• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5?xO4/SiO2 composite magnetic nanoparticles?

    2021-03-19 03:21:04XiangYu俞翔LiChenWang王利晨ZhengRuiLi李崢睿YanMi米巖DiAnWu吳迪安andShuLiHe賀淑莉
    Chinese Physics B 2021年3期
    關(guān)鍵詞:迪安

    Xiang Yu(俞翔), Li-Chen Wang(王利晨), Zheng-Rui Li(李崢睿),Yan Mi(米巖), Di-An Wu(吳迪安), and Shu-Li He(賀淑莉)

    Department of Physics,Capital Normal University,Beijing 100048,China

    Keywords: magnetic nanoparticles,magnetic anisotropy,Zn0.5CoxFe2.5?xO4/SiO2,magnetic hyperthermia

    1. Introduction

    Iron oxide magnetic nanoparticles (NPs) have wide application prospects in biomedical field, for its advantage of stable chemical properties, excellent biocompatibility, appropriate magnetic properties, simplicity of preparation and tunable nature. The composite nanostructure is made by modifying SiO2, polyethylene glycol or polydopamine on the surface of the as-obtained NPs. The composite nanostructure displays extremely rich diagnostic and therapeutic functions in the fields of targeted drug release, magnetic resonance imaging, biological magnetic separation and magnetic hyperthermia.[1-8]Magnetic hyperthermia is a new kind of local tumor hyperthermia. Compared with the photohyperthermia which mainly uses near infrared laser with lower penetration depth,the alternating current(AC)magnetic field can penetrate into the body tissue to 15 cm and 99% of the electromagnetic energy is not absorbed by the human body.[9]Therefore, magnetic hyperthermia has unique superiorities in the treatment of deep tumors. The hyperthermia performance of traditional Fe3O4magnetic NPs is not very ideal, due to their certain limitations of magnetic properties.[10-12]Therefore,in an actual application process,we have to enhance the dosage of nano materials or the energy of AC field to meet the needs of hyperthermia, which certainly introduces a hidden danger to the safety of magnetic hyperthermia applications.

    In order to enhance the magnetic hyperthermia properties of Fe3O4-based magnetic NPs, Lee et al.prepared magnetic NPs with a core-shell structure(Zn0.4Co0.6Fe2O4@Zn0.4Mn0.6Fe2O4) in 2011. The saturation magnetization and magnetic anisotropy of the samples were effectively adjusted, a maximum specific power loss(SLP) value of 3886 W/g was successfully developed. This can be attributed to the soft and hard magnetic exchange coupling, based on theoretical calculations as a guide. The core-shell NPs can eliminate the tumor tissue of nude mice thoroughly, which is significantly better than the commercial Feridex control group and adriamycin chemotherapy control group.[12]However, because the core-shell NPs need to be grown by seed mediated method repeatedly and the size of the core and shell needs to be precisely controlled, these make the practical application of the samples difficult. In 2018, it was reported that the soft and hard magnetic coupling ferrite NPs were successfully prepared by doping Mn2+and Co2+directly to Fe3O4. The preparation of the NPs is easy to achieve, and the SLP value can approach the theoretical limit of 3417 W/gmetal. In vitro cell hyperthermia experiment,the use of low-dose magnetic NPs can effectively kill tumor cells in a very short time.[13]However, its biocompatibility is significantly lower than Fe3O4, which restricts its application in vivo. In recent research results,Zn0.5Fe2.5O4magnetic NPs were reported as typical soft ferrite NPs, which have excellent biocompatibility and good magnetic hyperthermia properties.[14]On the other hand, the theoretical simulation results indicated that the magnetic hyperthermia properties of soft ferrite NPs can be further improved significantly by properly increasing the magnetic anisotropy of the sample.[12]

    In this paper,Zn0.5CoxFe2.5?xO4(x=0,0.05, 0.1, 0.15)serial magnetic NPs were synthesized by doping Zn2+and Co2+ions to Fe3O4, to improve the saturation magnetization and magnetic anisotropy of the samples. The SiO2shell was modified on the surface of the series of NPs by reverse microemulsion method, to enhance the biocompatibility and water solubility of the NPs. The results show that the magnetic hyperthermia properties of the samples increase first and then decrease with the increase of Co2+doping amount. The peak SLP value of Zn0.5CoxFe2.5?xO4/SiO2samples can reach 1974 W/gmetalwith x=0.1.

    2. Experiments and methods

    2.1. Materials

    Fe(acac)3, Zn(acac)2·nH2O, Co(acac)2and ammonia(29%) were purchased from Alfa aesar; sodium oleate was purchased from TCI; tetraethyl orthosilicate (TEOS), igepal CO-520 and cyclohexane were purchased from Aldrich;oleic acid and benzyl ether were purchased from Acros.

    2.2. Synthesis of Zn0.5CoxFe2.5?xO4 magnetic nanoparticles

    Zn0.5CoxFe2.5?xO4magnetic NPs were prepared by the modified thermal decomposition method.[15]Firstly,2.5 mmol Fe(acac)3,0.5 mmol Zn(acac)2·nH2O and Co(acac)2,2 mmol sodium oleate,4.5 mL oleic acid and 20 mL benzyl ether were added to the four neck flask. Under the protection of argon,the mixture was heated to 120?C,and kept for 30 min to remove impurities with low boiling point. Then the mixture was heated to 295?C with the rate of 10?C/min, and maintained for 2 h. Finally, the heating device is removed so that the reaction system can be cooled to room temperature,and ethanol is added and centrifuged to separate the NPs.

    2.3. Silica coating of Zn0.5CoxFe2.5?xO4 magnetic nanoparticles

    SiO2was coated on the surface of NPs via reverse microemulsion method.[16]First, 20 mL cyclohexane and 1.15 mL CO-520 were added to the flask, and mixed thoroughly with sonication bath for 10 min. Then 20 mg Zn0.5CoxFe2.5?xO4magnetic NPs and 1 mL cyclohexane were added into an eppendorf tube,thoroughly mixed by sonication bath, and then transferred into the flask. After the mixture was sonicated for 20 min,0.15 mL ammonia was added dropwise and magnetically stirred for 10 min. Finally, 0.1 mL of TEOS was added and reacted for 24 hours.The as-synthesized Zn0.5CoxFe2.5?xO4/SiO2composite NPs are separated by centrifugation by adding ethanol and hexane.

    2.4. Characterization

    The morphology of NPs was observed with a transmission electron microscope (TEM, Hitachi H-7650); the highresolution TEM images were obtained by an FEI Tecnai G2 F30 TEM;the crystal structure was characterized by an x-ray diffractometer(XRD,Bruker D8 advance);the magnetic properties were measured by a commercial superconducting quantum interference device magnetometer (SQUID-VSM). The field-dependent magnetization curves (M-H) were recorded from 0 to ±5 T at 300 K and 10 K. Temperature-dependent magnetization curves(M-T)were measured under zero-fieldcooled/field-cooled (ZFC/FC) mode from 10 K to 300 K under a magnetic field of 500 Oe;and the magnetic hyperthermia properties were measured by MSI HYPER 5 machine.

    2.5. Calculation of SLP and ILP values

    The specific loss power (SLP) is introduced to evaluate the magnetic hyperthermia properties of the samples,which is expressed as

    where C is the volume specific heat capacity,Vsis the volume of the sample, m is the mass of the metallic elements of the NPs in the sample, dT/dt is the initial slope of the temperature rise curve.

    According to the research,the hyperthermia properties of materials can be more essentially reflected by deducting the amplitude and frequency of AC field from SLP values. Therefore,the intrinsic loss power(ILP)is introduced for evaluation,which is expressed as

    where H is the amplitude of the AC field and f is the frequency of the AC field.

    2.6. In vitro experiments

    The cytotoxicity of the Zn0.5CoxFe2.5?xO4/SiO2composite NPs was assessed using in vitro cell toxicity assay. Mouse fibroblast cells (MEF) purchased from the American Type Culture Collection were seeded in 96-well plates at a density of 5000 cells per well. Then, different concentrations of the Zn0.5CoxFe2.5?xO4/SiO2composite NPs were added to the wells and incubated for 24 h further. The cell viabilities were determined by the standard Cell Counting Kit-8(CCK-8,Dojindo,Japan)assay.

    3. Results and discussion

    Our approach is schematically shown in Fig.1.Zn0.5CoxFe2.5?xO4NPs were synthesized using sodium oleate instead of oleamine and 1,2-hexadecanediol in the classic formulation. This modified thermal decomposition method can save material and time cost more effectively.[15,17-20]Silica coating of Zn0.5CoxFe2.5?xO4NPs was performed via the reverse microemulsion method.[16]The hyperthermia properties of Zn0.5CoxFe2.5?xO4/SiO2composite NPs were systematically studied under AC field.

    Fig.1. Scheme of the synthetic route and research method of Zn0.5CoxFe2.5?xO4/SiO2 NPs.

    As shown in Fig.2,XRD patterns of Zn0.5CoxFe2.5?xO4(x = 0, 0.05, 0.1, 0.15) serial NPs and the standard patterns of Zn0.54Fe2.46O4(PDF card #86-0509, Fdˉ3m) match so well. All the peaks can be indexed, which indicates that the Zn0.5CoxFe2.5?xO4(x=0,0.05,0.1,0.15)serial NPs have single spinel cubic phase structures.

    Fig.2. XRD patterns of Zn0.5CoxFe2.5?xO4 (x=0, 0.05, 0.1, 0.15)serial NPs.

    Using the modified thermal decomposition method, we have synthesized magnetic NPs with controllable size and morphology using sodium oleate instead of oleamine and 1,2-hexadecanediol in the classical formula.[15]It can be seen from Fig.3 that Zn0.5CoxFe2.5?xO4(x=0, 0.05, 0.1, 0.15) serial NPs with stable morphology at 21 nm and good monodispersity were synthesized using the ratio of 3 mmol metal precursor,2 mmol sodium oleate,4 mL oleic acid and 20 mL benzyl ether.

    The surface of the NPs was coated with SiO2via the reverse microemulsion method, as shown in Fig.4. It can be seen that Zn0.5CoxFe2.5?xO4/SiO2(x=0,0.05,0.1,0.15)serial samples have uniform size,uniform coating of SiO2shell,no defect, thickness of about 6 nm, and no formation of free SiO2shell. In addition,it can be seen from the high-resolution TEM images that the SiO2shell can fully and uniformly coat the magnetic nanoparticle. This can be attribute to the precise control of the volume ratio of ammonia and TEOS in the reaction(0.15 mL:0.1 mL),in which the concentration of hydrolyzed TEOS monomer is always controlled in the range of heterogeneous nucleation, and the unexpected homogeneous nucleation will be avoided.[16]

    Fig.3. TEM images of Zn0.5CoxFe2.5?xO4: (a)x=0,(b)x=0.05,(c)x=0.1,(d)x=0.15 NPs.

    Fig.4. TEM images of Zn0.5CoxFe2.5?xO4/SiO2: (a) x=0, (b) x=0.05,(c)x=0.1,(d)x=0.15 composite NPs.The insets show the highresolution TEM images of the corresponding Zn0.5CoxFe2.5?xO4/SiO2 composite NPs.

    The magnetic properties of Zn0.5CoxFe2.5?xO4(x = 0,0.05, 0.1, 0.15) serial samples were measured by SQUIDVSM. In earlier research, the saturation magnetization of Zn0.5Fe2.5O4with Zn2+ion partially replaces Fe2+ions in Fe3O4was effectively enhanced.[21]We further measured the M-H curves of Zn0.5CoxFe2.5?xO4serial samples at 300 K and 10 K, as shown in Fig.5. From the saturation magnetization on the data measured at 300 K, the saturation magnetization decreases monotonously with the increase of the doping amount of Co2+ions. From the doping amount of 0 to 0.15,the saturation magnetization decreases from 85.5 emu/g to 79.3 emu/g. This can be due to the fact that the magnetic moment of original Fe2+ions(4μB)is bigger than Co2+ions(3μB).In addition,the M-H data measured at 10 K also shows a consistent trend of change,in which the saturation magnetization decreases from 94.2 emu/g to 87.5 emu/g with doping amount from 0 to 0.15. The coercivity (Hc) of the samples increases from 262 Oe to 3500 Oe with the increase of the amount of Co2+ions in the data measured at 10 K, which shows that the doping of traditional hard magnetic Co2+ions can effectively increase the magnetic anisotropy of the samples. The law of coercivity change at 300 K is different from that at 10 K, showing a magnetic phase transition process.The coercivity of the samples remains about 5 Oe with the increase of Co2+ion content from 0 to 0.05,showing a plateau region where the coercivity does not increase with the doping amount. This is normally contributed to superparamagnetism in samples. From the M-T curves shown in Figs.5(e)and 5(f), it can be seen that the blocking temperature (TB)of Zn0.5Fe2.5O4and Zn0.5Co0.05Fe2.45O4is less than 300 K.Therefore,the results also confirm that the samples have superparamagnetism at room temperature. On the other hand, the coercivity increases to about 11 Oe when the doping amount of Co2+ion is 0.1,and reaches 17 Oe with doping amount of 0.15.

    Fig.5. M-H curves of Zn0.5CoxFe2.5?xO4 (x=0, 0.05, 0.1, 0.15) NPs at (a) 300 K and (b) 10 K; Co content dependence of (c) saturation magnetization Ms and(d)coercivity Hc for Zn0.5CoxFe2.5?xO4 NPs,measured at 300 K and 10 K;M-T curves of(e)Zn0.5Fe2.5O4 NPs and(f)Zn0.5Co0.05Fe2.45O4NPs. The curves are normalized to the values at T =10 K.

    According to the above phenomenon, the change of the whole magnetic phase can be divided into two sections. It can be inferred that the transition point from superparamagnetism to ferrimagnetism is x ~0.1 in this study. In addition,we can clearly see from the M-H curves that there is obvious magnetic phase separation when doping amount is 0.15, which is normally classify as the co-existence of soft and hard magnetic phases. According to the experimental results in the literature,this may be related to the large amount of ion doping in the sample.[15]

    The magnetic hyperthermia properties of Zn0.5CoxFe2.5?xO4/SiO2(x=0,0.05,0.1,0.15)serial samples were measured at a concentration of 1 mg/mL,as shown in Fig.6. The heating performance of the four samples increases monotonously with the increase of AC field amplitude, when the frequency of AC field is maintained at 430 kHz. This is consistent with the description of Rosensweig’s theoretical equation[22]

    where μ0is the the vacuum permeability, χ0is the equilibrium susceptibility, H is the amplitude of the AC field, f is the frequency of the AC field (f =ω/2π), and τ is the total relaxation time of the magnetic NPs in the AC field.

    Fig.6. Heating curves of Zn0.5CoxFe2.5?xO4/SiO2 under different magnetic field amplitudes, with the AC field of 430 kHz: (a) x=0, (b)x=0.05,(c)x=0.1,(d)x=0.15.

    Using the heating curves of each sample under the highest AC field(31 kA/m,430 kHz),the corresponding SLP value can be calculated. It can be seen from Fig.7(a) that the SLP value shows a trend of first increasing and then decreasing with the increase of Co2+ion doping, and reaches the peak value with 1974 W/gmetalwhen x=0.1. It can be concluded that the magnetic hyperthermia properties of Zn0.5Fe2.5O4samples can be improved by Co2+doping. The earlier literature reported that SLP value does not always monotonously rise,and the best position is near the transition point of magnetic NPs from superparamagnetism to ferrimagnetism.[23-25]In our research,the peak SLP value emerges at x=0.1,consistent with the magnetic measurement data and the explanation in the earlier report.

    The magnetic anisotropy continues to increase and the magnetic NPs enter the ferrimagnetic region when the Co2+ions are further increased (x=0.15), which makes the magnetic moment of the sample unable to be effectively reversed by the AC field. On the other hand,the saturation magnetization of the sample has dropped to 79.3 emu/g when the doping amount is x=0.15. According to the research results of the literature,the loss power will also be significantly reduced.[12]Finally,it can be seen from the change diagram of SLP value with Co2+doping amount that the SLP value will be significantly decreased at this time.

    On the other hand,the total relaxation time,which is composed of Brown relaxation time and N′eel relaxation time,will affect the loss power,from the formula of linear response theory. In this paper, the N′eel relaxation time will be mainly affected by adjusting the magnetic anisotropy of the sample,which is expressed as

    where τ0is the time constant(τ0~10?9s),K is the anisotropy constant,V is the volume of nanoparticle,and kBis the Boltzmann constant. In the literature, a theoretical simulation is made based on the linear response theory. From the simulation results,it can be clearly seen that there is a non-monotonic response relationship between the anisotropy constant K and the SLP value of the magnetic NPs. That is,with the increase of the anisotropy constant, the SLP value presents a process of increasing first and then decreasing. This means that under a certain AC field,magnetic NPs need to have an appropriate K value to obtain the maximum SLP value. In our work, the variation of SLP with the anisotropic constant K is in good agreement with the theoretical simulation in the literature. An optimal K value under the AC field is achieved when the Co2+ion doping amount is 0.1. Therefore, it has the highest SLP value in the series of samples.[12,22,26,27]

    The change chart of ILP with the amount of Co2+ion doping is obtained by removing the influence of AC field amplitude and frequency from the SLP value. As shown in Fig.7(b), it can be seen from the chart that the trend of ILP values is consistent with the change of SLP values with the amount of Co2+ion doping, with a peak value of 4.77 nHm2/kgmetalwith Co2+ion doping amount is 0.1.

    Fig.7.(a)SLP and(b)ILP for Zn0.5CoxFe2.5?xO4/SiO2 composite NPs under the AC field of 430 kHz and 31 kA/m.

    Cytotoxicity of Zn0.5CoxFe2.5?xO4/SiO2composite NPs to MEF cells was measured and studied. The different concentrations of Zn0.5CoxFe2.5?xO4/SiO2composite NPs ranging from 25 to 1000μg/mL were incubated with the cells for 24 h. After the incubation period, the viability of the MEF cells was assessed by CCK-8. Cells without NPs were used as control groups. Compared to the group without NPs, as shown in Fig.8,the group containing different concentrations of Zn0.5CoxFe2.5?xO4/SiO2composite NPs shows no significant difference in cell viability at the incubation time of up to 24 h. Though at 1000μg/mL after incubation for 24 h,viability of MEF cells with NPs is nearly 100%,which suggests that the materials are biocompatible.

    Fig.8. The viability of the MEF cells determined by CCK-8 assay after incubation in NP solutions with various concentrations for 24 h.

    4. Conclusion

    In summary, a series of high-quality Zn0.5CoxFe2.5?xO4(x = 0, 0.05, 0.1, 0.15) samples were synthesized by the modified thermal decomposition method. The saturation magnetization of the sample is improved and the magnetic anisotropy of the sample is controlled by doping Zn2+and Co2+ions into Fe3O4. A transition point from superparamagnetism to ferrimagnetism is found with Co2+content of 0.1. A peak SLP value of 1974 W/gmetalhas been found in Zn0.5Co0.1Fe2.4O4/SiO2, which corresponds to the magnetic properties. In addition, the NPs show excellent biocompatibility in vitro. The composite NPs are expected to be a good candidate material in applications of magnetic hyperthermia.

    猜你喜歡
    迪安
    Inversion techniques to obtain local rotation velocity and ion temperature profiles for the x-ray crystal spectrometer on EAST
    助瀾冷戰(zhàn)——迪安·艾奇遜與戰(zhàn)后美蘇原子能合作的破產(chǎn)
    公交站里的背影
    中外文摘(2021年22期)2021-12-30 02:17:18
    Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O4 nanoparticles with different sizes*
    阿維迪安黃金公司簡(jiǎn)介
    “彗星”成明星,拯救兩條人命的竟是一條小金魚
    朝鮮戰(zhàn)爭(zhēng)中頭號(hào)美軍戰(zhàn)俘迪安少將
    對(duì)不起,我愛(ài)你
    新青年(2017年11期)2017-11-23 18:30:47
    光榮的神槍手
    他鄉(xiāng)
    文學(xué)港(2016年3期)2016-03-17 15:28:41
    免费无遮挡裸体视频| 999久久久国产精品视频| 99国产极品粉嫩在线观看| 国产91精品成人一区二区三区| 日本免费a在线| 国产欧美日韩一区二区精品| 午夜成年电影在线免费观看| 午夜激情av网站| 波多野结衣av一区二区av| 99精品欧美一区二区三区四区| cao死你这个sao货| 极品人妻少妇av视频| 精品国内亚洲2022精品成人| 成人国产一区最新在线观看| 亚洲人成77777在线视频| 波多野结衣一区麻豆| av天堂久久9| 亚洲av五月六月丁香网| 精品一品国产午夜福利视频| 99国产精品一区二区蜜桃av| 午夜久久久在线观看| 欧美国产精品va在线观看不卡| 国产精品久久久久久亚洲av鲁大| 成在线人永久免费视频| 美女 人体艺术 gogo| 脱女人内裤的视频| 一区二区三区高清视频在线| 国产精品日韩av在线免费观看 | 成人精品一区二区免费| 亚洲精品久久国产高清桃花| 中文字幕最新亚洲高清| 精品国产亚洲在线| 日韩三级视频一区二区三区| 热99re8久久精品国产| 免费在线观看日本一区| 国产成人欧美| 成人免费观看视频高清| 国产97色在线日韩免费| 国产伦一二天堂av在线观看| 成人国产一区最新在线观看| 午夜亚洲福利在线播放| 国产激情久久老熟女| 国产精品乱码一区二三区的特点 | 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区| 亚洲第一av免费看| 久久精品91无色码中文字幕| 多毛熟女@视频| 亚洲午夜精品一区,二区,三区| 丁香欧美五月| 免费看十八禁软件| 夜夜躁狠狠躁天天躁| 精品国产亚洲在线| 久久久国产精品麻豆| 精品无人区乱码1区二区| 天堂av国产一区二区熟女人妻| 1000部很黄的大片| 亚洲精品国产成人久久av| 精品人妻熟女av久视频| 亚洲性久久影院| 久久精品人妻少妇| 极品教师在线免费播放| 亚洲av电影不卡..在线观看| 国产老妇女一区| 丰满的人妻完整版| 国产欧美日韩一区二区精品| 国产激情偷乱视频一区二区| 午夜影院日韩av| 99九九线精品视频在线观看视频| 欧美丝袜亚洲另类 | 最近中文字幕高清免费大全6 | 97碰自拍视频| 深爱激情五月婷婷| 久久草成人影院| 日韩国内少妇激情av| 亚洲欧美日韩无卡精品| videossex国产| 老女人水多毛片| 亚洲成人免费电影在线观看| 男女边吃奶边做爰视频| 特大巨黑吊av在线直播| 国产精品亚洲一级av第二区| 国产精品三级大全| 国产精品伦人一区二区| 国产黄片美女视频| 波多野结衣高清作品| 精品一区二区三区视频在线| 成人永久免费在线观看视频| 国产高清激情床上av| 性插视频无遮挡在线免费观看| 日韩欧美在线二视频| 亚洲精品一卡2卡三卡4卡5卡| 99久久精品热视频| 男插女下体视频免费在线播放| 最近最新中文字幕大全电影3| 亚洲中文字幕日韩| a级毛片免费高清观看在线播放| 美女 人体艺术 gogo| 搡老熟女国产l中国老女人| 国产真实伦视频高清在线观看 | 免费观看在线日韩| 成年女人永久免费观看视频| 99久国产av精品| 伦理电影大哥的女人| 国产伦精品一区二区三区视频9| 中亚洲国语对白在线视频| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩综合久久久久久 | 国产高清三级在线| 国产av一区在线观看免费| 亚洲成av人片在线播放无| 熟妇人妻久久中文字幕3abv| 看黄色毛片网站| 在线a可以看的网站| 国产精品久久久久久精品电影| 欧美成人一区二区免费高清观看| av专区在线播放| 久久久午夜欧美精品| 91久久精品国产一区二区三区| 久久精品国产亚洲网站| 国产高清不卡午夜福利| 国产成人福利小说| 91精品国产九色| 色综合色国产| 亚洲熟妇熟女久久| 男人狂女人下面高潮的视频| 在线天堂最新版资源| 长腿黑丝高跟| 啦啦啦啦在线视频资源| 在线a可以看的网站| 久久人人爽人人爽人人片va| 韩国av在线不卡| 日韩国内少妇激情av| 日韩欧美一区二区三区在线观看| 乱系列少妇在线播放| 国产精品亚洲美女久久久| 国产一区二区在线观看日韩| 欧美成人一区二区免费高清观看| 麻豆一二三区av精品| 国产三级在线视频| 国产精品久久久久久av不卡| 免费观看精品视频网站| 日本色播在线视频| 最近在线观看免费完整版| 在线国产一区二区在线| 国产一区二区在线观看日韩| 亚洲va在线va天堂va国产| 精品国内亚洲2022精品成人| 91av网一区二区| 色精品久久人妻99蜜桃| 啦啦啦韩国在线观看视频| 午夜福利在线在线| 丝袜美腿在线中文| 亚洲中文日韩欧美视频| 3wmmmm亚洲av在线观看| 午夜精品久久久久久毛片777| 久久久久免费精品人妻一区二区| 高清日韩中文字幕在线| 色视频www国产| av福利片在线观看| 亚洲性夜色夜夜综合| 精品日产1卡2卡| 久久香蕉精品热| 九色成人免费人妻av| 99热这里只有是精品在线观看| 亚洲真实伦在线观看| 国内毛片毛片毛片毛片毛片| 国产在线精品亚洲第一网站| 成人三级黄色视频| 欧美色视频一区免费| 韩国av一区二区三区四区| 最新中文字幕久久久久| 国产成人aa在线观看| 搞女人的毛片| 久久精品影院6| 亚洲欧美激情综合另类| 永久网站在线| 最近视频中文字幕2019在线8| 成熟少妇高潮喷水视频| 一进一出抽搐gif免费好疼| 精品免费久久久久久久清纯| 免费观看精品视频网站| 黄色女人牲交| 两人在一起打扑克的视频| 亚洲经典国产精华液单| 免费大片18禁| 中文字幕久久专区| 国内揄拍国产精品人妻在线| 久久精品国产亚洲网站| 精品一区二区三区人妻视频| 少妇猛男粗大的猛烈进出视频 | 不卡一级毛片| av天堂在线播放| 人人妻,人人澡人人爽秒播| 精品人妻偷拍中文字幕| 午夜a级毛片| 草草在线视频免费看| www.色视频.com| 国内毛片毛片毛片毛片毛片| 亚洲国产色片| 亚洲久久久久久中文字幕| 国内精品久久久久精免费| 天天一区二区日本电影三级| 小说图片视频综合网站| 99国产极品粉嫩在线观看| 日日撸夜夜添| 少妇裸体淫交视频免费看高清| 天美传媒精品一区二区| 国产精品嫩草影院av在线观看 | 少妇高潮的动态图| 91午夜精品亚洲一区二区三区 | 99国产精品一区二区蜜桃av| 欧美性感艳星| 日韩欧美免费精品| 亚洲av日韩精品久久久久久密| 好男人在线观看高清免费视频| 老女人水多毛片| 国产亚洲精品av在线| 国产男靠女视频免费网站| 他把我摸到了高潮在线观看| 偷拍熟女少妇极品色| 毛片一级片免费看久久久久 | 窝窝影院91人妻| 婷婷精品国产亚洲av| 又粗又爽又猛毛片免费看| 日日撸夜夜添| 亚洲欧美日韩高清专用| 国产精品野战在线观看| 国产精品久久久久久亚洲av鲁大| 欧美日韩乱码在线| 少妇人妻精品综合一区二区 | 最近中文字幕高清免费大全6 | 国产欧美日韩精品一区二区| 日本成人三级电影网站| 国产亚洲91精品色在线| 成人av在线播放网站| 成人精品一区二区免费| 人人妻人人澡欧美一区二区| 夜夜爽天天搞| 国产麻豆成人av免费视频| 国产在视频线在精品| 婷婷亚洲欧美| 天堂√8在线中文| 美女高潮的动态| 日本熟妇午夜| 日日撸夜夜添| av女优亚洲男人天堂| 久久久久久久久中文| 国产高清视频在线播放一区| 久久人人爽人人爽人人片va| 亚洲人与动物交配视频| 少妇的逼水好多| 成年女人看的毛片在线观看| 99视频精品全部免费 在线| 亚洲熟妇中文字幕五十中出| 国产淫片久久久久久久久| 免费人成在线观看视频色| 少妇熟女aⅴ在线视频| 成年女人看的毛片在线观看| 亚洲精品国产成人久久av| 国产v大片淫在线免费观看| 网址你懂的国产日韩在线| 日韩中字成人| а√天堂www在线а√下载| 特大巨黑吊av在线直播| 中文在线观看免费www的网站| 亚洲人成网站在线播放欧美日韩| 国产精品av视频在线免费观看| 免费观看人在逋| 国产成人av教育| 麻豆一二三区av精品| 两性午夜刺激爽爽歪歪视频在线观看| 精品人妻1区二区| 一级毛片久久久久久久久女| 十八禁国产超污无遮挡网站| 又粗又爽又猛毛片免费看| 亚洲七黄色美女视频| 精品久久久噜噜| 久久久午夜欧美精品| 国产黄色小视频在线观看| 中出人妻视频一区二区| 日韩国内少妇激情av| 久久中文看片网| 少妇人妻精品综合一区二区 | 亚洲熟妇熟女久久| 国产精品伦人一区二区| 黄色配什么色好看| 男女做爰动态图高潮gif福利片| 性色avwww在线观看| 日日摸夜夜添夜夜添小说| 成人国产一区最新在线观看| 乱人视频在线观看| 直男gayav资源| 麻豆久久精品国产亚洲av| 超碰av人人做人人爽久久| 亚洲久久久久久中文字幕| 精品一区二区三区视频在线观看免费| 亚洲av免费在线观看| aaaaa片日本免费| 亚洲av成人精品一区久久| 又紧又爽又黄一区二区| 天堂√8在线中文| 一级av片app| 身体一侧抽搐| 乱人视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产黄片美女视频| 欧美黑人欧美精品刺激| 亚洲人与动物交配视频| 中文字幕av在线有码专区| 色在线成人网| 亚洲七黄色美女视频| 国产精品伦人一区二区| 免费看光身美女| 精品人妻视频免费看| 极品教师在线免费播放| 亚洲第一电影网av| 波多野结衣高清无吗| 长腿黑丝高跟| 成人二区视频| 久久精品91蜜桃| av在线天堂中文字幕| 国产久久久一区二区三区| 国产男靠女视频免费网站| 欧美黑人巨大hd| 国产 一区 欧美 日韩| 91久久精品电影网| 欧美性感艳星| 久久久久精品国产欧美久久久| 国产女主播在线喷水免费视频网站 | 欧美色视频一区免费| 大又大粗又爽又黄少妇毛片口| 成人三级黄色视频| 春色校园在线视频观看| 国产精品野战在线观看| 欧美又色又爽又黄视频| 嫁个100分男人电影在线观看| 在线播放无遮挡| 国产高清视频在线播放一区| 日本爱情动作片www.在线观看 | 成人欧美大片| 亚洲精品成人久久久久久| 午夜精品在线福利| 成人综合一区亚洲| 97碰自拍视频| 夜夜爽天天搞| 又黄又爽又刺激的免费视频.| 日本免费一区二区三区高清不卡| 极品教师在线免费播放| 级片在线观看| 国产精品福利在线免费观看| videossex国产| 真人做人爱边吃奶动态| 亚洲美女视频黄频| 午夜爱爱视频在线播放| 国产探花极品一区二区| 国产男人的电影天堂91| 欧美色欧美亚洲另类二区| 免费无遮挡裸体视频| 99在线人妻在线中文字幕| 亚洲欧美精品综合久久99| 日本-黄色视频高清免费观看| 极品教师在线免费播放| 久久久久精品国产欧美久久久| 亚洲 国产 在线| www.www免费av| 婷婷精品国产亚洲av| 免费人成视频x8x8入口观看| 国产精品98久久久久久宅男小说| 色精品久久人妻99蜜桃| 九九在线视频观看精品| 午夜精品在线福利| 精品一区二区三区视频在线观看免费| 性色avwww在线观看| 中文亚洲av片在线观看爽| 日本 欧美在线| 婷婷亚洲欧美| 午夜老司机福利剧场| 少妇高潮的动态图| 久久天躁狠狠躁夜夜2o2o| 免费av不卡在线播放| 毛片一级片免费看久久久久 | 九九热线精品视视频播放| 日日摸夜夜添夜夜添小说| 亚洲内射少妇av| 国产激情偷乱视频一区二区| 国国产精品蜜臀av免费| 18+在线观看网站| 欧美一区二区国产精品久久精品| 欧美高清成人免费视频www| 最近视频中文字幕2019在线8| 国产精品野战在线观看| 国国产精品蜜臀av免费| 亚洲性久久影院| 国产精品自产拍在线观看55亚洲| 国产亚洲精品av在线| 我要搜黄色片| 亚洲,欧美,日韩| 一个人免费在线观看电影| 欧美绝顶高潮抽搐喷水| 91久久精品国产一区二区成人| 一个人看视频在线观看www免费| 国产高清有码在线观看视频| 国产毛片a区久久久久| 欧美在线一区亚洲| 伦理电影大哥的女人| 欧美zozozo另类| 伦理电影大哥的女人| 久久久久久久精品吃奶| 国产黄片美女视频| 久久午夜亚洲精品久久| 国产高潮美女av| 久99久视频精品免费| 久久热精品热| 韩国av在线不卡| 欧美日本亚洲视频在线播放| 亚洲人成网站在线播| 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美| 美女黄网站色视频| 欧美一级a爱片免费观看看| 精品久久国产蜜桃| 午夜免费男女啪啪视频观看 | 日本黄色片子视频| 午夜福利在线观看免费完整高清在 | 成年版毛片免费区| 丰满的人妻完整版| 亚洲欧美日韩高清专用| 久久久久久久久中文| 日本 av在线| 欧美色视频一区免费| 黄色配什么色好看| 国国产精品蜜臀av免费| 日本三级黄在线观看| 男人舔奶头视频| 别揉我奶头~嗯~啊~动态视频| 又紧又爽又黄一区二区| 午夜亚洲福利在线播放| 国产乱人视频| 91在线精品国自产拍蜜月| 淫妇啪啪啪对白视频| 久久精品国产自在天天线| 欧美色欧美亚洲另类二区| 国产精品久久久久久久电影| 国内毛片毛片毛片毛片毛片| 国产aⅴ精品一区二区三区波| 久久人人精品亚洲av| 能在线免费观看的黄片| 最好的美女福利视频网| 欧美日韩亚洲国产一区二区在线观看| 久久婷婷人人爽人人干人人爱| 国产综合懂色| 麻豆国产97在线/欧美| 免费av观看视频| 在线观看美女被高潮喷水网站| 特级一级黄色大片| 啪啪无遮挡十八禁网站| 午夜福利在线观看免费完整高清在 | 国产午夜精品久久久久久一区二区三区 | 国产美女午夜福利| 国产一区二区三区av在线 | 女人被狂操c到高潮| 深夜a级毛片| 亚洲av不卡在线观看| 久久99热这里只有精品18| 国产大屁股一区二区在线视频| 有码 亚洲区| 午夜免费男女啪啪视频观看 | 亚洲精品乱码久久久v下载方式| 免费av毛片视频| 成人欧美大片| 午夜亚洲福利在线播放| 国产熟女欧美一区二区| 国产麻豆成人av免费视频| 18禁黄网站禁片免费观看直播| 国产精品久久电影中文字幕| 久久久久久久久久黄片| 看片在线看免费视频| 91在线精品国自产拍蜜月| 小说图片视频综合网站| 三级毛片av免费| 亚洲成人精品中文字幕电影| 国产综合懂色| 亚洲精品国产成人久久av| 黄色配什么色好看| 好男人在线观看高清免费视频| 久久久午夜欧美精品| 国产精品久久电影中文字幕| 国产精品一区二区三区四区久久| 亚洲成av人片在线播放无| av视频在线观看入口| 亚洲人成网站在线播放欧美日韩| 亚洲人与动物交配视频| 日本 av在线| 午夜精品一区二区三区免费看| 99九九线精品视频在线观看视频| 一个人看的www免费观看视频| 国内精品宾馆在线| 日本与韩国留学比较| 校园春色视频在线观看| 欧美精品国产亚洲| 亚洲欧美日韩东京热| 高清毛片免费观看视频网站| 午夜福利在线在线| 亚洲图色成人| a级毛片免费高清观看在线播放| 日本熟妇午夜| 欧美色视频一区免费| 国产精品福利在线免费观看| 国产 一区 欧美 日韩| 丰满乱子伦码专区| 老司机深夜福利视频在线观看| www.www免费av| 久久久午夜欧美精品| 精品久久久久久成人av| 女生性感内裤真人,穿戴方法视频| 国产精品亚洲美女久久久| 高清毛片免费观看视频网站| 99国产极品粉嫩在线观看| 亚洲第一电影网av| 噜噜噜噜噜久久久久久91| 老熟妇乱子伦视频在线观看| 国产精品美女特级片免费视频播放器| 日韩中字成人| 窝窝影院91人妻| 久久久久久久精品吃奶| 悠悠久久av| 色av中文字幕| 哪里可以看免费的av片| 欧美激情国产日韩精品一区| 春色校园在线视频观看| 欧美日本亚洲视频在线播放| 国产精品一区二区免费欧美| 极品教师在线免费播放| 亚洲电影在线观看av| 啦啦啦啦在线视频资源| 日韩欧美三级三区| 内射极品少妇av片p| 久久久久国内视频| 日本与韩国留学比较| 国产在视频线在精品| 国产精品精品国产色婷婷| 一个人看的www免费观看视频| 无人区码免费观看不卡| 男女下面进入的视频免费午夜| 国产精品野战在线观看| 91久久精品国产一区二区成人| 久久热精品热| 又爽又黄a免费视频| 露出奶头的视频| 国产精品亚洲一级av第二区| 在线看三级毛片| 日韩欧美三级三区| 欧美激情国产日韩精品一区| 最近在线观看免费完整版| 一a级毛片在线观看| 成人一区二区视频在线观看| 毛片一级片免费看久久久久 | 男人和女人高潮做爰伦理| 精品人妻视频免费看| 亚洲三级黄色毛片| 嫩草影院新地址| 国产精品一区二区性色av| 女人被狂操c到高潮| 国产欧美日韩精品亚洲av| 少妇熟女aⅴ在线视频| 国产精品一区www在线观看 | 可以在线观看毛片的网站| 亚洲aⅴ乱码一区二区在线播放| 国产高清视频在线播放一区| 欧美日韩亚洲国产一区二区在线观看| 丰满乱子伦码专区| 在线a可以看的网站| 欧美3d第一页| 波多野结衣高清作品| 国产免费男女视频| 99久久精品国产国产毛片| www日本黄色视频网| 日日夜夜操网爽| 一区二区三区免费毛片| 亚洲精品在线观看二区| 国产 一区 欧美 日韩| 日本爱情动作片www.在线观看 | 色综合站精品国产| 国产白丝娇喘喷水9色精品| 乱系列少妇在线播放| 一进一出好大好爽视频| 中文字幕高清在线视频| 日本 欧美在线| 婷婷精品国产亚洲av在线| 性欧美人与动物交配| 一a级毛片在线观看| 色尼玛亚洲综合影院| 国产在线精品亚洲第一网站| 丰满的人妻完整版| 午夜久久久久精精品| 99热网站在线观看| 国内精品久久久久精免费| 国产黄a三级三级三级人| 欧美潮喷喷水| 淫秽高清视频在线观看| 天天一区二区日本电影三级| 在线观看美女被高潮喷水网站| 99久久精品一区二区三区| 国产精品久久久久久久电影| 国模一区二区三区四区视频| 我的老师免费观看完整版| 久久精品国产亚洲网站| 欧美三级亚洲精品| 在现免费观看毛片| av中文乱码字幕在线| 亚洲一区高清亚洲精品| 国产一区二区在线观看日韩| 乱码一卡2卡4卡精品| 亚洲精品国产成人久久av|