劉真 張浩然
【摘要】 目的:研究生長分化因子-5(GDF-5)對間充質(zhì)干細胞向肌腱細胞分化及遷移潛能的影響。方法:用GDF-5對骨髓間充質(zhì)干細胞(MSCs)進行14 d誘導分化,取樣對細胞外基質(zhì)合成及向肌腱細胞分化相關基因表達進行測定分析;通過體外三維細胞遷移模型,評價GDF-5對間充質(zhì)干細胞遷移能力的作用及影響。結(jié)果:20、100、500 ng/mL GDF-5誘導4 d后的細胞數(shù)均高于0 ng/mL GDF-5誘導(P<0.05),且隨著GDF-5濃度增高增殖細胞數(shù)呈現(xiàn)增加的趨勢。100 ng/mL GDF-5誘導4、12 d的細胞數(shù)均高于0 ng/mL GDF-5誘導(P<0.05),隨著培養(yǎng)時間的延長,差異更加明顯。100 ng/mL GDF-5誘導分化骨髓干細胞12 d后,Tenascin-C與Ⅰ型膠原蛋白的基因表達量均高于0 ng/mL GDF-5誘導(P<0.05)。100 ng/mL GDF-5誘導的細胞遷移能力大于0 ng/mL GDF-5誘導(P<0.05)。結(jié)論:GDF-5可以促進間充質(zhì)干細胞向肌腱細胞分化,并誘導活化間充質(zhì)干細胞的遷移,該機制可能在肌腱損傷的修復重建中具有重要意義。將GDF-5與間充質(zhì)干細胞進行聯(lián)合治療可為肌腱損傷的修復提供新的治療方法。
【關鍵詞】 骨髓間充質(zhì)干細胞 細胞遷移 生長分化因子-5
Effects of GDF-5 on Differentiation into Tendon Cells and Migration of Bone Marrow Derived Mesenchymal Stem Cells/LIU Zhen, ZHANG Haoran. //Medical Innovation of China, 2021, 18(20): 0-032
[Abstract] Objective: To investigate the effects of the growth and differentiation factor-5 (GDF-5) on differentiation into tendon cells and migration of bone marrow derived mesenchymal stem cells (BMSCs). Method: BMSCs were treated with GDF-5 for 14 d, and the samples were collected. The extracellular matrix synthesis and the expression of genes related to differentiation into tendon cells were analyzed. The effects of GDF-5 on the migration ability of mesenchymal stem cells were evaluated by three-dimensional cell migration model in vitro. Result: The number of cells induced by 20, 100 and 500 ng/mL GDF-5 for 4 d were higher than that induced by 0 ng/mL GDF-5 (P<0.05), and the number of proliferating cells increased with the increase of GDF-5
concentration. The number of cells induced by 100 ng/mL GDF-5 on day 4 and 12 were higher than that induced by 0 ng/mL GDF-5 (P<0.05), and the difference was more obvious with the extension of culture time. After inducing bone marrow stem cells with 100 ng/mL GDF-5 for 12 d, the gene expression levels of Tensascin-C and Ⅰ type collagen were both higher than those of 0 ng/mL GDF-5 induction (P<0.05). The cell migration ability induced by 100 ng/mL GDF-5 was higher than that induced by 0 ng/mL GDF-5 (P<0.05). Conclusion: GDF-5 can promote differentiation into tendon cells of mesenchymal stem cells and induce migration of activated mesenchymal stem cells, which may play an important role in the repair and reconstruction of tendon injury. Combined treatment of GDF-5 with mesenchymal stem cells may provide a new therapeutic method for tendon injury repair.
[Key words] BMSCs Cell migration GDF-5
First-author’s address: Shanghai Xuhui Central Hospital, Shanghai 200031, China
doi:10.3969/j.issn.1674-4985.2021.20.007
肌腱的損傷斷裂是骨科領域的重要疾病,尤其在運動損傷中更為常見[1-2]。由于肌腱組織難于修復,且修復后組織結(jié)構較弱,極易發(fā)生再次斷裂和粘連等并發(fā)癥[3]。因此,利用組織工程及再生醫(yī)療技術提高肌腱的愈合近年來成為骨科領域關注的焦點[4-5],尤其是相關生長因子結(jié)合干細胞治療更是有望成為修復肌腱損傷的新手段[6-7]。
骨髓干細胞具有肌肉骨組織多向分化潛能,如在體外適當誘導下可以分化為成骨細胞、軟骨細胞、脂肪細胞、肌細胞等[8-11]。間充質(zhì)干細胞已被應用于軟組織損傷的修復。然而,骨髓間充質(zhì)干細胞向肌腱細胞分化的相關研究報道極少。
生長分化因子-5(growth differentiation factor-5,GDF-5)又被稱為軟骨來源成形蛋白-1或BMP-14,在骨關節(jié)形成、軟骨內(nèi)成骨和肌腱韌帶損傷修復等生理過程中其重要作用[12-15]。有動物實驗結(jié)果表明利用GDF-5基因治療可以增強跟腱修復強度[16]。本研究將通過體外實驗考察GDF-5對骨髓干細胞向肌腱細胞分化的誘導作用及遷移能力的影響,為闡明GDF-5促進肌腱修復的機制提供理論基礎,為肌腱修復提供新的治療手段,現(xiàn)報道如下。
1 材料與方法
1.1 實驗動物和試劑 選用6周齡SD雄性大鼠,由哈爾濱醫(yī)科大學實驗動物中心提供。DMEM培養(yǎng)液、胎牛血清、Ⅰ型膠原酶和胰蛋白酶購自Gibico公司。GDF-5購自Peprotech公司。MTT購自 Sigma Chemical公司。QuantiTect SYBR Green PCR試劑盒購自Qiagen公司。
1.2 方法
1.2.1 骨髓干細胞的分離與原代培養(yǎng) 取SD大鼠雙側(cè)股骨、脛骨,剪去兩側(cè)骺端,用10 mL注射器針頭抽取適量含10% FBS的完全培養(yǎng)基沖洗骨髓腔,制成單細胞懸液。細胞懸液在1 500 r/min離心5 min后,去上清,用含10% FBS的DMEM培養(yǎng)液重懸后轉(zhuǎn)移至培養(yǎng)瓶中常規(guī)傳代培養(yǎng)。
1.2.2 細胞增殖測定 將骨髓干細胞以5.0×104個/孔的密度種植于6孔板中,分別用含有0、20、100、500 ng/mL GDF-5的培養(yǎng)基培養(yǎng)4 d后,每孔加入30 μL MTT,孵箱內(nèi)作用3 h后加棄去上清。加入二甲基亞砜。20 min后用酶標儀測定490 nm波長吸光度,與細胞數(shù)標準曲線的吸光度值相對比計算出細胞數(shù)。
1.2.3 向肌腱細胞分化基因表達測定 將骨髓干細胞以5.0×104個/孔的密度種植于6孔板中,分別用含有100 ng/mL GDF-5和不含有GDF-5(0 ng/mL)的培養(yǎng)基培養(yǎng)12 d后,提取細胞總RNA,通過逆轉(zhuǎn)錄反應(退火,70 ℃,10 min;cDNA合成,42 ℃,60 min;熱滅活,95 ℃,5 min)制備cDNA,于-70 ℃保存。根據(jù)QuantiTect SYBR Green PCR試劑盒操作手冊進行定量PCR測定,應用25 μL SYBR Green反應體系,分別加入300 nmol上游和下游引物,具體如下:Tenomodulin上游引物 5’-GGA CTT TGA GGA GGA TGG-3’,下游引物5’-CGC TTG CTT GTC TGG TGC-3’;Tenascin-C上游引物5’-GCT ACT CCA GAC GGT TTC-3’,下游引物5’-TTC CAC GGC TTA TTC CAT-3’;ColⅠ (α1) typeⅠ上游引物5’-AGG CTT TGA TGG ACG CAA TG-3’,下游引物5’-GCG GCT CCA GGA AGA CC-3’。加入3 μL cDNA,充分混合后離心,用PCR儀進行測定分析(共40循環(huán):變性溫度為94 ℃,30 s;退火溫度為55 ℃,30 s;擴增溫度為72 ℃,30 s)。
1.2.4 三維細胞誘導遷移實驗 用類組織缺損體外細胞遷移評價模型對干細胞在GDF-5的誘導下遷移能力進行評價。將含有100 ng/mL GDF-5和不含有GDF-5(0 ng/mL)的改性天然水凝膠羥苯基丙酸/明膠(Gtn-HPA)水凝膠灌注于模具中固化得到直徑8.66 mm、厚約4 mm的核,周圍灌注Ⅰ型膠原和骨髓干細胞,這樣就構建了一個類似于內(nèi)部為水凝膠填充的缺損、周圍有類組織包繞的缺損模型,分別在第4、8、12天通過倒置顯微鏡觀察干細胞向水凝膠內(nèi)遷移的數(shù)量和距離,并作定量分析。
1.3 統(tǒng)計學處理 采用SPSS 19.0軟件對所得數(shù)據(jù)進行統(tǒng)計分析,計量資料用(x±s)表示,比較采用單因素方差分析,以P<0.05為差異有統(tǒng)計學意義。
2 結(jié)果
2.1 GDF-5可促進骨髓干細胞增殖 20、100、500 ng/mL GDF-5誘導4 d后的細胞數(shù)分別為(13.1±0.5)、(13.6±0.2)、(13.8±0.1)×104個/孔,均顯高于0 ng/mL GDF-5誘導的(10.2±0.3)×104個/孔(P<0.05),且隨著GDF-5濃度增高增殖細胞數(shù)呈現(xiàn)增加的趨勢。100 ng/mL GDF-5誘導4、12 d的細胞數(shù)分別為(13.6±0.2)、(33.4±2.3)×104個/孔,均高于0 ng/mL GDF-5誘導的(10.2±0.3)、(22.2±1.5)×104個/孔(P<0.05),隨著培養(yǎng)時間的延長,差異更加明顯。見圖1。
2.2 骨髓干細胞特異性向肌腱細胞分化基因的表
達 100 ng/mL GDF-5誘導分化骨髓干細胞12 d后,測得骨髓干細胞的Tenomodulin基因表達未見顯著性增加(P>0.05),而Tenascin-C的表達量的差異倍數(shù)為(2.2±0.2)高于0 ng/mL GDF-5誘導的(1.30±0.05)(P<0.05),Ⅰ型膠原蛋白的基因表達量的差異倍數(shù)為(4.3±0.4),高于0 ng/mL GDF-5誘導的(0.90±0.04)(P<0.05)。見圖2。
2.3 骨髓干細胞的細胞遷移 類組織缺損體外細胞遷移評價模型對干細胞在GDF-5的誘導下遷移能力進行了評價,見圖3A。100 ng/mL GDF-5誘導4、8、12 d后每厘米遷移界面細胞遷移數(shù)分別為14.6(3.6,58.6)、256.6(168.4,291.3)、344.8(256.1,383.4)個/cm,而0 ng/mL GDF-5誘導下分別為0(0,0)、7.4(0,36.7)、124.9(88.4,161.7)個/cm,100 ng/mL GDF-5誘導8、12 d的每厘米遷移界面細胞遷移數(shù)均大于0 ng/mL GDF-5(P<0.05)。100 ng/mL GDF-5誘導12 d,骨髓干細胞遷移能力大于0 ng/mL GDF-5。見圖3B。
3 討論
肌腱缺損的愈合過程包括含有肌腱細胞在內(nèi)的細胞成分在損傷局部分裂、增殖、分化、細胞外基質(zhì)的沉積與重建等過程,相關細胞因子在這一修復過程中也起著重要的調(diào)控作用[17]。由于成熟肌腱細胞進一步分裂、增殖潛力有限,因此,本研究通過考察GDF-5對骨髓干細胞向肌腱細胞分化的誘導作用及遷移能力的影響,為二者聯(lián)合應用促進肌腱愈合的可能性提供理論依據(jù)。
骨髓干細胞具有多向分化潛能,易于提取和分離,不僅在硬組織領域已經(jīng)得到一定的應用,在軟組織修復方面,也被越來越多的證實有著良好的應用前景。骨髓干細胞在體外適當誘導條件下可以分化為成骨細胞,軟骨細胞,脂肪細胞,肌細胞等,然而,骨髓干細胞向肌腱細胞誘導分化的相關報道極少。
GDF-5又被稱為軟骨來源成形蛋白-1或BMP-14,越來越多的證據(jù)表明其在肌腱韌帶的發(fā)育和損傷修復過程中起重要的調(diào)節(jié)作用。GDF-5基因缺陷會導致小鼠肌腱愈合障礙[18];還有動物實驗結(jié)果表明GDF-5修飾的縫線可以增加修復后肌腱的厚度[19]。此外,用負載GDF-5的膠原海綿橋接修復跟腱缺損,可以顯著增加修復后跟腱的強度[20]。上述結(jié)果都表明了GDF-5可以促進肌腱的重建與修復,但是目前為止,其在體外對干細胞的作用的相關研究尚少見報道。
本研究考察了不同濃度GDF-5對骨髓干細胞增殖的影響,結(jié)果顯示,各濃度GDF-5作用下細胞增殖數(shù)均明顯高于0 ng/mL GDF-5(P<0.05),且隨著GDF-5濃度增高增殖細胞數(shù)呈現(xiàn)增加的趨勢,100 ng/mL GDF-5誘導4、12 d的細胞數(shù)均高于0 ng/mL GDF-5誘導(P<0.05),隨著培養(yǎng)時間的延長,差異更加明顯。因此,GDF-5可以促進骨髓干細胞的增殖,其作用在500 ng/mL范圍內(nèi)隨著濃度的增高而增強。結(jié)果顯示,100 ng/mL GDF-5誘導12 d后特異性向肌腱細胞分化標志物Tenascin-C、肌腱細胞外主要基質(zhì)Ⅰ型膠原蛋白的基因表達均顯著提高(P<0.05)。說明GDF-5可以促進骨髓干細胞向肌腱細胞分化和細胞外基質(zhì)的合成,從而增加肌腱修復缺損過程中肌腱細胞表型的維持、干細胞向肌腱細胞分化和基質(zhì)沉積,進而提高肌腱修復強度,這與文獻[21-22]在脂肪干細胞上取得的研究結(jié)果相似。本研究用類組織缺損體外細胞遷移評價模型對干細胞在GDF-5的誘導下遷移能力進行了評價,結(jié)果顯示,100 ng/mL GDF-5誘導的細胞遷移能力大于0 ng/mL GDF-5誘導,所以,GDF-5誘導可促進骨髓干細胞的細胞遷移,該機制在肌腱修復與重建中可能起著重要作用。Date等[23]的研究也表明,GDF-5可以促進肌腱纖維母細胞的遷移,且這種遷移為整合素-α2介導。因此,GDF-5可能通過細胞誘導遷移作用[24],使肌腱損傷周邊的內(nèi)源性干細胞遷移至缺損區(qū),參與修復重建過程。
本實驗結(jié)果提示,如果將GDF-5與骨髓干細胞聯(lián)合應用修復肌腱損傷,一方面GDF-5可以促進骨髓干細胞的增殖和向肌腱細胞分化,還可以誘導內(nèi)源性干細胞遷移入肌腱損傷局部參與修復重建過程,這為肌腱的損傷修復細胞治療提供了新的治療思路。
參考文獻
[1] Lemme N J,Li N Y,Kleiner J E,et al.Epidemiology and Video Analysis of Achilles Tendon Ruptures in the National Basketball Association[J].Am J Sports Med,2019,47(10):2360-2366.
[2] Aicale R,Tarantino D,Maffulli N.Overuse injuries in sport:a comprehensive overview[J].J Orthop Surg Res,2018,13(1):309.
[3] Magnusson S P,Kjaer M.The impact of loading,unloading,ageing and injury on the human tendon[J].J Physiol,2019,597(5):1283-1298.
[4] Snedeker J G,F(xiàn)oolen J.Tendon injury and repair-A perspective on the basic mechanisms of tendon disease and future clinical therapy[J].Acta Biomater,2017,63:18-36.
[5] Rieu C,Picaut L,Mosser G,et al.From Tendon Injury to Collagen-based Tendon Regeneration:Overview and Recent Advances[J].Curr Pharm Des,2017,23(24):3483-3506.
[6] Costa-Almeida R,Calejo I,Gomes M E.Mesenchymal Stem Cells Empowering Tendon Regenerative Therapies[J].Int J Mol Sci,2019,20(12):3002.
[7] Citeroni M R,Ciardulli M C,Russo V,et al.In Vitro Innovation of Tendon Tissue Engineering Strategies[J].Int J Mol Sci,2020,21(18):6726.
[8] Zhang M,Matinlinna J P,Tsoi J K H,et al.Recent developments in biomaterials for long-bone segmental defect reconstruction:A narrative overview[J].J Orthop Translat,2019,22:26-33.
[9] Zhang R,Ma J,Han J,et al.Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis[J].Am J Transl Res,2019,11(10):6275-6289.
[10] Lim W L,Liau L L,Ng M H,et al.Current Progress in Tendon and Ligament Tissue Engineering[J].Tissue Eng Regen Med,2019,16(6):549-571.
[11] Yu H,Cheng J,Shi W,et al.Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells[J].Acta Biomater,2020,106:328-341.
[12] Leong N L,Kator J L,Clemens T L,et al.Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration[J].J Orthop Res,2020,38(1):7-12.
[13] Qu Y,Zhou L,Lv B,et al.Growth differentiation factor-5 induces tenomodulin expression via phosphorylation of p38 and promotes viability of murine mesenchymal stem cells from compact bone[J].Mol Med Rep,2018,17(3):3640-3646.
[14] Sun K,Guo J,Yao X,et al.Growth differentiation factor 5 in cartilage and osteoarthritis:A possible therapeutic candidate[J/OL].Cell Prolif,2021,54(3):e12998.
[15] Xu H,Sun M,Wang C,et al.Growth differentiation factor-5-gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration[J].Biofabrication,2020,13(1):015010.
[16] de Aro A A,Carneiro G D,Teodoro L F R,et al.Injured Achilles Tendons Treated with Adipose-Derived Stem Cells Transplantation and GDF-5[J].Cells,2018,7(9):127.
[17] Prabhath A,Vernekar V N,Sanchez E,et al.Growth factor delivery strategies for rotator cuff repair and regeneration[J].Int J Pharm,2018,544(2):358-371.
[18] Chhabra A,Tsou D,Clark R T,et al.GDF-5 deficiency in mice delays Achilles tendon healing[J].J Orthop Res,2003,21(5):826-835.
[19] Rickert M,Jung M,Adiyaman M,et al.A growth and differentiation factor-5(GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats[J].Growth Factors,2001,19(2):115-126.
[20] Aspenberg P,F(xiàn)orslund C.Enhanced tendon healing with GDF 5 and 6[J].Acta Orthop Scand,1999,70(1):51-54.
[21] Park A,Hogan M V,Kesturu G S,et al.Adipose-Derived Mesenchymal Stem Cells Treated with Growth Differentiation Factor-5 Express Tendon-Specific Markers[J].Tissue Eng Part A,2010,16(9):2941-2951.
[22]席彥東,李雙,徐鈞,等.GDF-5對大鼠肌腱細胞及腱鞘滑膜細胞增殖及凋亡的影響[J].華中科技大學學報(醫(yī)學版),2009,38(6):800-811.
[23] Date H,F(xiàn)urumatsu T,Sakoma Y,et al.GDF-5/7 and bFGF activate integrin alpha2-mediated cellular migration in rabbit ligament fibroblasts[J].J Orthop Res,2010,28(2):225-231.
[24] Li X,Wang F,Lan Y,et al.GDF-5 induces epidermal stem cell migration via RhoA-MMP9 signalling[J].J Cell Mol Med,2021,25(4):1939-1948.
(收稿日期:2021-06-01) (本文編輯:田婧)