

    [19] AUSTIN D F, LEE M. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize [J].Genome, 1996,39(5):957-968.

    [20] VELDBOOM L R, LEE M, WOODMAN W L. Molecular marker-facilitated studies in an elite maize population:I. Linkage analysis and determination of QTL for morphological traits [J].TheorApplGenet, 1994,88(1):7-16.

    [21] AUSTIN D F, LEE M, VELDBOOM L R. Genetic mapping in maize with hybrid progeny across testers and generations:plant height and flowering [J].TheorApplGenet, 2001,102(1):163-176.

    [22] FLINT-GARCIA S A, MCMULLEN M D, DARRAH L L. Genetic relationship of stalk strength and ear height in maize [J].CropSci, 2003,43(1):23-31.

    [23] SIBOV S T, SOUZA J R C L, FRANCO GARCIA A A,etal. Molecular mapping in tropical maize(ZeamaysL.) using microsatellite markers. 2.Quantitative trait loci(QTL) for grain yield, plant height, ear height and grain moisture [J].Hereditas, 2003,139(2):107-115.

    [24] YAN J B, TANG H, HUANG Y Q,etal. Dynamic analysis of QTL for plant height at different developmental stages in maize(ZeamaysL.) [J].ChinSciBull, 2003,48(23):2601-2607.

    [25] LAN J H, CHU D. Study on the genetic basis of plant height and ear height in maize(ZeamaysL.) by QTL dissection [J].Hereditas, 2005,27(6):925-934.

    [26] WU J W, LIU C, SHI Y S,etal. QTL analysis of plant height and ear height in maize under different water regimes [J].JournalofPlantGeneticResources, 2005,6(3):266-271.

    [27] LIMA M D A, SOUZA C L D, BENTO D A V,etal. Mapping QTL for grain yield and plant traits in a tropical maize population [J].MolBreeding, 2006,17(3):227-239.

    [28] LI Y L, DONG Y B, NIU S Z,etal. The genetic relationship among plant-height traits found using multiple-traits found using multiple-trait QTL mapping of a dent corn and popcorn cross [J].Genome, 2007,50(4):357-364.

    [29] LIU Z H, TANG J H, WANG C L,etal. QTL analysis of plant height under N-stress and N-input at different stages in maize [J].ActaAgronomicaSinica, 2007,33(5):782-789.

    [30] TANG J H, TENG W T, YAN J B,etal. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize [J].Euphytica, 2007,155(1):117-124.

    [31] ZHANG Y, LI Y X, WANG Y,etal. Stability of QTL across environments and QTL-by-environment interactions for plant and ear height in maize [J].AgricSciChina, 2010,9(10):1400-1412.

    [32] WENG J, XIE C, HAO Z,etal. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize(ZeamaysL.) inbred lines [J].PLoSOne, 2011,6(12):e29229.

    [33] ZHENG Z P, LIU X H. Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize [J].GenetMolRes, 2013,12(2):1243-1253.

    [34] LI Z Q, ZHANG H M, WU X P,etal. Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population [J].GenetMolRes, 2014,13(1):450-456.

    [35] PEIFFER J A, ROMAY M C, GORE M A,etal. The genetic architecture of maize height [J].Genetics, 2014,196:1337-1356.

    [36] KU L X, ZHANG L K, TIAN Z Q,etal. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize(ZeamaysL.) [J].MolGenetGenom, 2015,290(4):1223-1233.

    [37] ZHOU Z, ZHANG C, ZHOU Y,etal. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines [J].BMCGenomics, 2016,17:178.

    [38] SAGHAI-MAROOF M A, SOLIMAN K M, JORGENSEN R A,etal. Ribosomal DNA spacer length polymorphisms in barley:mendelian inheritance chromosomal location and population and population dynamics [J].ProcNatlAcadSciUSA, 1984,81(24):8014-8018.

    [39] WANG Y D, DUAN M X, XING J F,etal. Progress and prospect in ideal plant type breeding in maize [J].MaizeSci, 2008,16(3):47-50.

    玉米株高和穗位高遺傳基礎(chǔ)的QTL剖析

    張 寧,張 強,張玉娜,李 鑫,黃雪清

    (復(fù)旦大學(xué) 生命科學(xué)學(xué)院 遺傳工程國家重點實驗室,上海 200438)

    玉米是世界范圍內(nèi)具有經(jīng)濟重要性的作物之一.株高和穗位高是玉米育種過程中需考慮的2個重要農(nóng)藝性狀,對玉米產(chǎn)量、抗倒伏性及株型等都有較大影響.為進一步明確玉米株高和穗位高的遺傳機制,本研究以B73×Zheng58的含有165個株系的F3:4重組自交系群體為作圖群體,利用覆蓋玉米10條染色體189個SSR標記對株高和穗位高進行QTL定位分析.總共定位到5個株高QTL和6個穗位高QTL;這11個QTL分布在除2號和6號之外的其他8條染色體上.單個QTL表型變異貢獻率的變幅為4.3%~14.2%.其中10個QTL與以前報道過的QTL的位置相近或重疊,而株高QTL(qPH04-01)是新發(fā)現(xiàn)的群體專一性的QTL,最靠近標記umc0371,表型變異貢獻率為8.8%,是值得進一步研究和利用的位點.

    玉米; 株高; 穗位高; 數(shù)量性狀位點; 遺傳基礎(chǔ)

    0427-7104(2016)05-0605-09

    Shanghai Pujiang Program(14PJ1400700); National Natural Science Foundation of China(31471151)

    Q 37 Document code:A

    Received date:2016-04-08

    Biography:ZHANG Ning(1989—), female, graduate candidate; Corresponding author:HUANG Xueqing, male, professor, E-mail:xueqinghuang@fudan.edu.cn.

    猜你喜歡
    穗位株高貢獻率
    玉米保護性耕作技術(shù)在遼陽地區(qū)的應(yīng)用效果研究
    有機物料還田對夏玉米穗位葉光合性能及氮代謝的影響
    小麥不同穗位籽粒品質(zhì)和形態(tài)性狀分析
    作物雜志(2022年6期)2022-02-03 04:56:06
    一種通用的裝備體系貢獻率評估框架
    利用大芻草滲入系群體定位玉米株高和穗位高QTL
    介紹四個優(yōu)良小麥品種
    多年秸稈還田后減追氮肥對玉米穗位葉光合特性和衰老生理的影響
    關(guān)于裝備體系貢獻率研究的幾點思考
    不同栽培密度對柴胡生長的影響
    玉米骨干親本及其衍生系中基因的序列變異及與株高等性狀的關(guān)聯(lián)分析
    欧美日韩综合久久久久久| 99久久精品国产国产毛片| 精品久久久久久电影网| 五月伊人婷婷丁香| 亚洲激情五月婷婷啪啪| 在线观看av片永久免费下载| 人妻夜夜爽99麻豆av| 女人久久www免费人成看片| 国产欧美日韩精品一区二区| 日韩欧美一区视频在线观看 | 午夜视频国产福利| 国产欧美日韩精品一区二区| 欧美97在线视频| 老师上课跳d突然被开到最大视频| 国产91av在线免费观看| 久久久久性生活片| 免费黄色在线免费观看| 在线免费观看不下载黄p国产| 亚洲欧美一区二区三区国产| 五月天丁香电影| 久久久色成人| 在现免费观看毛片| 亚洲av免费高清在线观看| 国产淫片久久久久久久久| 亚洲最大成人手机在线| 男插女下体视频免费在线播放| 国产精品熟女久久久久浪| 在线免费十八禁| 久久99热6这里只有精品| 欧美日韩视频高清一区二区三区二| 久久久久久久久久黄片| 国产亚洲91精品色在线| 九色成人免费人妻av| 国产视频首页在线观看| 我要看日韩黄色一级片| 亚洲av电影在线观看一区二区三区 | 婷婷色av中文字幕| 国语对白做爰xxxⅹ性视频网站| 国模一区二区三区四区视频| 日韩欧美精品免费久久| 99久久精品国产国产毛片| 亚洲国产精品成人久久小说| 国产成人aa在线观看| 99热全是精品| 国产69精品久久久久777片| 欧美丝袜亚洲另类| 亚洲人与动物交配视频| 亚洲人与动物交配视频| 人妻系列 视频| 国产一级毛片在线| 熟妇人妻不卡中文字幕| 久久精品国产鲁丝片午夜精品| 观看免费一级毛片| 联通29元200g的流量卡| 在线播放无遮挡| 色5月婷婷丁香| 国产探花极品一区二区| 久久久久久久久久久免费av| 国产精品久久久久久久电影| 1000部很黄的大片| 日韩欧美 国产精品| 天天躁夜夜躁狠狠久久av| 亚洲真实伦在线观看| 久久精品国产自在天天线| 久久精品夜夜夜夜夜久久蜜豆| 久久这里只有精品中国| av免费在线看不卡| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品色激情综合| 亚洲av成人av| 亚洲最大成人av| 久久久久久国产a免费观看| 国精品久久久久久国模美| 成人无遮挡网站| 大香蕉97超碰在线| 在线免费十八禁| 18禁动态无遮挡网站| 成人综合一区亚洲| 中文字幕av在线有码专区| 欧美激情久久久久久爽电影| 国产一级毛片七仙女欲春2| 国产av在哪里看| 国产精品人妻久久久影院| 国产亚洲最大av| 卡戴珊不雅视频在线播放| 国产亚洲av嫩草精品影院| 在线免费十八禁| 女人被狂操c到高潮| 久久精品国产鲁丝片午夜精品| 国产日韩欧美在线精品| 波多野结衣巨乳人妻| 大香蕉久久网| 全区人妻精品视频| 亚洲激情五月婷婷啪啪| 亚洲精品,欧美精品| 亚洲国产av新网站| 中国国产av一级| 听说在线观看完整版免费高清| 毛片一级片免费看久久久久| 国产亚洲精品久久久com| 国产人妻一区二区三区在| 麻豆乱淫一区二区| 尤物成人国产欧美一区二区三区| 成人综合一区亚洲| 亚洲最大成人中文| 国产男女超爽视频在线观看| 日韩av不卡免费在线播放| 3wmmmm亚洲av在线观看| 午夜激情久久久久久久| 校园人妻丝袜中文字幕| 性色avwww在线观看| 免费黄色在线免费观看| 精品久久久久久成人av| 久久久久久久亚洲中文字幕| 人妻一区二区av| h日本视频在线播放| 国产一级毛片七仙女欲春2| 中文欧美无线码| 久久久久久伊人网av| 激情 狠狠 欧美| 欧美日韩国产mv在线观看视频 | 国产高清不卡午夜福利| 亚洲精品日韩在线中文字幕| 热99在线观看视频| 综合色av麻豆| 能在线免费看毛片的网站| 99久国产av精品国产电影| 国产美女午夜福利| 午夜福利成人在线免费观看| 国产探花在线观看一区二区| 日日摸夜夜添夜夜添av毛片| 99久久九九国产精品国产免费| 免费无遮挡裸体视频| 国产精品一区二区性色av| 蜜臀久久99精品久久宅男| 草草在线视频免费看| 国产亚洲最大av| 18禁在线无遮挡免费观看视频| 老司机影院成人| 欧美3d第一页| av黄色大香蕉| 一级毛片aaaaaa免费看小| 日韩一区二区视频免费看| 亚洲欧美日韩东京热| 九九在线视频观看精品| 亚洲精品自拍成人| 欧美bdsm另类| 午夜激情久久久久久久| 国产高清国产精品国产三级 | 国产精品不卡视频一区二区| 国产精品.久久久| 天天躁夜夜躁狠狠久久av| 又大又黄又爽视频免费| 综合色丁香网| 久久国内精品自在自线图片| 秋霞在线观看毛片| 丝瓜视频免费看黄片| 久久久久久久亚洲中文字幕| 中国美白少妇内射xxxbb| 免费无遮挡裸体视频| 汤姆久久久久久久影院中文字幕 | 久久韩国三级中文字幕| 成年人午夜在线观看视频 | 精品久久久噜噜| 国产亚洲精品av在线| 精品国产一区二区三区久久久樱花 | 美女脱内裤让男人舔精品视频| 亚洲av国产av综合av卡| 亚洲一级一片aⅴ在线观看| 成人漫画全彩无遮挡| 国模一区二区三区四区视频| 最后的刺客免费高清国语| 免费在线观看成人毛片| 亚洲av在线观看美女高潮| 赤兔流量卡办理| 老司机影院毛片| av天堂中文字幕网| 国产人妻一区二区三区在| 亚洲在线观看片| 国产精品99久久久久久久久| 亚洲人与动物交配视频| 少妇的逼好多水| or卡值多少钱| 久久久久网色| 午夜福利成人在线免费观看| 天堂网av新在线| 国产精品.久久久| 日本与韩国留学比较| 国产亚洲91精品色在线| 美女内射精品一级片tv| 国产亚洲一区二区精品| 十八禁国产超污无遮挡网站| 欧美日本视频| 大话2 男鬼变身卡| 看非洲黑人一级黄片| 亚洲国产精品国产精品| 日韩一区二区视频免费看| 最近中文字幕2019免费版| 免费观看a级毛片全部| 亚洲内射少妇av| 久久6这里有精品| 日韩 亚洲 欧美在线| 日日啪夜夜爽| 国产探花极品一区二区| 九九在线视频观看精品| 精品久久久久久久久亚洲| 欧美精品国产亚洲| 插阴视频在线观看视频| 免费看av在线观看网站| 80岁老熟妇乱子伦牲交| 国内精品美女久久久久久| 久久99蜜桃精品久久| av免费在线看不卡| 日本爱情动作片www.在线观看| 简卡轻食公司| 国产亚洲av片在线观看秒播厂 | 亚洲精品,欧美精品| 国产国拍精品亚洲av在线观看| 性插视频无遮挡在线免费观看| 欧美成人精品欧美一级黄| 尾随美女入室| 久久99蜜桃精品久久| 欧美一区二区亚洲| 免费看日本二区| 黄色配什么色好看| 最近最新中文字幕免费大全7| 简卡轻食公司| 亚洲欧美成人精品一区二区| 国产免费一级a男人的天堂| 亚洲av成人av| 男人爽女人下面视频在线观看| 亚洲成人久久爱视频| 色尼玛亚洲综合影院| 少妇熟女aⅴ在线视频| 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| 最近中文字幕高清免费大全6| 久久久久精品性色| 最近最新中文字幕大全电影3| 高清视频免费观看一区二区 | 亚洲综合精品二区| 亚洲久久久久久中文字幕| 久久久欧美国产精品| 肉色欧美久久久久久久蜜桃 | 日韩av不卡免费在线播放| 国产精品一区二区三区四区久久| 女人十人毛片免费观看3o分钟| a级毛色黄片| 18+在线观看网站| 天堂中文最新版在线下载 | 成人高潮视频无遮挡免费网站| 午夜福利在线在线| 一级毛片 在线播放| 一二三四中文在线观看免费高清| 久久人人爽人人片av| 亚洲三级黄色毛片| 国产成人精品久久久久久| 精品久久久久久电影网| 午夜福利视频精品| 晚上一个人看的免费电影| 91狼人影院| 午夜日本视频在线| 久久久久久久午夜电影| 男人爽女人下面视频在线观看| 免费人成在线观看视频色| 日韩国内少妇激情av| 日韩av不卡免费在线播放| av一本久久久久| 国产人妻一区二区三区在| 免费人成在线观看视频色| 日本-黄色视频高清免费观看| 久久久成人免费电影| 毛片一级片免费看久久久久| 亚洲av不卡在线观看| 国产黄片美女视频| 日本午夜av视频| 欧美性猛交╳xxx乱大交人| 亚洲人与动物交配视频| 亚洲人成网站高清观看| 精品不卡国产一区二区三区| 97超视频在线观看视频| 国模一区二区三区四区视频| 在线观看人妻少妇| 国产男女超爽视频在线观看| 高清av免费在线| 中文乱码字字幕精品一区二区三区 | 免费看光身美女| 看非洲黑人一级黄片| 久久韩国三级中文字幕| 国产乱人偷精品视频| 网址你懂的国产日韩在线| 九九久久精品国产亚洲av麻豆| 国产免费视频播放在线视频 | 国产一区二区三区av在线| 狂野欧美激情性xxxx在线观看| 秋霞在线观看毛片| 中文资源天堂在线| 中文欧美无线码| 欧美性猛交╳xxx乱大交人| 非洲黑人性xxxx精品又粗又长| 欧美变态另类bdsm刘玥| 插逼视频在线观看| 日本wwww免费看| 亚洲高清免费不卡视频| 精品久久久久久成人av| 欧美不卡视频在线免费观看| 亚洲欧美精品自产自拍| 国产一区亚洲一区在线观看| 精品欧美国产一区二区三| 国产在视频线在精品| 一个人看视频在线观看www免费| 国产一区二区三区av在线| 一区二区三区四区激情视频| 人妻系列 视频| 97超碰精品成人国产| 国产午夜福利久久久久久| 26uuu在线亚洲综合色| 久久99热这里只频精品6学生| 欧美成人精品欧美一级黄| 国产成人精品一,二区| 国产精品1区2区在线观看.| 26uuu在线亚洲综合色| 成人漫画全彩无遮挡| 嫩草影院入口| 国产精品久久久久久久久免| 中文字幕久久专区| 特级一级黄色大片| 草草在线视频免费看| 亚洲国产精品成人综合色| 国产精品久久久久久久久免| 一个人看视频在线观看www免费| 国产爱豆传媒在线观看| 丰满人妻一区二区三区视频av| 国产精品嫩草影院av在线观看| 国产色爽女视频免费观看| 亚洲国产高清在线一区二区三| 我的女老师完整版在线观看| 久久久久九九精品影院| 亚洲在线观看片| 成年女人看的毛片在线观看| 国产成人精品婷婷| 少妇人妻精品综合一区二区| 国产激情偷乱视频一区二区| 国产精品福利在线免费观看| 夫妻午夜视频| 女人被狂操c到高潮| 欧美人与善性xxx| 日韩不卡一区二区三区视频在线| 久久韩国三级中文字幕| 蜜桃久久精品国产亚洲av| 成人无遮挡网站| 日韩强制内射视频| 亚洲综合色惰| 好男人视频免费观看在线| 插阴视频在线观看视频| 亚洲精品乱码久久久v下载方式| 国产在线男女| 美女主播在线视频| 乱人视频在线观看| 亚洲精品国产av蜜桃| 欧美日韩一区二区视频在线观看视频在线 | 国产精品国产三级专区第一集| 国产精品人妻久久久影院| 51国产日韩欧美| 18+在线观看网站| 国产av在哪里看| 中国国产av一级| 美女高潮的动态| 岛国毛片在线播放| 亚洲18禁久久av| 三级国产精品片| 91狼人影院| 少妇被粗大猛烈的视频| 一二三四中文在线观看免费高清| 晚上一个人看的免费电影| 黄色一级大片看看| 99热网站在线观看| 国产精品嫩草影院av在线观看| 精品久久久久久久人妻蜜臀av| 少妇人妻一区二区三区视频| 亚洲精品国产av成人精品| 久久久久久久久中文| 中文字幕av成人在线电影| 国产精品三级大全| 亚洲精品第二区| av在线亚洲专区| 免费看a级黄色片| 天美传媒精品一区二区| videos熟女内射| 大话2 男鬼变身卡| 亚洲内射少妇av| 亚洲av电影不卡..在线观看| a级一级毛片免费在线观看| 亚洲av日韩在线播放| 日产精品乱码卡一卡2卡三| 啦啦啦中文免费视频观看日本| 国产 一区 欧美 日韩| 91久久精品电影网| 视频中文字幕在线观看| 亚洲精品乱码久久久v下载方式| 99热网站在线观看| 啦啦啦中文免费视频观看日本| 最近最新中文字幕大全电影3| 日韩一本色道免费dvd| 一二三四中文在线观看免费高清| 国产 一区 欧美 日韩| 黄片无遮挡物在线观看| 嫩草影院入口| 免费看不卡的av| 成人毛片60女人毛片免费| 欧美性猛交╳xxx乱大交人| 日本三级黄在线观看| 亚洲精品乱码久久久久久按摩| 久久6这里有精品| 午夜久久久久精精品| 亚洲精品久久久久久婷婷小说| 日韩欧美精品免费久久| 天堂av国产一区二区熟女人妻| 亚洲精品亚洲一区二区| 免费看美女性在线毛片视频| 非洲黑人性xxxx精品又粗又长| 国产老妇女一区| 国产综合精华液| 国产成人精品一,二区| 少妇人妻一区二区三区视频| 亚洲va在线va天堂va国产| 日韩在线高清观看一区二区三区| 丰满人妻一区二区三区视频av| 成人鲁丝片一二三区免费| 三级国产精品欧美在线观看| 国产av国产精品国产| 欧美97在线视频| 美女主播在线视频| 老司机影院成人| 网址你懂的国产日韩在线| 日韩强制内射视频| 99热这里只有是精品50| 美女大奶头视频| 久久久久网色| 三级经典国产精品| 国产高清国产精品国产三级 | 亚洲国产av新网站| av女优亚洲男人天堂| 国产探花极品一区二区| 九色成人免费人妻av| 97热精品久久久久久| 91av网一区二区| 亚洲国产精品成人久久小说| 亚洲无线观看免费| 亚洲av免费在线观看| 国产精品伦人一区二区| 国内少妇人妻偷人精品xxx网站| 久久韩国三级中文字幕| 尾随美女入室| 亚洲熟妇中文字幕五十中出| 成人鲁丝片一二三区免费| 成人毛片60女人毛片免费| 国产免费视频播放在线视频 | 亚洲怡红院男人天堂| 三级国产精品片| 久久久久久九九精品二区国产| 美女cb高潮喷水在线观看| 国产精品.久久久| 欧美一区二区亚洲| 99久久精品一区二区三区| av免费在线看不卡| 99久国产av精品| 免费高清在线观看视频在线观看| 精品一区二区三区视频在线| 大陆偷拍与自拍| 女人十人毛片免费观看3o分钟| 欧美日本视频| xxx大片免费视频| 尤物成人国产欧美一区二区三区| 97人妻精品一区二区三区麻豆| 99热全是精品| 久久热精品热| 国产老妇伦熟女老妇高清| 九九在线视频观看精品| 69av精品久久久久久| 国产伦理片在线播放av一区| 欧美精品国产亚洲| 尤物成人国产欧美一区二区三区| 精华霜和精华液先用哪个| 国产亚洲一区二区精品| 中文天堂在线官网| 亚洲va在线va天堂va国产| 黄色日韩在线| 欧美成人a在线观看| 女人久久www免费人成看片| 搡老妇女老女人老熟妇| 色5月婷婷丁香| 国产一区二区亚洲精品在线观看| 中文在线观看免费www的网站| 男人舔女人下体高潮全视频| 美女高潮的动态| 久久久久久九九精品二区国产| 在现免费观看毛片| 九九在线视频观看精品| 卡戴珊不雅视频在线播放| 国产午夜精品论理片| 91久久精品国产一区二区三区| 可以在线观看毛片的网站| xxx大片免费视频| 亚洲久久久久久中文字幕| 只有这里有精品99| 午夜激情福利司机影院| 欧美xxⅹ黑人| 日韩欧美精品免费久久| 一个人看的www免费观看视频| 日本爱情动作片www.在线观看| 国产精品不卡视频一区二区| 一级毛片电影观看| 中文字幕久久专区| 在线免费观看的www视频| 亚洲精品一区蜜桃| 少妇被粗大猛烈的视频| 最近的中文字幕免费完整| 色尼玛亚洲综合影院| 亚洲欧美精品专区久久| 非洲黑人性xxxx精品又粗又长| 国内少妇人妻偷人精品xxx网站| 大香蕉97超碰在线| 夜夜看夜夜爽夜夜摸| 亚洲va在线va天堂va国产| av天堂中文字幕网| 国产免费视频播放在线视频 | 国产高清有码在线观看视频| 日日摸夜夜添夜夜添av毛片| 精品久久国产蜜桃| 久久这里有精品视频免费| 麻豆国产97在线/欧美| 免费观看精品视频网站| 高清av免费在线| 国产淫语在线视频| 亚洲熟妇中文字幕五十中出| 欧美97在线视频| 一级片'在线观看视频| 黄色欧美视频在线观看| 日韩三级伦理在线观看| 亚洲天堂国产精品一区在线| 菩萨蛮人人尽说江南好唐韦庄| 如何舔出高潮| 五月伊人婷婷丁香| 一级av片app| 自拍偷自拍亚洲精品老妇| 韩国高清视频一区二区三区| 2021天堂中文幕一二区在线观| 亚洲欧美一区二区三区国产| 久久久亚洲精品成人影院| 久久久久精品性色| 成人毛片a级毛片在线播放| 五月天丁香电影| 三级国产精品欧美在线观看| 99久国产av精品国产电影| 午夜福利在线观看免费完整高清在| 18禁裸乳无遮挡免费网站照片| 黄色日韩在线| 18禁裸乳无遮挡免费网站照片| 人体艺术视频欧美日本| 一本久久精品| av.在线天堂| 亚洲av免费高清在线观看| 欧美三级亚洲精品| 高清欧美精品videossex| 国产有黄有色有爽视频| 午夜老司机福利剧场| 99视频精品全部免费 在线| 亚洲婷婷狠狠爱综合网| 九九在线视频观看精品| 久久国内精品自在自线图片| 最近中文字幕2019免费版| 一区二区三区乱码不卡18| 熟女电影av网| 大香蕉97超碰在线| ponron亚洲| 非洲黑人性xxxx精品又粗又长| 精品人妻偷拍中文字幕| 国产麻豆成人av免费视频| 亚洲激情五月婷婷啪啪| 亚洲精品第二区| 欧美日韩在线观看h| 久热久热在线精品观看| 国产伦精品一区二区三区视频9| 十八禁国产超污无遮挡网站| 高清av免费在线| 天堂网av新在线| 少妇的逼好多水| 看黄色毛片网站| av在线天堂中文字幕| 不卡视频在线观看欧美| 久久精品久久精品一区二区三区| 少妇熟女aⅴ在线视频| av卡一久久| 国产白丝娇喘喷水9色精品| 日韩欧美精品免费久久| 日本免费在线观看一区| 在线免费十八禁| 日日啪夜夜撸| 国产精品伦人一区二区| 男人舔女人下体高潮全视频| 国产综合懂色| 中文精品一卡2卡3卡4更新| 日韩一区二区视频免费看| 嫩草影院精品99| 内射极品少妇av片p| 欧美激情在线99| 色网站视频免费| 久久久色成人| 日日啪夜夜撸| 亚洲精品456在线播放app| www.色视频.com| 一级毛片aaaaaa免费看小| 91久久精品国产一区二区三区| 黄色欧美视频在线观看|