• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inversion techniques to obtain local rotation velocity and ion temperature profiles for the x-ray crystal spectrometer on EAST

    2023-10-08 08:20:38ZichaoLIN林子超HongmingZHNG張洪明FudiWNG王福地heonhoBEJiaFU符佳YifeiJIN金仡飛DianLU盧迪安ShengyuFU傅盛宇JiankangLI李建康andBoLYU呂波
    Plasma Science and Technology 2023年9期
    關(guān)鍵詞:迪安福地建康

    Zichao LIN(林子超),Hongming ZHNG(張洪明),Fudi WNG(王福地),heonho BE,Jia FU(符佳),Yifei JIN(金仡飛),Di’an LU(盧迪安),Shengyu FU(傅盛宇),Jiankang LI(李建康),3 and Bo LYU(呂波),?

    1 Institute of Plasma Physics,HFIPS,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 Science Island Branch,Graduate School of University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 School of Nuclear Science and Technology,University of South China,Hengyang 421001,People’s Republic of China

    Abstract Inversion techniques are conducted based on the tangential x-ray crystal spectroscopy(TXCS)geometry on EAST to obtain the local profiles of ion temperature(Ti) and toroidal rotation velocity(vt).Firstly,local emissivity profiles of the impurity argon are obtained using the asymmetrical Abel inversion.Then,the local vt and Ti profiles are calculated by considering the local emissivity profiles and the TXCS detailed geometry.In addition,how the changes in the vt profiles affect the accuracy in the Ti profiles is discussed in detail.It is also found that the lineintegrated Ti profiles are becoming less accurate with the increase in the radial gradient in the local vt profiles.Nonetheless,accurate Ti radial profiles are reconstructed after considering the effects of the emissivity and velocity,which are verified by comparing the inverted vt and Ti profiles with those local profile measurements from the Charge eXchange Recombination Spectroscopy(CXRS) on EAST.

    Keywords:plasma toroidal rotation,ion temperature,x-ray crystal spectroscopy,Abel inversion

    1.Introduction

    Ion temperature(Ti)and toroidal rotation velocity(vt)profiles are essential for the analysis of plasma transport and for optimization of the high-temperature operational range of tokamak plasmas.X-ray crystal spectroscopy(XCS),as one of the key diagnostics for measuring thevtandTi,has been equipped on many magnetic confinement fusion devices,including EAST[1-3].Usually,theTiprofiles measured by EAST XCS are line integrated;thus their profiles typically deviate from the true ones if no post-processing steps,such as inversion techniques,are applied [4].Therefore,application of inversion techniques is an essential step for obtaining reliable localTiandvtprofiles that are suitable for the analysis of high-performance plasma discharges.Inversion operations to obtain localvtandTiprofiles have been studied on the TFTR,Alcator C-Mod,etc [5-11].An inversion methodology ofTiandvtfor elongated tokamak plasmas has also been illustrated in[12].However,such an inversion operation has not been tested on actual experimental data on EAST.Since the hardware performances of the EAST XCS system have been well optimized in recent years,the signal quality of argon(Ar)spectra is also improved[13].Therefore,it becomes possible to conductthe profile inversion to obtain reliable local emissivity,velocity and ion temperature on EAST.The emissivity inversion,which is the prerequisite inversion step for attaining thevtandTiprofiles,has been conducted in a previous study to analyze impurity tungsten behavior[14].Based on that experience,the inversions of thevtandTiprofiles have recently been conducted in addition to the emissivity profile inversions and with the detailed geometry of the EAST XCS considered.The inverted localvtandTiprofiles are also compared to those measured by Charge eXchange Recombination Spectroscopy(CXRS) to validate the inversion technique applied to EAST XCS data [15-17].In this paper,the applied inversion method is briefly introduced in section 2,and the detailed geometry of the EAST XCS system is illustrated in section 3.Then,the line-integrated andvteffects onTiprofiles are discussed in section 4.The inverted profiles ofvtandTion EAST are presented in section 5 and compared with the well-calibrated CXRS data.Finally,this study is summarized in section 6.

    2.Methods of XCS inversion techniques

    As mentioned above,the line-integrated spectra that carry the emissivity strength,Doppler shift and Doppler broadening information are the basis of the XCS measurements.Therefore,the methods of non-circular cross-section Abel inversion(which is usually used to invert the line-integrated profiles)to obtain the local radial profiles of emissivity,rotation velocity and ion temperature with the spectra are illustrated in this section.

    2.1.Emissivity inversion

    Obtaining inverted emissivity profiles is a prerequisite for the velocity and ion temperature inversions.As illustrated in detail in [18],the basic principle of non-circular Abel inversion is to divide the plasma cross-section into several radial zones with the same emissivityEj,and the line-integrated brightness of each chord can be expressed asBi.These two parameters are related by a length matrixLij,as shown in equations(1) and(2),calculated along the path length of theith observation chord through thejth zone,which illustrates the key process of the Abel inversion.

    whereLij-1is the inverted length matrix.After obtaining the local emissivityEjillustrated above,the inversion of the velocity and the ion temperature can now be conducted.

    2.2.Velocity inversion

    The inversions of velocity and ion temperature are more complicated than the emissivity inversion.For theTiandvtinversions,a Gaussian spectral emission profile in each emission zone is assumed,

    Here,λ0is the unshifted wavelength,cis the light speed,kis the Boltzmann constant,mis the mass of the ion,is the unit vector in the direction of theith observation sightline andυjis the rotation velocity vector.The dot products ofandυjrepresent the differences between the true velocity and the line-integrated ones.The local wavelength shiftδλijcan be obtained by integrating over the first moment of the spectral emissivity and normalizing it with the total emissivity,

    where υj=∣υ j∣is the jth zone’s scalar velocity,andθijis the angle between the sightline and the velocity directions.The relationship between the measured line-integrated velocity(ui) and local velocity(υj) is given by,

    Then,the local velocity can be expressed as,

    whereMijis defined as,

    Considering that the velocity is the sum of the toroidal and poloidal components but the poloidal rotation velocity is usually smaller than the toroidal component in general discharges,the poloidal rotation velocity can be neglected [12].Typically,the poloidal velocities are around 10 km s-1and the toroidal velocities are more than tens of km s-1.Therefore,the errors in the toroidal velocities caused by neglecting the poloidal rotations depend on the ratio of the poloidal to the toroidal velocities,which are usually no more than 10%(without considering the pseudo rotation effects [19]).If the pseudo effects exist,the inverted toroidal velocity will be smaller than its real values,which will make the errors increase.If more accurate toroidal velocity results are needed,the average of measured velocities from the upper and lowersightlines can be used to eliminate the effects of poloidal components.Then,the toroidal velocity can be further updated as,

    whereuiupanduidownare the measured velocities from the upper and lower sightlines,respectively.

    2.3.Ion temperature inversion

    The inversion technique used to obtain ion temperature measurement is based on the measured FWHM(ωj).Integrating over the second moment of the spectral emissivity from equation(3) yields,

    Also,the line-integrated second moment can be used to obtain the line-integrated ion temperature,

    whereTiis the line-integrated ion temperature observed at theith observation chord.The second term on the right-hand side shows how the velocity differences between different emission zones affect the ion temperature profile.However,it should be noted that the radial velocity has not been taken into account here and,as a result,the calculated error may potentially be greater than what was estimated in the error analysis presented in section 5.

    3.XCS geometry on EAST

    The XCS system on EAST consists of two subsystems: a tangential x-ray crystal spectrometer(TXCS) and a poloidal x-ray crystal spectrometer.In this study,only the measured data from the TXCS are used for the inversion techniques.The TXCS is installed on the #G horizontal port of EAST,and the angle between the TXCS sightline and the magnetic axis is about 60.5° in the horizontal plane.One single spectral crystal(quartz 011,2d=4.913 ?)with a curvature radius of 3750 mm and an effective area of 80×80 mm2is placed at the location where its major radius isR=10.95 m and its vertical position is atZ=0 m.A PILATUS 900 K detector consisting of nine sub-modules is used to record the spectra.Each module of the detector consists of 487×195 pixels with each pixel size of 172×172μm2.With this large size detector,the vertical spatial observation range covers fromZ=0.4 to-0.4 m of the EAST plasma crosssections.The spatial resolution can be as low as 0.542 mm,and the time resolution can be as good as 0.01 s.In cases with weak signals,the pixels are always combined along the vertical direction to improve the signal intensity.TheTiandvtare calculated by the Doppler broadening(mainly contributed by thermal velocity) and the Doppler shift(mainly contributed by the rotation velocities) of the Ar XVII(3.9494 ?) line spectra.The broadening caused by Zeeman splitting is neglected during the calculation,since it is several orders of magnitude smaller than the observed Doppler broadening at the typical magnetic field strength in EAST.During the discharges,Ar gas is always actively injected to the EAST plasmas through a horizontal #J port gas puffing system to obtain sufficient Ar emissions.Figure 1 shows the spectra measured by the TXCS during the EAST #115199 discharge; the curved spectra are caused by the focusing properties of the spherical crystal.The Ar w-line is the aforementioned line spectra of Ar XVII(3.9494 ?),which is used to calculate the rotation velocities and ion temperatures.These spectra are taken by the TXCS detector with an exposure time oft=0.2 s.The line-integrated profile of the spectra intensity is also presented for the vertical range of-40 cm≤Z≤40 cm.

    Figure 1.(a) A typical spectra recorded by the TXCS detector in EAST,which contains nine sub-modules covering the EAST vertical range of-40 cm≤Z≤40 cm.(b)The measured fifth sub-module spectra data with an obvious Ar w-line.

    To apply the aforementioned inversion techniques,the crucial step is to obtain the length and angle matricesLijandMijin equation(11).In doing so,it is necessary to consider the realistic geometry of the TXCS sightlines for high accuracy in the resulting velocity and temperature profiles.Figure 2(a) shows the top view of the realistic geometry of the TXCS sightline(in red) at the midplane,and the magnetic surfaces(which are assumed to be toroidally symmetric) of EAST plasmas in blue lines.Therefore,thelength and angle matrices can be expressed as follows,

    Figure 2.(a) The detailed geometry top-view profile used for the inversion technique.(b) The projection of the length matrix on the basis of EFIT information; the intersection of all the lines of the sightlines is not the real crystal position for illustration convenience.

    Figure 3.The results of the simulation(real) profiles and lineintegrated profiles for(a) the emissivity,(b) the velocity and(c) the ion temperature based on the method illustrated above.

    Figure 4.(a) The assumed different velocity profiles.(b) The lineintegrated effects with different velocity profiles on ion temperature profiles; the red line in(b) is the true profile of the ion temperature.

    whereHis the vertical distance from the device center to the sightline on the midplane that can be calculated by the angle mentioned earlier,Lijis the chord length calculated according to the projectiongenerated by EFIT [20],φis the angle between the major radius and the sightline,θis the angle between the sightline and the toroidal velocity direction tangent to the magnetic surface andαis the angle between the projection of the sightline in the poloidal and horizontal plane(pink dashed line),as illustrated in detail in figure 2(b).In addition,the red lines are the poloidal crosssection sightlines,which correspond to the red line in figure 2(a).The sightlines are chosen to be tangent to the magnetic surfaces at locations indicated with the red asterisks for convenience.Theis calculated along the path length of theith observation chord through thejth zone,indicated with the yellow and black lines in figure 2(b).

    4.Simulations of effects on the ion temperature profiles

    Since the absolute calibration of the TXCS-measured velocities is currently not available at EAST,we focus on ion temperature profile measurements as the key aspect,unless there are other elements significantly affecting the velocities.Previously,it is mentioned that the line-integrated profiles will deviate from the local true profiles.Besides,according to equation(11),it is obvious that the velocity terms are coupled with the ion temperatures terms.Thus,in this section,lineintegration and velocity effects on the ion temperature radial profiles are simulated.

    4.1.Effects of line-integration

    To verify the line-integration effects on emissivity,rotation velocity and ion temperature profiles,a tanh-shape distribution of the local profiles can be assumed,as in equation(15),to conduct the simulations,as in [21],

    One typical plasma geometry data of EAST #115199 att=4.8 s is applied during the simulation.The results of lineintegration and inversion are shown in figure 3 with all calculated emission,vt,andTiprofiles presented.The assumed local profiles(red solid lines),which are also the true radial profiles,are integrated along each observation chord(to restore the TXCS direct measurement results) to obtain the line-integrated profile(blue dotted lines) of the emission,vtandTiprofiles.The line-integrated profiles are in the coordinateZ(blue axis at the top),which is simply mapped to the coordinateρ(red axis at the bottom) corresponding to the magnetic flux provided by EFIT.Since the quantities are assumed to be uniform within each magnetic flux surface,only the sightlines located above the magnetic axis were considered in this analysis.It is obvious that all of the lineintegrated profiles deviate from the assumed(true) profiles,and the absolute values of the line-integrated results are smaller than the assumed(true) values.It is notable that although only the tanh-shape profile is discussed here,different radial profile shapes will have different line-integrated profiles,and they will always deviate from the true profiles.

    The details of the line-integration effects of the toroidal rotation velocityvton theTiprofile are demonstrated in figure 4.To investigate the effects ofvton the line-integratedTiprofiles,four different velocity profiles are selected.Theresults show that increasingvtleads to greater line-integratedTiprofiles.

    Figure 5 shows the ratio between the line-integratedTi(LineIntegrated)and the assumedTi(Assumed)for a range of typical toroidal velocities in tokamaks when no inversion techniques are applied.In the low-velocity range(<100 km s-1),approximately 20% reduction(~0.8 ratio) in the line-averagedTiis expected from the true values and approximately equal to the assumed value near 250 km s-1,without applying the inversion techniques.This interpretation can also be translated to the core and edge radial gradients of tokamak plasmas since the core velocities are much higher than those in the edge.Therefore,it can be generalized that different velocity gradients produce varying effects on the line-integrated ion temperature profile.

    Figure 5.The relation between the core velocity value and the differences between the line-integrated and real ion temperature.

    Figure 6.(a)The assumed velocity profiles.(b)The inversion results after ignoring the velocity term in the ion temperature inversion operation using according to the profiles in(a).

    Figure 7.Time evolutions of(a)plasma current,(b)electron density,(c)NBI power,(d)toroidal velocity and(e)ion temperature of EAST#115199.

    4.2.Effects of absolute velocity and velocity gradient

    Since the absolute velocity calibration is currently not available for EAST TXCS,it is necessary to further study the effects of the absolute value and radial gradients of the velocity profiles on the accuracy of the obtained local profiles.For this purpose,a set of comparisons between different velocity profiles without considering the second term in equation(11) during the inversion operation is shown in figure 6.The line styles and colors correspond in figures 6(a)and(b).It is shown that the inverted profiles(in dot-dashed yellow and dashed crimson) deviate significantly from the true profile(in red crosses) in figure 6(b).Conversely,the other two(in solid blue and dotted cyan) are much closer to the assumed profile.It should be noted that the blue line overlaps with the red true profile,thus lies underneath the true red plus profiles in figure 6(b).The main difference between these two different groups being compared is in their radial velocity gradients.The effect of velocity magnitudes can also be investigated by comparing the dot-dashed yellow and dotted crimson lines or solid blue and dotted cyan lines,and it is much less than that of the velocity gradient effect.The slight differences between these two groups’ profiles are caused by the difference in the velocity term in equation(11).From a practical perspective,since the absolute wavelength is not well calibrated for the EAST XCS at present,it is still difficult to provide the absolute values of the rotation velocities.However,as aforementioned,when the velocity gradient of the profile is small enough,it is acceptable to neglect the second term during the calculation process.Specifically,when applying inversion techniques to plasmas,obtainingvelocity profiles with accurate radial gradients is more crucial than calibrating their absolute magnitudes.

    5.TXCS inversion operations on EAST

    The EAST discharge(#115199) is chosen for the inversion application in this study because of its high ion temperature.The discharge waveform of this shot is shown in figure 7.As the EAST neutral beam injections(NBIs) typically introduce large gradients in the velocity profiles,this shot is a good example where the second term in equation(11)should not be neglected.

    Figure 8 shows the raw TXCS-measuredvtandTiprofiles of shot #115199 att=5.5 s before any inversion techniques are applied.It should be noted that thevthere is approximately obtained by dividing the rough line-integrated data by cos(60.5°),where 60.5°represents the angle between the sightlines and magnetic axis.Furthermore,the ion temperature on the edge is set to be 0.5 keV according to the CXRS measurement.As mentioned above,the absolute velocity calibrations of TXCS measurements are currently not available;the velocity in figure 8 is obtained by comparing the wavelength shift before the NBI injection(att=2.0 s) because the co-NBI(co-direction with toroidal rotation) provides an enormous momentum input to accelerate the toroidal velocity [22].If these measurements are converted into their respective radial profiles,the maxvtin the core range is expected to be ~115 km s-1and the maxTinear 4.2 keV.Abel inversion techniques are applied to theTXCS-measured profiles to yield their respective radial profiles,as presented in figure 9.The invertedvtprofile is averaged according to equation(9),and theTiprofile is also averaged by the results from the upper and lower profiles.As a result,the accuracy in the TXCS-measured velocity gradients has significantly improved,which is important because many tokamak discharge analyses are based on reliable velocity gradients,although their absolute calibrations may not be available.With the availability of the CXRS measurement,the TXCS velocity profiles can be adjusted to match the CXRS profiles by matching the CXRS edge velocity,as shown in figure 9(a).It is shown that the maxvtin the core range,with the inversion techniques applied and calibrated with the CXRS edge data,has been calibrated to be near 150 km s-1,which introduces about 35 km s-1differences in the magnitude ofv.t A similar difference can also be observed forTi,where its max value at near 4.2 keV before the inversion is re-calculated to about 5 keV.

    Figure 8.The measured(a) toroidal velocity profile and(b) ion temperature profile by TXCS;the red dots are measured data,and the blue lines are fitted profiles by smoothing splines.

    The error in the inversion techniques is analyzed according to the error propagation theory,and the relative error of velocity can be expressed as,

    where the relative error of theuiis ~10%,and theθis calculated by the EFIT magnetic surface information and causes a ~5% margin of error,which yields the final accumulated error of about 11.2% for the velocity inversion.With regard to the ion temperature,the relative error is expressed as,

    where the relative errorof theTiis ~10% andthe absence of any other quantity is because they could be neglected sinceisa small amount compared to their relative errors.According to the above data,the final accumulated error is at about 10% for the ion temperature inversion.

    Therefore,the Abel inversion techniques applied to the radialvtandTiprofiles measured by EAST XCS have shown significant improvements in their corresponding final profiles.

    6.Summary

    The inversion techniques have been applied to increase the accuracy in the obtained localvtandTiprofiles from the lineintegrated profiles measured by TXCS on EAST.To test the performance of the Abel inversion method,simulations based on a set of assumed profiles are performed in this study and introduced in this article.It is also verified that the inverted results are sensitive to the accuracy of the velocity gradients but much less sensitive to the accuracy of the velocity magnitudes.To demonstrate this inversion method with actual experimental data,the line-integrated profiles ofvtandTimeasured by TXCS from EAST shot # 115199 have been used to apply the inversion operations to obtain the localvtandTiprofiles.Furthermore,the comparison between the inverted profiles and those from the CXRS measurement show good qualitative agreement,which also demonstrates the reliable accuracy of the inversion method applied in this study.Therefore,the Abel inversion technique is expected to assist when cross-checking the accuracy of CXRS and XCS data in future EAST experiments.Besides,the localvtandTiprofiles can also be provided in those situations where the CXRS is not available with no NBI injections.

    The obtained localvtandTiprofiles can be used to evaluate the plasma performance in the next EAST campaign.The obtained local profiles will also be used to study the related momentum transport in EAST.

    Acknowledgments

    The authors wish to thank the EAST team.The work is partially supported by National Natural Science Foundation of China(Nos.12175278 and 12205072),the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228),Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences(2021),the University Synergy Innovation Program of Anhui Province(No.GXXT-2021-029),Anhui Provincial Key Research and Development Project(No.202104a06020021),Open Fund of the Magnetic Confinement Fusion Laboratory of Anhui Province(No.2021AMF01002),and the National Magnetic Confinement Fusion Science Program of China(Nos.2019YFE03040000 and 2018YFE0303103).

    ORCID iDs

    猜你喜歡
    迪安福地建康
    商山銀花
    公交站里的背影
    中外文摘(2021年22期)2021-12-30 02:17:18
    方一新《建康實(shí)錄釋詞》手稿
    阿維迪安黃金公司簡(jiǎn)介
    常來常熟 江南福地的一碗面等著你
    臨夏·福地
    《太常引·建康中秋夜為呂叔潛賦》
    人間福地楠溪江
    幸福家庭(2019年14期)2019-01-06 09:15:34
    讓農(nóng)村成為農(nóng)民的福地
    對(duì)不起,我愛你
    新青年(2017年11期)2017-11-23 18:30:47
    成人漫画全彩无遮挡| 欧美日韩视频高清一区二区三区二| 街头女战士在线观看网站| 色精品久久人妻99蜜桃| 亚洲精品美女久久久久99蜜臀 | 少妇精品久久久久久久| 女的被弄到高潮叫床怎么办| 纯流量卡能插随身wifi吗| 午夜精品国产一区二区电影| 欧美成人精品欧美一级黄| 热re99久久精品国产66热6| 秋霞在线观看毛片| 天堂俺去俺来也www色官网| 国产精品国产三级国产专区5o| 少妇人妻精品综合一区二区| 亚洲欧美精品综合一区二区三区| 亚洲婷婷狠狠爱综合网| 日韩制服骚丝袜av| 亚洲人成电影观看| 国产精品av久久久久免费| 黑丝袜美女国产一区| 午夜福利在线免费观看网站| 免费观看av网站的网址| 亚洲中文av在线| 亚洲成色77777| 叶爱在线成人免费视频播放| 大话2 男鬼变身卡| 日韩大码丰满熟妇| 一级片免费观看大全| 欧美亚洲 丝袜 人妻 在线| 交换朋友夫妻互换小说| 欧美日韩成人在线一区二区| 少妇被粗大猛烈的视频| 99热国产这里只有精品6| 成人国语在线视频| 高清av免费在线| 人人澡人人妻人| 日本vs欧美在线观看视频| 国产色婷婷99| 精品国产超薄肉色丝袜足j| 91成人精品电影| 久久精品aⅴ一区二区三区四区| 精品亚洲乱码少妇综合久久| 婷婷色综合大香蕉| 午夜福利,免费看| 考比视频在线观看| 亚洲精品久久成人aⅴ小说| 青春草亚洲视频在线观看| 人成视频在线观看免费观看| 老鸭窝网址在线观看| 成年美女黄网站色视频大全免费| 日韩一本色道免费dvd| 亚洲激情五月婷婷啪啪| 亚洲天堂av无毛| 成人手机av| 成人黄色视频免费在线看| 在线观看免费午夜福利视频| 色吧在线观看| 久久热在线av| 国产精品一区二区在线不卡| 青春草亚洲视频在线观看| 精品少妇内射三级| 久久国产亚洲av麻豆专区| 女性被躁到高潮视频| 亚洲精品在线美女| 欧美精品高潮呻吟av久久| 黄片小视频在线播放| kizo精华| 久久人妻熟女aⅴ| 亚洲人成电影观看| 国产精品亚洲av一区麻豆 | 国产精品免费视频内射| 国产无遮挡羞羞视频在线观看| 三上悠亚av全集在线观看| 三上悠亚av全集在线观看| 男人添女人高潮全过程视频| 久久亚洲国产成人精品v| 性高湖久久久久久久久免费观看| 永久免费av网站大全| 只有这里有精品99| 婷婷色综合大香蕉| 777米奇影视久久| 日韩成人av中文字幕在线观看| 丝袜美足系列| 亚洲国产精品成人久久小说| 亚洲五月色婷婷综合| 女的被弄到高潮叫床怎么办| 免费黄频网站在线观看国产| 一区福利在线观看| 人人妻人人澡人人看| 成人亚洲欧美一区二区av| 亚洲av日韩在线播放| 91国产中文字幕| 成人国产av品久久久| 精品人妻熟女毛片av久久网站| 好男人视频免费观看在线| 成人漫画全彩无遮挡| 欧美久久黑人一区二区| 男人操女人黄网站| 欧美黄色片欧美黄色片| 伦理电影大哥的女人| 男的添女的下面高潮视频| 69精品国产乱码久久久| 一本—道久久a久久精品蜜桃钙片| 丰满迷人的少妇在线观看| 免费在线观看视频国产中文字幕亚洲 | 两个人看的免费小视频| 一本大道久久a久久精品| 欧美成人午夜精品| 无遮挡黄片免费观看| 日韩,欧美,国产一区二区三区| 国产女主播在线喷水免费视频网站| av免费观看日本| 多毛熟女@视频| 中文字幕高清在线视频| 亚洲欧美精品综合一区二区三区| 熟妇人妻不卡中文字幕| 欧美黑人精品巨大| 成人免费观看视频高清| 国产精品久久久久久人妻精品电影 | 欧美最新免费一区二区三区| 十八禁人妻一区二区| av片东京热男人的天堂| 亚洲精品国产色婷婷电影| 99久久综合免费| 97精品久久久久久久久久精品| 国产日韩欧美亚洲二区| 午夜免费男女啪啪视频观看| videosex国产| 久久免费观看电影| 性少妇av在线| 黑人猛操日本美女一级片| 丰满少妇做爰视频| 国产精品国产三级国产专区5o| 少妇精品久久久久久久| 亚洲男人天堂网一区| 成人毛片60女人毛片免费| 成人毛片60女人毛片免费| 69精品国产乱码久久久| 国产男人的电影天堂91| 9191精品国产免费久久| 久久人人爽人人片av| 巨乳人妻的诱惑在线观看| 国产精品二区激情视频| av网站免费在线观看视频| 一本色道久久久久久精品综合| 99久久99久久久精品蜜桃| 女的被弄到高潮叫床怎么办| 国产又色又爽无遮挡免| 男女之事视频高清在线观看 | 久久鲁丝午夜福利片| 男的添女的下面高潮视频| 久久久久视频综合| 亚洲国产欧美网| 免费黄网站久久成人精品| 成人免费观看视频高清| 亚洲一卡2卡3卡4卡5卡精品中文| 国产国语露脸激情在线看| 国产亚洲最大av| 欧美 亚洲 国产 日韩一| 国产亚洲av片在线观看秒播厂| 天天添夜夜摸| 婷婷色综合大香蕉| 精品一区二区三区av网在线观看 | 又黄又粗又硬又大视频| av线在线观看网站| 欧美激情极品国产一区二区三区| 这个男人来自地球电影免费观看 | 午夜福利乱码中文字幕| 午夜福利在线免费观看网站| 制服诱惑二区| 欧美精品av麻豆av| 国产精品熟女久久久久浪| 亚洲少妇的诱惑av| 性高湖久久久久久久久免费观看| 91国产中文字幕| 9色porny在线观看| 亚洲欧美激情在线| 男女无遮挡免费网站观看| 99国产综合亚洲精品| 国产欧美日韩综合在线一区二区| 精品一区在线观看国产| www日本在线高清视频| 国产欧美日韩一区二区三区在线| 久久毛片免费看一区二区三区| 久久天躁狠狠躁夜夜2o2o | 黄色怎么调成土黄色| 欧美日本中文国产一区发布| 中文字幕人妻丝袜一区二区 | 久久久精品区二区三区| 一个人免费看片子| 性高湖久久久久久久久免费观看| 中文字幕人妻熟女乱码| 国产高清国产精品国产三级| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看| av.在线天堂| 免费不卡黄色视频| 久久国产亚洲av麻豆专区| 免费看av在线观看网站| 1024香蕉在线观看| 精品免费久久久久久久清纯 | 满18在线观看网站| 一级毛片 在线播放| av卡一久久| 国产欧美日韩一区二区三区在线| 91精品三级在线观看| 国产精品成人在线| 中国国产av一级| 在线免费观看不下载黄p国产| 一区二区日韩欧美中文字幕| 永久免费av网站大全| 久久久久视频综合| 99九九在线精品视频| 波多野结衣一区麻豆| xxx大片免费视频| 国产人伦9x9x在线观看| 亚洲一区中文字幕在线| 精品国产一区二区三区四区第35| 肉色欧美久久久久久久蜜桃| 高清av免费在线| 一本大道久久a久久精品| 欧美成人精品欧美一级黄| 日本av手机在线免费观看| 两个人看的免费小视频| 国产精品一区二区在线观看99| 亚洲成人一二三区av| 国产午夜精品一二区理论片| 成人免费观看视频高清| 婷婷色综合大香蕉| 日本爱情动作片www.在线观看| 妹子高潮喷水视频| 十八禁网站网址无遮挡| 亚洲av欧美aⅴ国产| 国产97色在线日韩免费| 国语对白做爰xxxⅹ性视频网站| 伊人久久大香线蕉亚洲五| 黄色视频不卡| 国产一区二区三区av在线| 天美传媒精品一区二区| 啦啦啦啦在线视频资源| 国产av一区二区精品久久| 电影成人av| 男女高潮啪啪啪动态图| 国产精品嫩草影院av在线观看| 搡老岳熟女国产| 国产女主播在线喷水免费视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 日韩av免费高清视频| 亚洲男人天堂网一区| 日韩大片免费观看网站| 日韩制服丝袜自拍偷拍| 18禁裸乳无遮挡动漫免费视频| 国产成人系列免费观看| 亚洲情色 制服丝袜| 久久久精品94久久精品| 久久97久久精品| 日韩中文字幕欧美一区二区 | 一级a爱视频在线免费观看| 另类亚洲欧美激情| 两性夫妻黄色片| 美女福利国产在线| 亚洲图色成人| 免费观看人在逋| 黑人猛操日本美女一级片| 国产 精品1| 新久久久久国产一级毛片| 精品国产一区二区三区久久久樱花| 日韩中文字幕视频在线看片| 夜夜骑夜夜射夜夜干| h视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 一二三四中文在线观看免费高清| 国产乱人偷精品视频| 亚洲国产精品一区二区三区在线| 多毛熟女@视频| 少妇人妻精品综合一区二区| 欧美激情 高清一区二区三区| 只有这里有精品99| 高清不卡的av网站| 国产乱人偷精品视频| 天堂中文最新版在线下载| 国产亚洲欧美精品永久| 欧美日韩av久久| 久久天堂一区二区三区四区| 欧美亚洲 丝袜 人妻 在线| 精品第一国产精品| 18禁观看日本| 99国产综合亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美精品综合一区二区三区| 尾随美女入室| 视频区图区小说| 最近手机中文字幕大全| 日本欧美视频一区| 亚洲一码二码三码区别大吗| 国产欧美日韩综合在线一区二区| 国产精品 欧美亚洲| 建设人人有责人人尽责人人享有的| 另类亚洲欧美激情| 亚洲色图 男人天堂 中文字幕| 日韩不卡一区二区三区视频在线| 中文精品一卡2卡3卡4更新| 免费人妻精品一区二区三区视频| 国产成人91sexporn| av女优亚洲男人天堂| 亚洲视频免费观看视频| 国产精品无大码| 国产成人av激情在线播放| 女的被弄到高潮叫床怎么办| 天天添夜夜摸| 一级片'在线观看视频| 欧美日韩av久久| 黄片小视频在线播放| 国产国语露脸激情在线看| 欧美 亚洲 国产 日韩一| 考比视频在线观看| 国产一区二区三区av在线| 丰满少妇做爰视频| 精品人妻在线不人妻| 婷婷色综合大香蕉| 午夜91福利影院| 国产午夜精品一二区理论片| 日本午夜av视频| 久久 成人 亚洲| 日本欧美视频一区| 在线观看免费日韩欧美大片| 国产av国产精品国产| 十八禁高潮呻吟视频| 国产av精品麻豆| 久久久国产一区二区| 久久久久久免费高清国产稀缺| 五月开心婷婷网| 大码成人一级视频| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性xxxx| 日韩中文字幕欧美一区二区 | 亚洲欧美色中文字幕在线| 日韩av不卡免费在线播放| 国产精品女同一区二区软件| 熟妇人妻不卡中文字幕| 亚洲七黄色美女视频| 久久久久人妻精品一区果冻| 欧美成人精品欧美一级黄| 美女脱内裤让男人舔精品视频| 久久久国产一区二区| 国产成人欧美| 最近最新中文字幕大全免费视频 | 18禁观看日本| 久久亚洲国产成人精品v| 制服诱惑二区| 亚洲四区av| 久久久欧美国产精品| 免费人妻精品一区二区三区视频| 中文字幕精品免费在线观看视频| 18禁国产床啪视频网站| 只有这里有精品99| videosex国产| 亚洲国产欧美在线一区| 最近的中文字幕免费完整| 国产成人精品福利久久| 日韩大片免费观看网站| 久热爱精品视频在线9| 国产在线免费精品| 又粗又硬又长又爽又黄的视频| 最近2019中文字幕mv第一页| 久久鲁丝午夜福利片| 国产麻豆69| 免费日韩欧美在线观看| 80岁老熟妇乱子伦牲交| 黄频高清免费视频| 亚洲av成人精品一二三区| 校园人妻丝袜中文字幕| 青春草国产在线视频| 日本色播在线视频| 日韩一本色道免费dvd| 日韩av免费高清视频| 夜夜骑夜夜射夜夜干| 伊人久久国产一区二区| 日韩,欧美,国产一区二区三区| 亚洲熟女精品中文字幕| 精品一区在线观看国产| 在现免费观看毛片| 亚洲国产看品久久| 午夜福利免费观看在线| 午夜av观看不卡| 久久久久精品国产欧美久久久 | 色婷婷av一区二区三区视频| √禁漫天堂资源中文www| 91精品伊人久久大香线蕉| 自线自在国产av| 美女大奶头黄色视频| 亚洲成人手机| 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 一边摸一边抽搐一进一出视频| 国产成人精品在线电影| 欧美精品av麻豆av| 一个人免费看片子| 欧美日韩福利视频一区二区| 国产精品一区二区精品视频观看| 国产高清不卡午夜福利| 国产日韩一区二区三区精品不卡| 日本欧美视频一区| 视频区图区小说| 亚洲精品成人av观看孕妇| 你懂的网址亚洲精品在线观看| 久久热在线av| 久久国产精品男人的天堂亚洲| 99香蕉大伊视频| 国产 精品1| 美女脱内裤让男人舔精品视频| 天美传媒精品一区二区| 男人添女人高潮全过程视频| bbb黄色大片| 日韩中文字幕欧美一区二区 | 汤姆久久久久久久影院中文字幕| 丰满少妇做爰视频| 国产欧美亚洲国产| 男女国产视频网站| 伊人久久国产一区二区| 日本午夜av视频| 9热在线视频观看99| 国产高清不卡午夜福利| 一本色道久久久久久精品综合| 亚洲专区中文字幕在线 | 九色亚洲精品在线播放| av.在线天堂| 啦啦啦在线免费观看视频4| 国产不卡av网站在线观看| 国产亚洲欧美精品永久| 日本色播在线视频| 男人爽女人下面视频在线观看| 午夜福利在线免费观看网站| 人人妻人人澡人人看| xxxhd国产人妻xxx| 热99久久久久精品小说推荐| 国产精品人妻久久久影院| 亚洲av成人不卡在线观看播放网 | 日本色播在线视频| 九色亚洲精品在线播放| 欧美日韩一区二区视频在线观看视频在线| 人人妻人人添人人爽欧美一区卜| 午夜福利乱码中文字幕| 七月丁香在线播放| 久久久久久人人人人人| 大香蕉久久成人网| 一边摸一边抽搐一进一出视频| 黑丝袜美女国产一区| 国产成人免费无遮挡视频| 精品少妇黑人巨大在线播放| 一级毛片电影观看| 亚洲欧美色中文字幕在线| 久久久精品国产亚洲av高清涩受| 性色av一级| a级毛片在线看网站| 亚洲欧美中文字幕日韩二区| av有码第一页| 人人澡人人妻人| 80岁老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩一区二区三区在线| 免费高清在线观看视频在线观看| 精品久久久久久电影网| 久久97久久精品| 国产精品久久久人人做人人爽| 国产精品一国产av| 夜夜骑夜夜射夜夜干| 午夜福利一区二区在线看| 日日撸夜夜添| 久久久久久人人人人人| 大话2 男鬼变身卡| 一级片免费观看大全| 色播在线永久视频| 在线精品无人区一区二区三| 欧美另类一区| 在线观看免费视频网站a站| 18禁裸乳无遮挡动漫免费视频| 亚洲精品一区蜜桃| 亚洲av成人精品一二三区| 狠狠精品人妻久久久久久综合| 成人手机av| 亚洲五月色婷婷综合| 色精品久久人妻99蜜桃| 老司机亚洲免费影院| 久久国产精品大桥未久av| 啦啦啦视频在线资源免费观看| 99re6热这里在线精品视频| 欧美变态另类bdsm刘玥| 亚洲一卡2卡3卡4卡5卡精品中文| 激情视频va一区二区三区| 日韩av在线免费看完整版不卡| 在现免费观看毛片| 叶爱在线成人免费视频播放| 91精品国产国语对白视频| 欧美人与善性xxx| 黑人欧美特级aaaaaa片| 亚洲人成网站在线观看播放| 多毛熟女@视频| 国产淫语在线视频| 777米奇影视久久| 在线观看一区二区三区激情| 久久这里只有精品19| 三上悠亚av全集在线观看| 91aial.com中文字幕在线观看| 亚洲精品第二区| 日韩人妻精品一区2区三区| 99久国产av精品国产电影| 国产熟女欧美一区二区| 男男h啪啪无遮挡| 国产成人精品福利久久| 久久国产亚洲av麻豆专区| 午夜福利免费观看在线| 久久 成人 亚洲| 性高湖久久久久久久久免费观看| 久久 成人 亚洲| 久久久国产精品麻豆| 久久精品久久精品一区二区三区| 亚洲,欧美,日韩| 午夜免费鲁丝| 亚洲成av片中文字幕在线观看| 久久人人爽av亚洲精品天堂| 一本一本久久a久久精品综合妖精| 搡老乐熟女国产| 午夜福利一区二区在线看| 大码成人一级视频| 欧美av亚洲av综合av国产av | 午夜91福利影院| 大陆偷拍与自拍| 丰满少妇做爰视频| 欧美日韩亚洲综合一区二区三区_| 人人妻人人添人人爽欧美一区卜| 欧美黄色片欧美黄色片| 欧美精品av麻豆av| 午夜福利,免费看| 人人澡人人妻人| 精品酒店卫生间| 久久精品国产综合久久久| 成人亚洲欧美一区二区av| 婷婷色综合www| 欧美在线一区亚洲| 老司机在亚洲福利影院| 久久免费观看电影| 亚洲精品第二区| 18在线观看网站| 性色av一级| 哪个播放器可以免费观看大片| 三上悠亚av全集在线观看| 少妇被粗大猛烈的视频| 自线自在国产av| 最近最新中文字幕免费大全7| 九九爱精品视频在线观看| 午夜日本视频在线| 亚洲欧美清纯卡通| 欧美日本中文国产一区发布| 午夜激情久久久久久久| 午夜精品国产一区二区电影| 国产精品 国内视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一青青草原| 日本wwww免费看| 天堂俺去俺来也www色官网| 免费观看人在逋| 一区二区三区四区激情视频| 久热这里只有精品99| 色吧在线观看| 中文字幕制服av| 人成视频在线观看免费观看| 一级毛片我不卡| 欧美激情极品国产一区二区三区| 久久久精品94久久精品| 亚洲成人免费av在线播放| 婷婷色综合大香蕉| 一区二区三区激情视频| av又黄又爽大尺度在线免费看| 亚洲四区av| 黑丝袜美女国产一区| 午夜福利视频精品| 亚洲第一青青草原| 国产精品免费大片| av不卡在线播放| 亚洲国产精品成人久久小说| 国产精品.久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区有黄有色的免费视频| av又黄又爽大尺度在线免费看| 亚洲第一青青草原| 99久久综合免费| 看十八女毛片水多多多| 欧美 亚洲 国产 日韩一| 伊人亚洲综合成人网| 99热全是精品| 99精品久久久久人妻精品| 咕卡用的链子| 日韩欧美一区视频在线观看| 青青草视频在线视频观看| 精品酒店卫生间| 女人爽到高潮嗷嗷叫在线视频| 交换朋友夫妻互换小说| 精品国产超薄肉色丝袜足j| 一区二区av电影网| 国产淫语在线视频| 9色porny在线观看| 久久久久久久久久久免费av| 在现免费观看毛片| 亚洲色图 男人天堂 中文字幕| 亚洲av在线观看美女高潮| 一级片'在线观看视频| 精品少妇黑人巨大在线播放| 一本久久精品| 丝袜人妻中文字幕| 久久久久久久国产电影| 国产97色在线日韩免费| 久久毛片免费看一区二区三区|