鄧操,王越,袁鐵錘,李瑞迪
TiB2含量對(duì)17-4PH鋼熔覆層組織及性能的影響
鄧操,王越,袁鐵錘,李瑞迪
(中南大學(xué)粉末冶金國家重點(diǎn)實(shí)驗(yàn)室,長沙 410083)
選擇合適的TiB2添加量以提高17-4PH鋼熔覆層的綜合性能。采用金屬粉末注射成形技術(shù)制備17-4PH基體,在基體上通過激光熔覆含有不同質(zhì)量分?jǐn)?shù)TiB2(0.5%,1%,2%,3%,4%)的混合粉末制備樣品,分析其物相及組織,測試材料顯微硬度,并進(jìn)行摩擦磨損與電化學(xué)腐蝕實(shí)驗(yàn)。通過對(duì)樣品進(jìn)行耐磨性與耐腐蝕性的實(shí)驗(yàn),確定最佳TiB2添加量。發(fā)現(xiàn)熔覆層與基體均為單相-Fe,激光熔覆層與基體結(jié)合緊密,晶粒尺寸減小,孔隙率降低。TiB2的加入會(huì)引起熔覆層元素偏析,隨著TiB2含量的增加,硬度先增大后減小。與基體相比,熔覆層的耐磨性能有顯著提高,其磨損率隨TiB2含量的增加而升高,耐腐蝕性隨TiB2含量的增加而降低。當(dāng)TiB2的質(zhì)量分?jǐn)?shù)為1%時(shí),顯微硬度最高可達(dá)626.6HV,磨損率為0.1341×10?4mm3/(N·m)。通過在熔覆層中添加適量的TiB2可以提升17-4PH鋼的綜合性能,當(dāng)TiB2的質(zhì)量分?jǐn)?shù)為1%時(shí),材料具有最佳的力學(xué)性能和相對(duì)較好的耐腐蝕性能。
17-4PH;TiB2;激光熔覆;組織;性能
17-4PH不銹鋼是制造工業(yè)產(chǎn)品零件中常用的一種金屬材料,擁有優(yōu)異的力學(xué)性能、耐腐蝕性能和可焊接性能等,經(jīng)成熟的熱處理工藝后,屈服強(qiáng)度可達(dá)1180 MPa,抗拉強(qiáng)度可達(dá)1310 MPa,能夠配合產(chǎn)品需求,適應(yīng)多種加工方式。17-4PH還具有良好的耐腐蝕性,能夠接近普通奧氏體不銹鋼的程度,尤其是在酸性環(huán)境下,其耐腐蝕性更為突出,因此,這種材料被廣泛應(yīng)用到醫(yī)療、機(jī)械、航空航天、能源、化工等眾多領(lǐng)域[1—3]。
金屬粉末注射成形技術(shù)(Metal injection molding,MIM)是一種高效、成形穩(wěn)定的粉末冶金制造技術(shù)。它結(jié)合了注塑成形與粉末冶金兩者的優(yōu)點(diǎn),克服了傳統(tǒng)粉末冶金制品密度低、材質(zhì)不均勻等缺點(diǎn)[4]。17-4PH是MIM工藝的一大熱門材料,性能優(yōu)異的17-PH配合高效、精密的MIM工藝,在各個(gè)行業(yè)都受到了青睞[5—6]。MIM 17-4PH不銹鋼雖然綜合性能優(yōu)異,但仍不能滿足一些特殊性能要求,如應(yīng)用在渦輪機(jī)葉片、海上平臺(tái)等復(fù)雜、惡劣的工作壞境中時(shí),會(huì)受到腐蝕磨損,從而降低使用壽命[7—9]。
激光熔覆技術(shù)利用高能量激光將金屬基體與表面添加物熔化,再經(jīng)冷卻凝固,以此在基體表面獲得一層具有特殊性能的強(qiáng)化層,是一種高效的表面改性技術(shù)[10—11]。TiB2是一種擁有高硬度的導(dǎo)電陶瓷材料,而且Ti和B兩種元素含量較少量時(shí)都有利于增強(qiáng)鋼的力學(xué)性能。文中將不同含量TiB2粉末激光熔覆至MIM 17-4PH表面,分析TiB2添加量對(duì)材料性能的影響規(guī)律,分析強(qiáng)化機(jī)理,確定最佳TiB2添加量,從而提升MIM 17-4PH不銹鋼性能,延長其使用壽命。
通過金屬注射成形(MIM)制備的17-4PH所用的金屬粉末成分如表1所示。
表1 17-4PH不銹鋼粉末的化學(xué)成分(質(zhì)量分?jǐn)?shù))
Tab.1 Chemical composition of 17-4PH stainless steel powder (mass fraction) %
制備MIM 17-4PH樣品所使用的MIM設(shè)備包括ZHAFIR ZE1200型注射成形機(jī)、SinterZone STZ- 600L-G脫脂爐和HIPER VM48/48/200真空脫脂燒結(jié)爐。
燒結(jié)工藝如下:首先負(fù)壓脫脂階段進(jìn)行至800 ℃,然后真空燒結(jié),在1040 ℃保溫250 min,接著往燒結(jié)爐中通入氬氣,進(jìn)入分壓燒結(jié)階段,最后快速冷卻,得到的17-4PH樣品記為Y2。
激光熔覆實(shí)驗(yàn)設(shè)備采用南京中科煜晨有限公司自主研發(fā)的LDM8060型激光沉積設(shè)備?;w為Y2樣品,熔覆材料為17-4PH與TiB2混合粉末。將TiB2粉末分別以質(zhì)量分?jǐn)?shù)為0.5%,1%,2%,3%,4%與17-4PH粉末配比并混合均勻,送粉器的粉盤轉(zhuǎn)速為0.4 r/min,送粉氣流為7 L/min,激光功率為500 W,掃描速率為400 mm/min,以單向掃描的掃描方式進(jìn)行掃描,得到激光熔覆樣品。將所用熔覆粉末中各組TiB2分別按質(zhì)量分?jǐn)?shù)依次標(biāo)記為R05,R1,R2,R3,R4。
使用賽默飛世爾K-Alpha型X射線光電子能譜儀檢測樣品物相。配制1 g FeCl3·6H2O+3 mL HCl+ 12 mL H2O的腐蝕液對(duì)觀測面進(jìn)行腐蝕,然后使用Leica DM4000M金相顯微鏡和Quanta 250 FEG掃描電子顯微鏡對(duì)樣品的微觀組織進(jìn)行不同尺度的觀察。
使用華銀600HVS-1000AVT圖像顯微硬度計(jì)測試樣品硬度,載荷為4.903 N,保荷15 s,每個(gè)試樣測5個(gè)點(diǎn),取平均值。
配制質(zhì)量分?jǐn)?shù)為3.5%的NaCl溶液作為腐蝕介質(zhì),利用YUHUA DF-101S電化學(xué)工作站對(duì)樣品進(jìn)行極化腐蝕。
使用UMT-2摩擦磨損實(shí)驗(yàn)機(jī)對(duì)打磨拋光后的樣品進(jìn)行測試。選用10 mm的氧化鋁陶瓷球在室溫下對(duì)樣品進(jìn)行線性往復(fù)干摩擦磨損實(shí)驗(yàn),法向載荷為30 N,摩擦速率為50 mm/s,摩擦行程為5 mm,摩擦?xí)r間為30 min。摩擦實(shí)驗(yàn)后,再通過激光共聚焦顯微鏡得到磨損體積,計(jì)算磨損率。
圖1所示為MIM 17-4PH經(jīng)激光熔覆不同含量TiB2后熔覆層的XRD圖譜,發(fā)現(xiàn)熔覆層的物相與基體Y2并無明顯差異,均是單一的-Fe相。這說明熔覆材料中的TiB2沒有改變-Fe結(jié)構(gòu),可能溶于-Fe形成固溶體或者成為第二相粒子分布于晶粒中。
觀察圖2中熔覆層的組織形貌,可以發(fā)現(xiàn)熔覆層的晶粒尺寸大大減小,孔隙率也大大降低。在熔覆過程中,高能量的激光不僅會(huì)使基體表面熔化,還會(huì)使送粉機(jī)構(gòu)添加的粉末也同時(shí)熔化,在高溫下通過液相流動(dòng)和高溫?cái)嚢?,使熔化物成分變得更均勻,讓孔隙快速逸出[12]。這既有利于提升組織性能,又有利于熔覆層與基體結(jié)合牢固。
使用SEM進(jìn)一步放大觀察熔覆層的微觀組織,如圖3所示,TiB2含量不同時(shí)組織有明顯差異。熔覆粉末TiB2質(zhì)量分?jǐn)?shù)為0.5%時(shí),熔覆層中發(fā)現(xiàn)存在大量直徑小于10 μm的球形顆粒狀晶粒,晶粒內(nèi)部均有較多微小孔隙,在球狀晶粒之間由厚度極小的層片狀屈氏體組織填充。TiB2質(zhì)量分?jǐn)?shù)提高至1%時(shí),球狀晶粒尺寸增大,氣孔缺陷減少,晶粒間的填充組織除了屈氏體之外,還出現(xiàn)較厚的片狀組織以及第二相顆粒。TiB2質(zhì)量分?jǐn)?shù)為2%時(shí),晶粒內(nèi)的孔隙基本消除,晶界處有極少的孔隙。當(dāng)熔覆粉末TiB2質(zhì)量分?jǐn)?shù)超過3%后,屈氏體消失,出現(xiàn)大量針狀鐵素體組織,呈放射性狀[13]。
圖1 激光熔覆MIM 17-4PH的XRD圖譜
圖2 激光熔覆MIM 17-4PH的金相組織
TiB2含量對(duì)組織的影響顯著,這是因?yàn)門i和B兩種元素都對(duì)不銹鋼的冷卻結(jié)晶有影響。較低含量的B可改善鋼的淬透性,因此在R05和R1中出現(xiàn)屈氏體。隨著TiB2含量上升,Ti含量增多,在激光作用下會(huì)形成較多TiO或TiN,可作為針狀鐵素體的形核核心,因此TiB2含量較高時(shí)會(huì)出現(xiàn)大量針狀鐵素體[14]。在R1熔覆層中選定區(qū)域做EDS元素面掃分析,如圖4所示,能夠發(fā)現(xiàn)明顯的元素偏析現(xiàn)象。Cr,Nb,B元素在晶界處有偏析行為,而Ti在第二相顆粒處偏析。
R05,R1,R2,R3,R4激光熔覆層的顯微硬度分別為624.7HV,626.2HV,591.5HV,575.1HV,534.1HV,可以發(fā)現(xiàn)硬度隨TiB2含量的增加有先增大后減小的趨勢,其中R1具有最高硬度,為626.2HV。R05與R1硬度接近,從微觀組織分析,發(fā)現(xiàn)R05與R1中都含有大量力學(xué)性能優(yōu)異的屈氏體組織。熔覆過程中較高的TiB2含量會(huì)促進(jìn)針狀鐵素體的生成,使硬度減??;TiB2含量進(jìn)一步增加時(shí),會(huì)加劇B在晶界處偏析,致使材料淬透性降低,從而減小硬度[15]。
圖3 熔覆層組織形貌SEM
圖4 EDS測得R1中的元素分布
激光熔覆層的磨損率對(duì)比情況見圖5,激光熔覆TiB2大幅減小了MIM 17-4PH材料的磨損率,其中R1的磨損率最小,僅為0.1341×10?4mm3/(N·m),為基體材料的6.4%。這說明在MIM 17-4PH中激光熔覆TiB2,不僅能夠減小材料的摩擦因數(shù),而且能夠大大提升材料的耐磨性。R05的磨損率接近R1,這是因?yàn)镽05中有與R1相同的力學(xué)性能優(yōu)異的屈氏體組織,而R05的晶內(nèi)缺陷略多,因此耐磨性也略低。TiB2的質(zhì)量分?jǐn)?shù)大于1%之后,磨損率隨TiB2含量增加而升高。TiB2含量不斷增加,在熔池的冷卻過程中,元素偏析現(xiàn)象越來越嚴(yán)重,且會(huì)出現(xiàn)越來越多用于形核的Ti的氧化物或氮化物,針狀鐵素體含量會(huì)不斷增加。元素在晶界偏析既會(huì)降低材料的淬透性,又會(huì)降低晶內(nèi)的合金元素固溶度,固溶強(qiáng)化效果下降,從而降低材料的耐磨性能。
各組激光熔覆層在SEM下放大500倍的磨痕形貌見圖6,可判斷出各組的磨損形式均為黏著磨損和磨粒磨損。在各熔覆層的磨痕中發(fā)現(xiàn)了較多較深的犁溝,這說明磨粒磨損為磨損過程中的主要形式。材料的抗磨粒磨損能力與材料硬度有關(guān),硬度越高,抗磨粒磨損能力越強(qiáng)。因R1具有最高的硬度,而磨粒磨損為磨損的主要形式,所以R1的耐磨性也較好。TiB2含量增加后,黏著磨損機(jī)制在磨損過程中的作用越來越明顯。在較大法向載荷和較高磨損速率的情況下,材料容易發(fā)生黏著磨損,磨痕中的黏著坑是黏著磨損后的典型形貌,圖7為R1磨痕中的黏著坑形貌。其他熔覆層的磨痕黏著坑與R1類似,在黏著坑內(nèi)都發(fā)現(xiàn)了“白層組織”。白層組織一般較薄,常見厚度在10~50 μm,由細(xì)小的馬氏體組織構(gòu)成,硬度較高,有提高材料耐磨性的作用[16]。
圖5 激光熔覆層的磨損率
圖8為激光熔覆層極化腐蝕的Tafel曲線,通過Tafel曲線能夠得到腐蝕電位和腐蝕電流,有助于判斷材料的耐腐蝕性能。激光熔覆層的電化學(xué)參數(shù)見表2。激光熔覆層的腐蝕電位均低于Y2,腐蝕電流均大于Y2,說明添加TiB2的MIM 17-4PH激光熔覆層耐腐蝕性低于基體。不同TiB2添加量的熔覆層中,R1的極化腐蝕電流較低,耐腐蝕性相對(duì)較好。激光熔覆TiB2降低基體的耐腐蝕性主要與其引起元素偏析有關(guān)。Cr是提高鋼耐腐蝕性能的重要元素[17],Cr元素晶界偏析使其在晶內(nèi)的含量減少,從而導(dǎo)致材料的耐腐蝕性降低。
圖6 激光熔覆層的磨痕形貌
圖7 R1磨痕中的黏著坑
圖8 激光熔覆層極化腐蝕的Tafel曲線
表2 激光熔覆層的電化學(xué)參數(shù)
Tab.2 Electrochemical parameters of laser cladding layer
1)在MIM 17-4PH基體上激光熔覆不同含量的TiB2粉末,對(duì)熔覆層的微觀組織影響顯著。TiB2含量較低時(shí)組織中有明顯的屈氏體組織,而含量偏高時(shí)會(huì)出現(xiàn)大量的針狀鐵素體,并加劇元素偏析。
2)激光熔覆TiB2對(duì)MIM 17-4PH的性能影響較大,能夠大幅增加材料的硬度,提高其耐磨性,但是不利于材料的耐腐蝕性。相比之下,TiB2的質(zhì)量分?jǐn)?shù)為1%時(shí),能夠使材料獲得最佳的力學(xué)性能,顯微硬度達(dá)626.2HV,相對(duì)基體提高了102.4%,磨損率為0.1341×10?4mm3/(N·m),僅基體材料的6.4%,耐腐蝕性在各添加量的熔覆層中相對(duì)最佳。
[1] LIU Guo-liang, HUANG Chuan-zhen, ZOU Bin, et al. Surface Integrity and Fatigue Performance of 17-4PH Stainless Steel after Cutting Operations[J]. Surface and Coatings Technology, 2016, 307: 182—189.
[2] LIU Dan, LIU Dao-xin, ZHANG Xiao-hua, et al. Microstructural Evolution Mechanisms in Rolled 17-4PH Steel Processed by Ultrasonic Surface Rolling Process[J]. Materials Science and Engineering: A, 2020, 773: 138720.
[3] HU Zhi-heng, ZHU Hai-hong, ZHANG Hu, et al. Experimental Investigation on Selective Laser Melting of 17-4PH Stainless Steel[J]. Optics & Laser Technology, 2017, 87: 17—25.
[4] 張新濤, 張科翠, 張東, 等. 注射成形用金屬粉末的制備技術(shù)及性能研究進(jìn)展[J]. 粉末冶金工業(yè), 2019, 29(2): 55—59. ZHANG Xin-tao, ZHANG Ke-cui, ZHANG Dong, et al. Research Progress on Preparation Technology and Performance of Metal Powder for Injection Molding[J]. Powder Metallurgy Industry, 2019, 29(2): 55—59.
[5] ADOMAKO N K, KIM J O, KIM J H. Microstructural Evolution and Mechanical Properties of Laser Beam Welded Joints between Pure V and 17-4PH Stainless Steel[J]. Materials Science and Engineering: A, 2019, 753: 208—217.
[6] DEHGHAN-MANSHADI A, YU Peng, DARGUSCH M, et al. Metal Injection Moulding of Surgical Tools, Biomaterials and Medical Devices: A Review[J]. Powder Technology, 2020, 364: 189—204.
[7] ZHANG Qing-long, HU Zhan-qi, SU Wen-wen, et al. Microstructure and Surface Properties of 17-4PH Stainless Steel by Ultrasonic Surface Rolling Technology[J]. Surface and Coatings Technology, 2017, 321: 64—73.
[8] LI Gui-jinag, WANG Jun, PENG Qian, et al. Influence of Salt Bath Nitrocarburizing and Post-oxidation Process on Surface Microstructure Evolution of 17-4PH Stainless Steel[J]. Journal of Materials Processing Technology, 2008, 207(1): 187—192.
[9] SCH?NBAUER B M, YANASE K, CHEHREHRAZI M, et al. Effect of Microstructure and Cycling Frequency on the Torsional Fatigue Properties of 17-4PH Stainless Steel[J]. Materials Science and Engineering: A, 2021, 801: 140481.
[10] MAHARJAN N, ZHOU Wei, WU Nai-en. Direct Laser Hardening of AISI 1020 Steel under Controlled Gas Atmosphere[J]. Surface and Coatings Technology, 2020, 385: 125399.
[11] PASCU A, ROSCA J M, STANCIU E M. Laser Cladding: from Experimental Research to Industrial Applications[J]. Materials Today: Proceedings, 2019, 19: 1059—1065.
[12] TAMANNA N, CROUCH R, NAHER S. Progress in Numerical Simulation of the Laser Cladding Process[J]. Optics and Lasers in Engineering, 2019, 122: 151—163.
[13] JIANG Bi, ZHENG Long-lei, XI Chen, et al. Microstructure and Mechanical Properties of TiB2-reinforced 7075 Aluminum Matrix Composites Fabricated by Laser Melting Deposition[J]. Ceramics International, 2019, 45(5): 5680—5692.
[14] 童志博, 彭其春, 沈冬冬, 等. 硼在鋼中的作用及應(yīng)用[J]. 中國冶金, 2013, 23(5): 12—16. TONG Zhi-bo, PENG Qi-chun, SHEN Dong-dong, et al. The Role and Application of Boron in Steel[J]. China Metallurgy, 2013, 23(5): 12—16.
[15] ZHANG Li-li, JIANG Hong-xiang, HE Jie, et al. Kinetic Behaviour of TiB2Particles in Al Melt and Their Effect on Grain Refinement of Aluminium Alloys[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(8): 2035—2044.
[16] 潘睿, 任瑞銘, 陳春煥, 等. 鋼中摩擦磨損白層的研究現(xiàn)狀[J]. 鋼鐵研究學(xué)報(bào), 2016, 28(7): 1—7. PAN Rui, REN Rui-ming, CHEN Chun-huan, et al. Research Status of Friction and Wear White Layer in Steel[J]. Journal of Iron and Steel Research, 2016, 28(7): 1—7.
[17] YANG Jiao-xi, WU Fei-yu, BAI Bing, et al. Effect of Cr Additions on the Microstructure and Corrosion Resistance of Diode Laser Clad CuAl10Coating[J]. Surface and Coatings Technology, 2020, 381: 125215.
Effect of TiB2Content on Structure and Properties of 17-4PH Steel Cladding Layer
DENG Cao, WANG Yue, YUAN Tie-chui, LI Rui-di
(State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)
The work aims to select an appropriate amount of TiB2to improve the overall performance of the 17-4PH steel cladding layer. The 17-4PH matrix was prepared by metal powder injection molding technology (MIM), and the samples were prepared by laser cladding mixed powder containing different mass fractions of TiB2(0.5%, 1%, 2%, 3%, 4%) on the matrix. The phase and structure of the samples were analyzed and the microhardness of the material was tested. Through the experiment of the wear resistance and corrosion resistance of the samples, the optimal TiB2addition amount was determined. It was found that both the cladding layer and the substrate were single-phase-Fe. The laser cladding layer and the substrate were tightly bonded. The grain size and the porosity were reduced. The addition of TiB2would cause element segregation in the cladding layer. As the content of TiB2increased, the hardness first increased and then decreased. Compared with the matrix, the wear resistance of the cladding layer was significantly improved, and the wear rate increased with the increase of TiB2content; and the corrosion resistance decreased with the increase of TiB2content. When the amount of TiB2added was 1%, the microhardness could reach up to 626.6HV, and the wear rate was 0.1341×10?4mm3/(N·m). It can be concluded from the analysis that the overall performance of 17-4PH steel can be improved by adding an appropriate amount of TiB2to the cladding layer. When the addition amount of TiB2is 1%, the material has the best mechanical properties and relatively good corrosion resistance.
17-4PH; TiB2; laser melting; microstructure; properties
10.3969/j.issn.1674-6457.2021.02.007
TG174.4
A
1674-6457(2021)02-0042-06
2021-01-23
國家自然科學(xué)基金(51571214)
鄧操(1996—),男,碩士生,主要研究方向?yàn)榻饘僭霾闹圃臁?/p>
李瑞迪(1983—),男,博士,教授,主要研究方向?yàn)榻饘僭霾闹圃臁?/p>