王曉明,杜玉芳,梁旭黎
(1.河北地質(zhì)大學(xué)城市地質(zhì)與工程學(xué)院,河北 石家莊 050031;2.河北地質(zhì)大學(xué)河北省高校生態(tài)環(huán)境地質(zhì)應(yīng)用技術(shù)研發(fā)中心,河北 石家莊 050031)
表征單元體(representative elementary volume,REV)是巖體力學(xué)中的一個(gè)重要概念。對(duì)裂隙巖體而言,表征單元體的存在是應(yīng)用連續(xù)介質(zhì)方法對(duì)其進(jìn)行研究的前提。只有當(dāng)裂隙巖體的研究尺度大于等于REV時(shí),連續(xù)介質(zhì)方法才適用于巖體的數(shù)值分析,巖體的等效參數(shù)才能表征裂隙巖體的性質(zhì)。因此,REV 的確定對(duì)研究裂隙巖體具有重要意義。
由于關(guān)注的角度不同,許多學(xué)者選取不同的參數(shù)來(lái)確定裂隙巖體的REV。王曉明等[1]將這些研究參數(shù)歸納總結(jié)為結(jié)構(gòu)面及塊體幾何參數(shù)、巖體力學(xué)參數(shù)和水力學(xué)參數(shù)。幾何參數(shù)包括巖體的塊體化程度[2-3]、巖石質(zhì)量指標(biāo)RQD[4-5]、體積節(jié)理數(shù)[6]、裂隙連通率[7-8]等;力學(xué)參數(shù)包括巖體的彈性模量、泊松比、柔度矩陣及單軸抗壓強(qiáng)度等[9-12];水力學(xué)參數(shù)主要為等效滲透系數(shù)和滲透系數(shù)張量[13-14]。選取的參數(shù)不同,確定的巖體REV 尺寸也不相同。裂隙巖體的力學(xué)性質(zhì)和水力學(xué)性質(zhì)主要取決于巖體中普遍存在的裂隙或結(jié)構(gòu)面,這些裂隙的大小、方向和密度對(duì)巖體的性質(zhì)起著控制作用。當(dāng)巖體的體積達(dá)到某一特定值時(shí),裂隙的這些參數(shù)便具有統(tǒng)計(jì)學(xué)上的代表性,巖體的等效力學(xué)參數(shù)和水力學(xué)參數(shù)才逐漸趨于穩(wěn)定,此時(shí)對(duì)應(yīng)的巖體體積即為巖體的REV。根據(jù)裂隙參數(shù)確定的幾何REV是確定力學(xué)REV 的基礎(chǔ)[15],也是建立裂隙網(wǎng)絡(luò)模型應(yīng)滿足的最小尺寸。因此,從巖體結(jié)構(gòu)的角度出發(fā),根據(jù)裂隙的大小、產(chǎn)狀和密度等特征參數(shù)確定巖體的REV 是十分必要的。
本文旨在根據(jù)裂隙多參數(shù)(大小、產(chǎn)狀、密度)的尺寸效應(yīng)確定裂隙巖體的REV。首先,提出巖體非均質(zhì)系數(shù)的概念,該指標(biāo)綜合反映了多個(gè)裂隙參數(shù)的統(tǒng)計(jì)代表性。選取中等間距-中等延展性的裂隙建立20 個(gè)三維裂隙網(wǎng)絡(luò)模型,從模型中選取不同尺寸的研究區(qū)域分析非均質(zhì)系數(shù)的尺寸效應(yīng),進(jìn)而確定巖體的REV。
巖體中裂隙空間的分布和組合形式構(gòu)成了巖體結(jié)構(gòu),是決定巖體工程地質(zhì)特征和力學(xué)性質(zhì)的關(guān)鍵因素。對(duì)于某一特定的巖體而言,影響其工程性質(zhì)的主要因素包括裂隙的大小、方向和密度等,正是由于這些參數(shù)的隨機(jī)性和復(fù)雜性,巖體表現(xiàn)出顯著的非均質(zhì)性和尺寸效應(yīng)。裂隙網(wǎng)絡(luò)模型作為描述巖體結(jié)構(gòu)最重要的手段,通常將裂隙視為有限大小的圓盤(pán),裂隙的大小用圓盤(pán)的半徑或直徑描述,半徑的離散程度用標(biāo)準(zhǔn)差衡量。裂隙的產(chǎn)狀多服從Fisher 分布(式(1)),θ'和φ'分別是當(dāng)把z軸旋轉(zhuǎn)至裂隙的平均矢量方向后在新坐標(biāo)系中的傾向和傾角,κ反映了裂隙產(chǎn)狀分布的集中程度,κ越大表明同組裂隙的方向越集中。裂隙的三維密度為單位體積巖體內(nèi)裂隙的數(shù)量,反映了巖體中裂隙的密集程度。
為了綜合反映巖體中裂隙半徑、產(chǎn)狀和密度的統(tǒng)計(jì)代表性,本文提出了巖體非均質(zhì)系數(shù)(heterogeneity index,HI)的概念,該指標(biāo)用于評(píng)價(jià)特定體積巖體的裂隙參數(shù)(大小、產(chǎn)狀和密度)是否具有統(tǒng)計(jì)意義。只有當(dāng)巖體具有統(tǒng)計(jì)代表性時(shí),才能進(jìn)一步確定裂隙巖體的等效參數(shù)。三維裂隙網(wǎng)絡(luò)模型是計(jì)算HI的基礎(chǔ),根據(jù)現(xiàn)場(chǎng)實(shí)測(cè)裂隙的跡長(zhǎng)、產(chǎn)狀和一維(或二維)密度,可以推求出實(shí)測(cè)裂隙的半徑和三維密度,基于這些參數(shù)即可建立裂隙網(wǎng)絡(luò)模型。裂隙網(wǎng)絡(luò)模型具有尺寸效應(yīng),不同尺寸的模型其統(tǒng)計(jì)參數(shù)諸如半徑均值、標(biāo)準(zhǔn)差、平均產(chǎn)狀、κ和三維密度隨著模型體積的增大而趨于實(shí)測(cè)值,意味著巖體具有統(tǒng)計(jì)代表性。模型中,模擬裂隙的半徑均值、標(biāo)準(zhǔn)差和三維密度可以根據(jù)每組裂隙的數(shù)量和半徑通過(guò)統(tǒng)計(jì)分析確定,本文重點(diǎn)介紹裂隙產(chǎn)狀的均質(zhì)性計(jì)算過(guò)程。裂隙產(chǎn)狀可以用裂隙面的法向量表示,實(shí)測(cè)裂隙的平均法向量為p,模擬裂隙的平均法向量為pc。二者方向越接近,則其夾角越小,夾角正弦值越小,因此可采用夾角正弦值來(lái)反映裂隙產(chǎn)狀的均質(zhì)性。根據(jù)向量代數(shù)可知,p和pc的夾角余弦值為:
則p和pc的夾角正弦值為:
裂隙產(chǎn)狀Fisher 分布的常數(shù)κ可按下式計(jì)算[16]:
式中:N—裂隙的數(shù)量;
rN—裂隙面的和向量。
綜上分析,HI的計(jì)算公式如下:
式中:n—裂隙組數(shù);
μic—研究區(qū)域內(nèi)第i組模擬裂隙的半徑均值;
μi—第i組實(shí)測(cè)裂隙的半徑均值;
—研究區(qū)域內(nèi)第i組模擬裂隙半徑標(biāo)準(zhǔn)差;
σi—第i組實(shí)測(cè)裂隙的半徑標(biāo)準(zhǔn)差;
pic—研究區(qū)域內(nèi)第i組模擬裂隙平均產(chǎn)狀的法向量;
pi—第i組實(shí)測(cè)裂隙平均產(chǎn)狀的法向量;
—研究區(qū)域內(nèi)第i組模擬裂隙所服從的Fisher 分布的常量;
κi—第i組實(shí)測(cè)裂隙所服從的Fisher 分布的常量;
di—第i組實(shí)測(cè)裂隙的三維密度。
p和κ的計(jì)算可查閱文獻(xiàn)[16],限于篇幅本文不再詳細(xì)介紹。
式(5)中,[]內(nèi)第一項(xiàng)表示研究區(qū)域內(nèi)模擬裂隙半徑均值的相對(duì)誤差;第二項(xiàng)表示模擬裂隙半徑標(biāo)準(zhǔn)差的相對(duì)誤差;第三項(xiàng)為模擬裂隙平均產(chǎn)狀與實(shí)測(cè)裂隙平均產(chǎn)狀?yuàn)A角的正弦值,反映了模擬裂隙平均產(chǎn)狀偏離實(shí)測(cè)平均產(chǎn)狀的程度;第四項(xiàng)表示模擬裂隙產(chǎn)狀Fisher分布常數(shù)κ的相對(duì)誤差;第五項(xiàng)表示模擬裂隙三維密度的相對(duì)誤差。綜上可知,非均質(zhì)系數(shù)HI反映了模擬裂隙的半徑、產(chǎn)狀和密度與實(shí)測(cè)值之間的相對(duì)誤差,是一個(gè)無(wú)量綱參數(shù)。HI越小,表明巖體越接近統(tǒng)計(jì)均質(zhì)體。
Xia 等[2]根據(jù)國(guó)際巖石力學(xué)學(xué)會(huì)(1978)的巖體裂隙分級(jí)表,構(gòu)建了77 種不同長(zhǎng)度D、不同間距C的裂隙網(wǎng)絡(luò)。本文選取中間的模型即中等間距-中等延展性(MS1-MP1)模型(C= 0.4 m,D= 6.5 m)來(lái)進(jìn)行詳細(xì)研究。用于構(gòu)建裂隙網(wǎng)絡(luò)模型的裂隙參數(shù)見(jiàn)表1。
表1 中等間距-中等延展性裂隙網(wǎng)絡(luò)模型參數(shù)表Table 1 Parameters for generating the discrete fracture network of the MS1-MP1 model
研究采用于青春等[17-19]開(kāi)發(fā)的General Block(GB)軟件建立三維裂隙網(wǎng)絡(luò)模型。該軟件具有裂隙網(wǎng)絡(luò)模擬、一般塊體識(shí)別和塊體穩(wěn)定性分析等功能,在工程地質(zhì)領(lǐng)域得到了廣泛應(yīng)用[20-22]。裂隙網(wǎng)絡(luò)模擬是根據(jù)實(shí)測(cè)裂隙的特征參數(shù)及其分布形式,采用Monte Carlo 隨機(jī)模擬方法產(chǎn)生模擬裂隙的過(guò)程,模擬裂隙與實(shí)測(cè)裂隙的特征參數(shù)和分布形式一致。本文假設(shè)裂隙為圓盤(pán)狀,其中心坐標(biāo)服從泊松分布,即每個(gè)裂隙中心點(diǎn)坐標(biāo)是相互獨(dú)立的,裂隙的數(shù)量由其三維密度確定。用GB 軟件進(jìn)行三維裂隙網(wǎng)絡(luò)模擬,只需在界面輸入并保存各組裂隙的參數(shù)和分布形式,點(diǎn)擊Fracture Generation 按鈕即可完成。由于裂隙的生成具有隨機(jī)性,本文對(duì)MS1-MP1 模型進(jìn)行20 次隨機(jī)實(shí)現(xiàn),共生成20 個(gè)裂隙網(wǎng)絡(luò)模型,圖1為種子數(shù)為8 時(shí)生成的裂隙網(wǎng)絡(luò)模型。模型均為立方體,邊長(zhǎng)為20 m,每組裂隙的數(shù)量為602 條。軟件生成的隨機(jī)裂隙數(shù)據(jù)全部保存在random_fracture_xyzabr 文件中,具體包括每條裂隙的空間坐標(biāo)、傾向、傾角及半徑等數(shù)據(jù)。利用這些數(shù)據(jù)計(jì)算每個(gè)模型的HI,得到HI的范圍為0.23~0.68。同時(shí)對(duì)比模擬的裂隙參數(shù)(表2,HI= 0.68)與實(shí)測(cè)值,兩者基本一致,表明本文所建立的裂隙網(wǎng)絡(luò)模型是可靠的。
圖1 中等間距-中等延展性的裂隙網(wǎng)絡(luò)模型(模型邊長(zhǎng)20 m)Fig.1 3D fracture network of the MS1-MP1 model(model dimensions:20 m)
表2 中等間距-中等延展性裂隙巖體模擬裂隙參數(shù)Table 2 Parameters for the simulated fractures of the MS1-MP1 rock mass
HI具有尺寸效應(yīng),當(dāng)研究區(qū)域的體積達(dá)到REV時(shí)HI應(yīng)趨于0,表明研究區(qū)域內(nèi)裂隙的參數(shù)具有統(tǒng)計(jì)學(xué)上的代表性。根據(jù)HI的尺寸效應(yīng)可以確定巖體的REV,該REV 能夠保證巖體的裂隙參數(shù)具有良好的代表性,達(dá)到REV 的巖體可看作統(tǒng)計(jì)均質(zhì)性巖體。
為了確定巖體的REV,從每一個(gè)隨機(jī)生成的裂隙網(wǎng)絡(luò)模型中選取10 級(jí)不同尺寸的研究區(qū)域計(jì)算其HI。選取的研究區(qū)域均為立方體,中心與20 m 裂隙網(wǎng)絡(luò)模型中心一致,尺寸分別為2,4,6,8,10,12,14,16,18,20 m。根據(jù)研究區(qū)域內(nèi)包含的裂隙數(shù)量和裂隙參數(shù),運(yùn)用公式(5)計(jì)算每個(gè)研究區(qū)域的HI,結(jié)果詳見(jiàn)圖2。計(jì)算過(guò)程中發(fā)現(xiàn),當(dāng)研究區(qū)域?yàn)? m 時(shí),包含的裂隙數(shù)量很少甚至為完整巖體,這樣便無(wú)法計(jì)算巖體的HI,因此不再對(duì)2 m的研究區(qū)域進(jìn)行HI統(tǒng)計(jì)分析,但顯然這種尺寸的巖體是非均質(zhì)的。圖2反映了HI隨研究區(qū)域尺寸的變化情況,圓點(diǎn)代表不同模型、不同尺寸巖體的HI,曲線代表HI的平均值??梢钥闯觯琀I表現(xiàn)出顯著的尺寸效應(yīng),隨著尺寸的增大,HI總體上減小并趨于穩(wěn)定。當(dāng)研究區(qū)域的尺寸達(dá)到8 m時(shí),HI的均值基本穩(wěn)定在0.5 上下。
圖2 巖體非均質(zhì)系數(shù)與研究區(qū)域尺寸的關(guān)系Fig.2 Relationship between HI and domain size of the study area
從圖2也可以看出,當(dāng)研究區(qū)域的尺寸小于6 m時(shí),HI的離散性比較大,反映出巖體是非均質(zhì)的;當(dāng)巖體尺寸不小于8 m 時(shí),HI上下波動(dòng)很小,反映出巖體具有統(tǒng)計(jì)意義上的均質(zhì)性。根據(jù)各級(jí)巖體的HI,計(jì)算得到HI的標(biāo)準(zhǔn)差(圖3)。HI標(biāo)準(zhǔn)差隨巖體尺寸的增大而減小,當(dāng)巖體尺寸達(dá)到8 m 時(shí),HI標(biāo)準(zhǔn)差穩(wěn)定在0.14 上下。隨著巖體尺寸的進(jìn)一步增大,HI標(biāo)準(zhǔn)差沒(méi)有明顯的變化。根據(jù)HI的平均值和標(biāo)準(zhǔn)差的尺寸效應(yīng),綜合確定中等間距-中等延展性(MS1-MP1)裂隙巖體的REV 為8 m。文獻(xiàn)[2]根據(jù)塊體百分比確定的巖體REV 為10 m,大于由HI確定的REV,表明獲得巖體的統(tǒng)計(jì)均質(zhì)區(qū)是確定巖體等效參數(shù)的前提條件。
圖3 非均質(zhì)系數(shù)標(biāo)準(zhǔn)差與研究區(qū)域尺寸的關(guān)系Fig.3 Relationship between the standard deviation of HI and domain size of the study area
三峽水電站是迄今世界上最大的水利樞紐,位于長(zhǎng)江西陵峽中段,壩址所在地位于湖北省宜昌市夷陵區(qū)三斗坪鎮(zhèn),控制流域面積約100×104km2。三峽水利樞紐主要由攔河大壩、電站建筑物、通航建筑物、茅坪溪防護(hù)工程等組成。地下電站位于右岸白巖尖山體內(nèi),主要建筑分為引水系統(tǒng)、主廠房系統(tǒng)、尾水系統(tǒng)三大部分。其中主廠房洞室為圓拱直墻型,全長(zhǎng)311.3 m,軸線走向223.5°,最大跨度32.6 m,最大高度87.3 m。廠房圍巖為堅(jiān)硬的花崗巖,巖體完整—較完整,整體穩(wěn)定性較好。地下電站廠房洞室的開(kāi)挖揭露了大量裂隙,為研究巖體統(tǒng)計(jì)均質(zhì)區(qū)提供了豐富的資料,文獻(xiàn)[23]對(duì)裂隙進(jìn)行了統(tǒng)計(jì)分析,具體參數(shù)見(jiàn)表3。
表3 三峽地下電站廠房圍巖裂隙參數(shù)表[23]Table 3 Fracture parameters of the surrounding rock mass of the underground powerhouse in the Three Gorges
根據(jù)裂隙參數(shù)隨機(jī)生成了20 個(gè)邊長(zhǎng)為100 m 的三維裂隙網(wǎng)絡(luò)模型,并按照上述方法分別計(jì)算不同尺寸巖體的HI,結(jié)算結(jié)果見(jiàn)圖4??梢钥闯?,三峽地下電站廠房巖體的HI同樣具有明顯的尺寸效應(yīng),當(dāng)巖體尺寸不小于60 m 時(shí),其HI基本穩(wěn)定在0.7。根據(jù)HI的平均值和標(biāo)準(zhǔn)差綜合確定該巖體的REV 為60 m,表明對(duì)該巖體進(jìn)行統(tǒng)計(jì)分析的尺寸不應(yīng)小于60 m×60 m×60 m。若研究范圍小于該尺寸,應(yīng)采用非連續(xù)介質(zhì)方法確定巖體的等效參數(shù)。
圖4 三峽地下電站廠房巖體非均質(zhì)系數(shù)與尺寸的關(guān)系Fig.4 Relationship between HI of the rock mass of the underground power station in the Three Gorges and domain size
(1)本文從巖體結(jié)構(gòu)的角度提出了巖體非均質(zhì)系數(shù)HI的概念,該指標(biāo)為研究區(qū)域內(nèi)模擬裂隙的半徑、產(chǎn)狀和密度與實(shí)測(cè)值之間的相對(duì)誤差之和,綜合反映了巖體中裂隙半徑、產(chǎn)狀和密度的統(tǒng)計(jì)代表性,可以作為確定巖體REV 和裂隙統(tǒng)計(jì)區(qū)的指標(biāo)。
(2)對(duì)中等間距-中等延展性(MS1-MP1)裂隙巖體的研究表明,HI具有明顯的尺寸效應(yīng),根據(jù)HI的平均值和標(biāo)準(zhǔn)差,綜合確定該巖體的REV 為8 m。
(3)采用HI對(duì)三峽地下電站廠房圍巖的尺寸效應(yīng)進(jìn)行了研究,綜合確定該巖體的REV 為60 m,表明對(duì)該巖體進(jìn)行統(tǒng)計(jì)分析的尺寸不應(yīng)小于60 m×60 m×60 m,否則應(yīng)采用非連續(xù)介質(zhì)方法進(jìn)行研究。
(4)HI綜合考慮了裂隙半徑、產(chǎn)狀和密度等多個(gè)參數(shù)的統(tǒng)計(jì)代表性,不僅可以作為確定巖體REV 的指標(biāo),還能用于衡量同一地區(qū)不同巖體的均質(zhì)程度。目前該指標(biāo)尚未考慮裂隙張開(kāi)度、粗糙度等裂隙參數(shù),相關(guān)內(nèi)容還有待進(jìn)一步研究。