• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and verification of a broadband highly-efficient plasmonic circulator?

    2021-03-19 03:20:14JianfeiHan韓建飛ShuZhen甄姝WeihuaWang王偉華KuiHan韓奎HaipengLi李海鵬LeiZhao趙雷andXiaopengShen沈曉鵬
    Chinese Physics B 2021年3期
    關(guān)鍵詞:趙雷

    Jianfei Han(韓建飛), Shu Zhen(甄姝), Weihua Wang(王偉華), Kui Han(韓奎),Haipeng Li(李海鵬), Lei Zhao(趙雷), and Xiaopeng Shen(沈曉鵬),?

    1School of Materials Science and Physics,China University of Mining and Technology,Xuzhou 221116,China

    2School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,China

    Keywords: plasmonic,circulator,spoof surface plasmon polaritons,ferrite

    1. Introduction

    Circulators are widely used in radar and radio communication systems, which are used to realize one-way transmission function.[1-4]They play an important role in avoiding mutual interference between the transmitted and received signals. They also play a critical role in protecting the signal source. There has been extensive theoretical and experimental research on microstrip line,strip line,and the waveguidesbased Y-junction circulators, which rely on the anisotropic permeability of YIG ferrite.[5-11]With the rapid development of modern science and an increasing demand of communication systems, different schemes have been proposed to realize circulators. In 2016, Liu et al. introduced magnetooptical materials into dielectric waveguides and proposed a four port circulator by exploiting the anisotropic permittivity of magneto-optical materials under the bias of external magnetic fields.[12]In 2019, Dmitriev et al. proposed a circulator based on the anisotropic permittivity of graphene materials under the bias of external magnetic fields.[13]Most of the circulator designs achieve one-way transmission by applying an external magnetic field to the gyroelectric or gyromagnetic material to break the symmetry of the permittivity or permeability tensor.[14-19]Non-magnetic material is also used to design circulators without using a magnetic field bias to break reciprocity.[20,21]These designs open up a way to design nonreciprocal devices based on different mechanisms.

    Spoof surface plasmon polaritons(SSPPs)have received widespread attention at microwave frequencies,[22]whose properties are very similar to those of SPPs in the near-infrared and optical regions.[23,24]For example,SSPPs find similarities with SPPs in terms of dispersion relations,local field enhancement, sub-wavelength confinement and other characteristics.Shen et al. proposed a planar ultra-thin SSPPs waveguide that enables SSPPs to be transmitted along a curved, folded surface for a long distance.[25,26]This kind of planar guided wave structure has a strong field confining ability to SSPPs,and achieves low loss and high efficiency transmission. These works have greatly promoted the rapid development of plasmonic devices in microwave frequency region.[27-33]Recently,Pan et al. proposed a circulator which uses comb-like transmission lines to guide the signals.[34]The design is compact with insertion loss at about 0.5 dB in the frequency range of 10.6 GHz-11.5 GHz. It is still quite challenging to design a broadband and highly-efficient SSPPs based circulator and the physical mechanism of the working of plasmonic circulator needs to be clarified.

    In this paper,we propose a wideband,low-loss and highly efficient plasmonic circulator. Structured metal stripes have been used as internal conductor of the circulator to guide the propagation of SSPPs. A static bias magnetic field has been applied to the ferrite and one-way transmission of SSPPs has been realized by using its anisotropy. The overall structure is completely symmetrical and has the same transmission and isolation performance once evaluated from different ports.The characteristic of the proposed plasmonic circulator has been verified through numerical simulations as well as experiments. At the same time, equivalent circuit model has been applied to evaluate the transmission, reflection and isolation characteristics of the plasmonic circulator.

    2. Design and analysis

    2.1. Plasmonic circulator design

    The structure model of the plasmonic circulator is shown in Fig.1(a). The entire circulator consists of three SSPPs waveguides, two ferrite disks, two foams, and two ground planes. The thickness of the SSPPs waveguides is 0.018 mm and the substrate is F4B with thickness 0.1 mm and permittivity εr= 2.65. Two ferrite disks have been placed above and below the center conductor (triangle region) with radius R=6.5 mm, height h=2 mm. Yttrium-iron-garnet (YIG)-based ferrite has been used having a saturation magnetization of 4πMs=1850 Gs(1 Gs=10?4T),resonance line width of ΔH = 10 Oe (1 Oe=79.5775 A·m?1), and relative permittivity of εf=15. Two foam boards with hollow center have been used to fix the YIG ferrite disks and support the metal ground. The SSPPs waveguide structure and related dimensions are shown in Fig.1(b). Three waveguides with 120?rotational symmetry have been connected to the central conductor junction. Both sides of the SSPPs waveguides have been designed to have a blade-like metal structure and the transmission path is equal from all the ports. The CPW with the GND plane has been used as the feed of three ports. The transition part is composed of a gradient comb-shaped waveguide and flared ground on both sides,which improves the coupling efficiency of SSPPs. A transition has been designed which ensure impedance matching while transitioning from CPW to SSPPs mode. The length and width of the flared ground have been designed as L1=26 mm, L2=12 mm, and W =5 mm. The comb unit structure has the parameter of period p=5 mm,groove width a=2 mm,and groove depth h=4 mm.

    Fig.1.Configuration of the proposed plasmonic circulator.(a)The structure model of the plasmonic circulator. (b)The structure diagram of the SSPPs waveguide and the corresponding structural parameters.

    Fig.2. (a)S-parameters of the simulation(Sim.) and the equivalent circuit(Cir.) model when electromagnetic wave incident from port 1. S11(solid line)is the return loss,S21 (dash dot line)is the insertion loss,and S31 (dash line)is the isolation. (b)-(d)The Ez distribution of the electric field as incident from ports 1,2,and 3 at frequency of 8 GHz,respectively.

    We have analyzed the transmission characteristics of the circulator after applying a magnetic field of H0=1750 Oe using CST Microwave Studio. Figure 2 shows the simulation results of circulator’s insertion loss, isolation, and return loss and the distribution of the electric field in z direction when the wave is incident from port1. From the simulation results(red curves) in Fig.2(a), it can be seen that the insertion loss is less than 0.5 dB in the frequency range of 6.0 GHz-10.0 GHz while the return loss and isolation are more than 12 dB. Due to the symmetric design of the circulator,no matter which port the signal is input from,we observed a consistent trend in all the S-parameter curves.

    To visualize the performance of the circulator, we monitor the electric field at 8.0 GHz. Figure 2(b)shows the intensity distribution of the electric field(Ez)at z=0.5 mm plane above SSPPs waveguide when the signal is input from port 1.Same magnitude of electric field intensity at port 1 and port 2,indicates that the resonance modes of the ferrite cavity can effectively transfer the signal to port 2.In contrast to that,energy transmitted from port 1 to port 3 is very small,which indicates that the resonance modes of the ferrite cavity are blocking the signal to port 3.Figures 2(c)and 2(d)show the intensity distribution of the electric field(Ez)at the z=0.5 mm plane above the SSPPs waveguide when the signal is input from port 2 and port 3,respectively. The distribution of electric field in Fig.2 proves that the input and output ports show a perfect cycle in a sequence of 1 →2,2 →3,3 →1.

    2.2. Equivalent circuit model analysis

    In order to understand the working mechanism of the deigned plasmonic circulator, we have employed an equivalent circuit model. The model is represented by a series of LC circuits which helps analyze the performance of the circulator.[35,36]Equivalent circuit model has been widely used to analyze the working mechanism of absorber, filter, and circulator. Very recently it has also been used to analyze the transmission performance of SSPPs.[37-39]The LC circuit equivalent of plasmonic circulator is shown in Fig.3. In this model,the capacitor C is formed between the central conductor junction and the grounding plate, which is very important for broadband response of the circulator. The inductance L at the central junction is a function of ω,Ms,and H,which translates to L=L(ω,Ms, μ,κ). Ciis formed between each short stub and the metal ground,connected by inductance Li. When applying a uniform static magnetic field along z direction,the permeability tensor is given by

    Fig.3. Equivalent circuit model of the proposed plasmonic circulator.

    According to the impedance matrix theory of three ports nonreciprocal network,the eigenvalues of the impedance matrix are determined as a function of frequency and circuit parameters.[38,40]The non-reciprocal junction impedance matrix Z can be used to find its three intrinsic impedances. According to three-port network series and parallel rules,eigenvalue algorithm can be used to find the eigenvalues corresponding to the impedance or admittance.[41]Using the relationship between the three-port scattering coefficients and impedances,S11,S21,and S31are expressed as follows:

    where z is the eigenvalue of the same-direction excitation,z+the eigenvalue of positive-phase excitation, and z the eigenvalue of negative-phase excitation.

    The circuit model has been implemented in an advanced design software tool and the circuit model calculations have been matched with the simulation results. The S-parameter curves obtained by the equivalent circuit model are shown in Fig.2(a)(blue curves). The results show that in the frequency range of 6.0 GHz-9.0 GHz, the return loss and isolation are more than 11 dB while the minimum values are 50 dB and 35 dB,respectively.The S-parameters obtained from the simulations have been compared with the equivalent circuit model.It is clear from Fig.2(a)that they show a very good agreement.

    3. Fabrication and measurement

    To verify the proposed design,we fabricated a plasmonic circulator prototype. The prototype is shown in Fig.4,where figures 4(a)-4(e) represent SSPPs waveguide, metal ground plane, foam, ferrite, and permanent magnet, respectively.SSPPs waveguides have been fabricated using PCB technology. The permanent magnet is used to provide H0=1750 Oe external magnetic field bias required for magnetizing ferrite.The material used for the ferrite disc is YX184 (MianYang Wei Qi Electronics Technology Co., Ltd.), which has a saturation magnetization of 4πMs= 1850 Gs, relative permittivity of εf=15, and ferromagnetic resonance line width of ΔH=10 Oe. The foam sheet has been used to support and fix the ferrite disks. The complete prototype of plasmonic circulator is shown in Fig.4(f)with the magnets placed symmetrically at the bottom and top of its ground plane. The Agilent Vector Network Analyzer (E5063A) has been used to measure S-parameters of the fabricated plasmonic circulator. The plasmonic circulator has been connected to the vector network analyzer through external coaxial cables and SMA connectors.Two ports of the plasmonic circulator have been connected to the input port and output port of the vector network analyzer while the third port has been connected to a matched 50-Ω load.

    Fig.4. Prototype of the fabricated plasmonic circulator. (a)SSPPs waveguide, (b) metal ground plane, (c) foam, (d) ferrite, (e) permanent magnet,and(f)overall structure.

    The measured S-parameters have been shown in Fig.5(black curves). In the frequency range of 6.0 GHz-9.0 GHz,the isolation and return loss are more than 12 dB,and the insertion loss is better than 0.6 dB which is consistent with the simulation results as well.In comparison with the simulations,measured return loss is slightly lower and the measured insertion loss is slightly higher in the frequency range of 9.0 GHz-10.0 GHz. The difference between the simulation and experimental data may be explained through fabrication imperfections of plasmonic circulator. Consistency of simulated and measured data validates the simulation model. While the key performance parameters of the circulator confirms circulation of SSPPs.

    Fig.5. Comparision of S-parameter of plasmonic circulator obtained from the simulation(Sim.) and the measurement(Exp.).

    4. Conclusions

    In conclusion, we have proposed a three-port, and rotationally symmetric plasmonic circulator based on nonreciprocal mode coupling. The modes inside the circular are SSPPs, which can propagate along the ultra-thin metallic comb plasmonic waveguides. The non-reciprocal mode coupling is enabled by the ferrite which is a gyromagnetic material having a permeability tensor with both diagonal and offdiagonal terms. By meeting impedance matching condition,the proposed circulator can operate in a broad frequency band of 6.0 GHz-10.0 GHz with insertion loss less than 0.5 dB.Furthermore, an equivalent circuit model has been employed to get a quantitative understanding. The circulator has been also validated by building a prototype and the results from simulations, circuit model,and measurements show a good agreement.

    猜你喜歡
    趙雷
    Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+and Ta5+ion with larger radius
    貴人相助
    趙雷:忘我于山水之間
    金橋(2021年7期)2021-07-22 01:55:46
    民謠歌手趙雷:用堅(jiān)持初心的真誠來做音樂
    趙雷:和我在成都的街頭走一走
    趙雷:和我在成都的街頭走一走
    趙雷 變成一只有名的“刺猬”
    金色年華(2017年2期)2017-06-15 20:28:30
    3000個晚安和1個未落下的吻
    文苑·感悟(2017年6期)2017-06-06 16:51:16
    3000個晚安和1個未落下的吻
    文苑(2017年11期)2017-06-06 12:54:35
    3000個晚安和1個未落下的吻
    文苑(2017年6期)2017-06-06 11:10:04
    久久精品aⅴ一区二区三区四区| 精品人妻1区二区| 1024香蕉在线观看| 欧美成人性av电影在线观看| 亚洲欧美激情综合另类| 国产激情偷乱视频一区二区| 成人永久免费在线观看视频| 国产成人av激情在线播放| 两个人视频免费观看高清| 久久久久久国产a免费观看| 亚洲精品美女久久av网站| 亚洲国产高清在线一区二区三| 日韩高清综合在线| 色精品久久人妻99蜜桃| 精品久久久久久久末码| 欧美乱妇无乱码| 午夜激情福利司机影院| 亚洲人成网站高清观看| 人人妻人人看人人澡| 老司机深夜福利视频在线观看| 免费在线观看视频国产中文字幕亚洲| 中文字幕最新亚洲高清| 可以在线观看毛片的网站| 久久久久免费精品人妻一区二区| 黄色日韩在线| 国产精品98久久久久久宅男小说| 日本黄色视频三级网站网址| 午夜福利高清视频| 久久久国产欧美日韩av| 国产野战对白在线观看| 伊人久久大香线蕉亚洲五| 熟女电影av网| 欧美日韩瑟瑟在线播放| 免费av不卡在线播放| 嫩草影视91久久| 亚洲熟妇熟女久久| 精品一区二区三区四区五区乱码| 国产精品亚洲美女久久久| 午夜福利在线在线| 日本a在线网址| 两人在一起打扑克的视频| 看黄色毛片网站| 国产爱豆传媒在线观看| 黄色视频,在线免费观看| 午夜激情欧美在线| 国产成+人综合+亚洲专区| 国产av在哪里看| 综合色av麻豆| 免费在线观看亚洲国产| 一个人看视频在线观看www免费 | 日韩成人在线观看一区二区三区| 舔av片在线| 亚洲aⅴ乱码一区二区在线播放| 性色avwww在线观看| 毛片女人毛片| 久久久久性生活片| 中文资源天堂在线| 亚洲自拍偷在线| 久久久精品欧美日韩精品| 精品一区二区三区四区五区乱码| www日本在线高清视频| 18禁黄网站禁片免费观看直播| 九色成人免费人妻av| 91久久精品国产一区二区成人 | 亚洲av电影不卡..在线观看| 波多野结衣巨乳人妻| 亚洲国产精品合色在线| 免费在线观看影片大全网站| 精品国产美女av久久久久小说| 免费观看人在逋| 久久午夜亚洲精品久久| 日本黄色片子视频| 国产在线精品亚洲第一网站| 亚洲人成网站在线播放欧美日韩| 欧美在线黄色| 国产一区二区激情短视频| 男插女下体视频免费在线播放| 欧美极品一区二区三区四区| 天堂av国产一区二区熟女人妻| 国产极品精品免费视频能看的| 一级黄色大片毛片| 男人舔女人的私密视频| 亚洲,欧美精品.| 99国产精品一区二区蜜桃av| 狂野欧美激情性xxxx| 一级毛片女人18水好多| 免费无遮挡裸体视频| 神马国产精品三级电影在线观看| 亚洲精品美女久久av网站| 亚洲五月婷婷丁香| 国产97色在线日韩免费| 国产伦精品一区二区三区四那| 黄色成人免费大全| 99视频精品全部免费 在线 | 日韩欧美免费精品| 青草久久国产| 日本黄色片子视频| 中文字幕最新亚洲高清| 免费观看精品视频网站| 免费一级毛片在线播放高清视频| 精品久久久久久久人妻蜜臀av| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩精品网址| 日本黄色视频三级网站网址| 亚洲乱码一区二区免费版| 他把我摸到了高潮在线观看| 18禁美女被吸乳视频| 无人区码免费观看不卡| 久久久久国产精品人妻aⅴ院| 热99在线观看视频| 丝袜人妻中文字幕| 国产1区2区3区精品| 久久欧美精品欧美久久欧美| 男女视频在线观看网站免费| 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 99久久综合精品五月天人人| 搡老熟女国产l中国老女人| 好男人电影高清在线观看| 在线免费观看的www视频| 18禁美女被吸乳视频| 欧美国产日韩亚洲一区| 国产一区二区三区视频了| 久久久久久久午夜电影| 日韩欧美在线二视频| 全区人妻精品视频| 欧美性猛交╳xxx乱大交人| 狂野欧美激情性xxxx| 国产精品一区二区精品视频观看| 欧美黄色片欧美黄色片| 很黄的视频免费| 成人永久免费在线观看视频| 岛国视频午夜一区免费看| 精品熟女少妇八av免费久了| 岛国在线观看网站| 床上黄色一级片| 国产蜜桃级精品一区二区三区| 亚洲成av人片免费观看| 超碰成人久久| 国产高清视频在线观看网站| 少妇的丰满在线观看| 亚洲国产精品合色在线| 深夜精品福利| 黄色片一级片一级黄色片| 亚洲一区二区三区不卡视频| 免费av毛片视频| 成人av在线播放网站| 在线观看舔阴道视频| 18禁黄网站禁片免费观看直播| 免费看十八禁软件| 亚洲av片天天在线观看| 久久婷婷人人爽人人干人人爱| www.www免费av| 美女被艹到高潮喷水动态| 国产男靠女视频免费网站| 国产成人精品久久二区二区91| 中文字幕最新亚洲高清| 亚洲乱码一区二区免费版| 久久亚洲真实| 成人精品一区二区免费| 国产精品久久久人人做人人爽| 午夜免费激情av| 中文字幕av在线有码专区| 美女大奶头视频| www.www免费av| 制服人妻中文乱码| 人人妻人人看人人澡| 欧美日韩一级在线毛片| 国内少妇人妻偷人精品xxx网站 | 国产精品一区二区精品视频观看| 老熟妇仑乱视频hdxx| 日韩 欧美 亚洲 中文字幕| 五月玫瑰六月丁香| 亚洲性夜色夜夜综合| 国产亚洲精品久久久com| 99久久国产精品久久久| 国产亚洲欧美98| 亚洲avbb在线观看| 亚洲专区字幕在线| 精品国产超薄肉色丝袜足j| 日本与韩国留学比较| 黄片小视频在线播放| 黄色视频,在线免费观看| 日韩有码中文字幕| 午夜久久久久精精品| 欧美不卡视频在线免费观看| 午夜影院日韩av| 亚洲中文av在线| 搡老妇女老女人老熟妇| 麻豆av在线久日| 99久久精品一区二区三区| 欧美高清成人免费视频www| 白带黄色成豆腐渣| 男人舔奶头视频| 成人三级黄色视频| 亚洲熟妇熟女久久| 色播亚洲综合网| 国产精品 欧美亚洲| 国产伦一二天堂av在线观看| 999久久久精品免费观看国产| av欧美777| 男女做爰动态图高潮gif福利片| www.999成人在线观看| 日韩高清综合在线| 欧美中文综合在线视频| 亚洲自偷自拍图片 自拍| 国产乱人视频| 18禁国产床啪视频网站| 成人无遮挡网站| 欧美黄色淫秽网站| 中出人妻视频一区二区| 国产精品99久久久久久久久| 人妻夜夜爽99麻豆av| 午夜福利欧美成人| 听说在线观看完整版免费高清| 成人性生交大片免费视频hd| 日韩精品中文字幕看吧| 国产成人系列免费观看| 97超视频在线观看视频| 日本免费a在线| 男人舔奶头视频| 国产亚洲精品av在线| 精品不卡国产一区二区三区| 日本五十路高清| 长腿黑丝高跟| 国模一区二区三区四区视频 | 一级毛片高清免费大全| 欧美日韩综合久久久久久 | www.熟女人妻精品国产| 村上凉子中文字幕在线| 18禁裸乳无遮挡免费网站照片| 欧美另类亚洲清纯唯美| 日本免费一区二区三区高清不卡| 黄频高清免费视频| 丰满人妻熟妇乱又伦精品不卡| 成人av一区二区三区在线看| 亚洲五月天丁香| 亚洲国产欧美网| 黄色女人牲交| 国产精品亚洲av一区麻豆| 亚洲国产高清在线一区二区三| 观看美女的网站| 91老司机精品| 国产精品久久久久久精品电影| e午夜精品久久久久久久| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久人妻精品电影| 日日摸夜夜添夜夜添小说| 久久精品夜夜夜夜夜久久蜜豆| 国产真实乱freesex| 国产精品98久久久久久宅男小说| 亚洲激情在线av| 久久久久九九精品影院| 日韩有码中文字幕| 欧美丝袜亚洲另类 | 波多野结衣高清无吗| 丰满的人妻完整版| a级毛片在线看网站| 在线播放国产精品三级| 少妇熟女aⅴ在线视频| 97碰自拍视频| 88av欧美| 午夜免费激情av| 久久精品国产99精品国产亚洲性色| 丁香六月欧美| 欧美日本亚洲视频在线播放| 成年女人永久免费观看视频| 欧美日韩一级在线毛片| 国产精品一区二区免费欧美| 亚洲av五月六月丁香网| 久久这里只有精品中国| 久久久久九九精品影院| 99热精品在线国产| 亚洲专区中文字幕在线| 欧美xxxx黑人xx丫x性爽| 91在线观看av| a级毛片a级免费在线| 99热这里只有是精品50| av欧美777| 夜夜夜夜夜久久久久| 亚洲中文字幕一区二区三区有码在线看 | cao死你这个sao货| 国产伦在线观看视频一区| 国产精品九九99| 天堂影院成人在线观看| 国产精品av视频在线免费观看| e午夜精品久久久久久久| 国产精品综合久久久久久久免费| 性色avwww在线观看| 欧美精品啪啪一区二区三区| 观看美女的网站| 久久久久久久久中文| 亚洲18禁久久av| 日韩欧美在线二视频| 成人三级黄色视频| 欧美中文日本在线观看视频| 人人妻人人澡欧美一区二区| 欧美色欧美亚洲另类二区| 一区二区三区高清视频在线| 好男人在线观看高清免费视频| 变态另类成人亚洲欧美熟女| 啪啪无遮挡十八禁网站| 久久久久国产精品人妻aⅴ院| 在线永久观看黄色视频| 国产一区二区三区在线臀色熟女| 香蕉av资源在线| 天天躁日日操中文字幕| 精品久久久久久久久久免费视频| 亚洲电影在线观看av| 免费观看精品视频网站| 亚洲无线观看免费| 热99在线观看视频| 一本久久中文字幕| 高清在线国产一区| 国产乱人视频| 性色av乱码一区二区三区2| 国产又黄又爽又无遮挡在线| 人妻夜夜爽99麻豆av| 国产黄a三级三级三级人| 国产成人一区二区三区免费视频网站| 亚洲 欧美一区二区三区| 国产野战对白在线观看| 久久精品91无色码中文字幕| 日本一本二区三区精品| 日韩欧美国产一区二区入口| 欧美性猛交╳xxx乱大交人| 人妻久久中文字幕网| 亚洲中文字幕一区二区三区有码在线看 | 国产高清视频在线观看网站| 亚洲人与动物交配视频| 免费在线观看视频国产中文字幕亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲真实| 国产高清三级在线| 国产乱人视频| 91在线精品国自产拍蜜月 | 黑人欧美特级aaaaaa片| 少妇人妻一区二区三区视频| 免费观看的影片在线观看| 特级一级黄色大片| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 老汉色∧v一级毛片| 性色av乱码一区二区三区2| 久久热在线av| 亚洲国产精品999在线| 久9热在线精品视频| 亚洲自偷自拍图片 自拍| 国产午夜精品久久久久久| 久久伊人香网站| 2021天堂中文幕一二区在线观| 久久午夜亚洲精品久久| 少妇熟女aⅴ在线视频| 国产精品九九99| 一卡2卡三卡四卡精品乱码亚洲| 国产视频一区二区在线看| 久久久精品欧美日韩精品| 亚洲在线观看片| 在线观看一区二区三区| 在线观看免费午夜福利视频| 岛国在线观看网站| 久久精品综合一区二区三区| 国产成人aa在线观看| 亚洲色图av天堂| 老汉色av国产亚洲站长工具| 亚洲色图 男人天堂 中文字幕| 香蕉久久夜色| 国产精品一及| 亚洲成人久久爱视频| 精品福利观看| 88av欧美| 午夜激情福利司机影院| 亚洲欧美日韩东京热| 免费av毛片视频| 国产av一区在线观看免费| 久久精品aⅴ一区二区三区四区| 成年免费大片在线观看| 日本黄色视频三级网站网址| 变态另类丝袜制服| 国产成人欧美在线观看| 亚洲国产精品合色在线| 久久久久久久午夜电影| 国产熟女xx| 亚洲性夜色夜夜综合| 好看av亚洲va欧美ⅴa在| 偷拍熟女少妇极品色| 成人永久免费在线观看视频| 久久久久久久精品吃奶| 麻豆成人av在线观看| 又大又爽又粗| 欧美三级亚洲精品| 99在线视频只有这里精品首页| 国产高清视频在线播放一区| 在线看三级毛片| 亚洲美女黄片视频| 欧美另类亚洲清纯唯美| 91麻豆精品激情在线观看国产| 久久午夜综合久久蜜桃| 变态另类丝袜制服| 亚洲国产日韩欧美精品在线观看 | 高清毛片免费观看视频网站| 老汉色∧v一级毛片| 精品熟女少妇八av免费久了| 亚洲精品一区av在线观看| 夜夜夜夜夜久久久久| 丁香欧美五月| www.熟女人妻精品国产| 亚洲国产欧洲综合997久久,| 久久久久久久久中文| 久久中文字幕一级| 成年版毛片免费区| 亚洲av熟女| 亚洲av五月六月丁香网| 男人的好看免费观看在线视频| 全区人妻精品视频| 操出白浆在线播放| 精品久久久久久,| 久久草成人影院| 精品国产三级普通话版| 久久午夜综合久久蜜桃| 国产欧美日韩精品亚洲av| 天堂av国产一区二区熟女人妻| 舔av片在线| 99国产精品一区二区三区| 啪啪无遮挡十八禁网站| 国产午夜福利久久久久久| 亚洲色图 男人天堂 中文字幕| 老熟妇仑乱视频hdxx| 可以在线观看的亚洲视频| 成人国产一区最新在线观看| 首页视频小说图片口味搜索| 亚洲片人在线观看| 久久久精品大字幕| 噜噜噜噜噜久久久久久91| 国产午夜精品论理片| 日韩欧美免费精品| av福利片在线观看| 麻豆国产av国片精品| 国产乱人视频| 久久久久国产一级毛片高清牌| 欧美av亚洲av综合av国产av| 亚洲第一电影网av| 国产黄a三级三级三级人| 久久精品国产综合久久久| 亚洲七黄色美女视频| 三级男女做爰猛烈吃奶摸视频| 男人的好看免费观看在线视频| 成人av一区二区三区在线看| 亚洲一区高清亚洲精品| 丰满的人妻完整版| 成人欧美大片| 亚洲av第一区精品v没综合| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av熟女| 欧美日韩亚洲国产一区二区在线观看| 91字幕亚洲| 欧美日韩一级在线毛片| 身体一侧抽搐| 色精品久久人妻99蜜桃| xxx96com| 国产伦精品一区二区三区视频9 | 91久久精品国产一区二区成人 | 亚洲精品456在线播放app | 久久婷婷人人爽人人干人人爱| 欧美日韩亚洲国产一区二区在线观看| 欧美黄色片欧美黄色片| 9191精品国产免费久久| 欧美黑人巨大hd| 国内精品美女久久久久久| 久久久久性生活片| 男女做爰动态图高潮gif福利片| 夜夜躁狠狠躁天天躁| 视频区欧美日本亚洲| 亚洲最大成人中文| 久久九九热精品免费| 欧美+亚洲+日韩+国产| 狂野欧美激情性xxxx| 国产欧美日韩一区二区三| 国产欧美日韩精品一区二区| 国产伦人伦偷精品视频| 亚洲熟女毛片儿| 黄色片一级片一级黄色片| 巨乳人妻的诱惑在线观看| 国产精品久久电影中文字幕| 亚洲av免费在线观看| 亚洲av成人一区二区三| 欧美在线一区亚洲| 免费在线观看影片大全网站| 美女高潮的动态| 男女下面进入的视频免费午夜| 天堂网av新在线| 噜噜噜噜噜久久久久久91| 亚洲色图av天堂| 国产欧美日韩一区二区精品| 国产成人系列免费观看| 亚洲人成网站高清观看| 久久中文字幕一级| 亚洲熟女毛片儿| 亚洲色图 男人天堂 中文字幕| 欧美日本亚洲视频在线播放| 久久久久精品国产欧美久久久| 国产精品日韩av在线免费观看| 一本综合久久免费| 母亲3免费完整高清在线观看| 成人特级黄色片久久久久久久| 亚洲欧美激情综合另类| 国产精品久久久久久精品电影| 真人做人爱边吃奶动态| 一个人观看的视频www高清免费观看 | 亚洲国产看品久久| 午夜精品一区二区三区免费看| 国产精品自产拍在线观看55亚洲| 婷婷精品国产亚洲av| 欧美成狂野欧美在线观看| 午夜免费成人在线视频| 欧美国产日韩亚洲一区| 国产午夜精品久久久久久| www日本在线高清视频| 午夜福利视频1000在线观看| av天堂在线播放| 久久伊人香网站| 成人特级av手机在线观看| 又黄又爽又免费观看的视频| 后天国语完整版免费观看| 成人三级黄色视频| 国产在线精品亚洲第一网站| 观看美女的网站| 午夜两性在线视频| 欧美丝袜亚洲另类 | 怎么达到女性高潮| 欧美日韩乱码在线| 亚洲电影在线观看av| 欧美黄色淫秽网站| 99热只有精品国产| 免费在线观看视频国产中文字幕亚洲| 午夜福利视频1000在线观看| 亚洲欧美日韩无卡精品| 真实男女啪啪啪动态图| 精品久久久久久久毛片微露脸| 又黄又爽又免费观看的视频| 成年人黄色毛片网站| 村上凉子中文字幕在线| 国产成人av激情在线播放| 精品国产乱码久久久久久男人| 精品国产亚洲在线| 夜夜夜夜夜久久久久| 久久中文看片网| 成人永久免费在线观看视频| 国产精华一区二区三区| 亚洲成人精品中文字幕电影| 国产高清三级在线| 51午夜福利影视在线观看| 国产一级毛片七仙女欲春2| 久久久久国产一级毛片高清牌| 老汉色av国产亚洲站长工具| 久久久久国产精品人妻aⅴ院| 在线观看日韩欧美| 国产一区在线观看成人免费| 丁香六月欧美| 亚洲国产欧美一区二区综合| 午夜福利在线在线| 黑人欧美特级aaaaaa片| 午夜亚洲福利在线播放| 999久久久精品免费观看国产| 成人鲁丝片一二三区免费| 一二三四社区在线视频社区8| 亚洲最大成人中文| 女警被强在线播放| 91麻豆精品激情在线观看国产| 欧美日本视频| 欧美xxxx黑人xx丫x性爽| 婷婷精品国产亚洲av在线| 天堂影院成人在线观看| av在线天堂中文字幕| 国产一区二区三区视频了| 一卡2卡三卡四卡精品乱码亚洲| 日韩三级视频一区二区三区| 国产黄片美女视频| 国产成人一区二区三区免费视频网站| 午夜免费观看网址| 亚洲va日本ⅴa欧美va伊人久久| 欧美乱妇无乱码| 男人舔女人下体高潮全视频| 99国产精品99久久久久| 午夜免费激情av| 欧美av亚洲av综合av国产av| 成人欧美大片| 这个男人来自地球电影免费观看| 2021天堂中文幕一二区在线观| 国内精品久久久久精免费| 69av精品久久久久久| 日韩欧美国产一区二区入口| 国产精品一区二区免费欧美| 亚洲七黄色美女视频| 久久精品人妻少妇| 午夜久久久久精精品| 少妇裸体淫交视频免费看高清| 国产高清视频在线播放一区| 久久伊人香网站| 精品国产乱码久久久久久男人| 每晚都被弄得嗷嗷叫到高潮| 国产久久久一区二区三区| 国内毛片毛片毛片毛片毛片| 日韩欧美 国产精品| svipshipincom国产片| 91av网站免费观看| 亚洲一区二区三区色噜噜| 亚洲avbb在线观看| 俄罗斯特黄特色一大片| 不卡一级毛片| 99热这里只有精品一区 | 怎么达到女性高潮| 亚洲欧美日韩卡通动漫| 又粗又爽又猛毛片免费看|