陳歌,曹立冬,許春麗, 趙鵬躍,曹沖,李鳳敏,黃啟良
溶劑蒸發(fā)法制備丙硫菌唑微囊及其性能研究
陳歌,曹立冬,許春麗, 趙鵬躍,曹沖,李鳳敏,黃啟良
中國農業(yè)科學院植物保護研究所,北京 100193
【】以生物可降解材料聚(3-羥基丁酸酯-co-4-羥基丁酸酯)(P(3HB-co-4HB))為壁材制備丙硫菌唑微囊,研究制備工藝對微囊粒徑、載藥量及包封率的影響,篩選出分散性好、粒徑較小、載藥量高的配方,并對其釋放動力學、光降解、對花生白絹病菌()室內生物活性等性能進行初步研究和表征,為提高丙硫菌唑在環(huán)境中的穩(wěn)定性及利用率提供理論指導和技術支撐。采用溶劑蒸發(fā)法制備丙硫菌唑微囊,通過單因素試驗探究芯壁材質量比、油水體積比、乳化劑質量分數和剪切速率對微囊粒徑、載藥量和包封率的影響;以載藥量與粒徑為關鍵技術指標,通過L9(34)正交試驗篩選出最優(yōu)制備工藝參數,并對正交試驗結果進行驗證;通過掃描電鏡(SEM)、傅里葉紅外光譜(FTIR)、高效液相色譜(HPLC)和室內毒力測定對微囊的外觀形貌、釋放性能、光穩(wěn)定性能以及對花生白絹病菌的室內生物活性進行研究。芯壁材質量比對微囊的載藥量有顯著影響,隨著芯材質量的增大,載藥量逐漸增大;油水體積比、PVA質量分數、剪切速率對微囊粒徑具有顯著影響,隨著剪切速率與PVA質量分數的增大,微囊粒徑逐漸減小,油水體積比對微囊形態(tài)及分散性影響較大。試驗中各因素對微囊包封率的影響并不顯著。通過L9(34)正交試驗配方優(yōu)化獲得最佳制備工藝:芯壁材質量比1﹕5,油水體積比1﹕5,PVA質量分數2%和剪切速率12 000 r/min。在最佳制備工藝條件下制備了粒徑(D50)為3.32 μm、跨距為2.82,分散性良好的球形丙硫菌唑微囊,載藥量為15.52%,包封率為80.24%。該微囊具有較好的緩釋性能,其釋放動力學符合Fick擴散規(guī)律,呈現(xiàn)先“突釋”后“緩釋”兩個過程。與原藥相比,丙硫菌唑微囊在水溶液中的光穩(wěn)定性增強,光解半衰期延長了一倍。菌絲生長抑制試驗表明其對花生白絹病菌的抑制活性與原藥相當。以生物可降解材料P(3HB-co-4HB)為載體制備丙硫菌唑微囊,不同制備工藝影響微囊的載藥量、分散性和粒徑大小,其緩釋及光穩(wěn)定性能對減少農藥施用量、提高農藥利用率具有重要意義。丙硫菌唑微囊在花生白絹病的防治方面具有良好的應用前景。
丙硫菌唑;聚羥基丁酸酯;微囊;制備工藝;控制釋放;花生白絹病菌
【研究意義】農藥在防治農作物病蟲草害、保障糧食安全等方面發(fā)揮了重要的作用。然而,由于風吹、日曬、雨淋等自然環(huán)境的影響易造成農藥有效成分降解和流失(飄移、淋溶、揮發(fā)等),降低了農藥利用率,并對環(huán)境產生一定影響[1-2]。丙硫菌唑(prothioconazole)是新型廣譜三唑硫酮類脫甲基化抑制劑殺菌劑[3],具有良好的內吸活性,同時具有優(yōu)異的治療、保護和鏟除性能,持效期長,在全球殺菌劑,尤其是谷物用殺菌劑市場居于領先地位[4-5]。自2004年首次獲得登記以來已在全球60多個國家登記并銷售。然而,丙硫菌唑在水溶液中見光易分解,且對施藥人員存在健康風險[6]。因此,利用先進的材料和制備工藝進行丙硫菌唑劑型優(yōu)化,對于提高其環(huán)境穩(wěn)定性和利用率、降低對施用者的健康風險具有重要的理論和實際應用價值?!厩叭搜芯窟M展】目前,國內外丙硫菌唑的劑型主要為懸浮劑、乳油和可分散油懸浮劑[7]。許春麗等[8]以熒光介孔二氧化硅為載體制備了丙硫菌唑納米載藥顆粒,該載藥顆粒具有良好的緩釋性能,表現(xiàn)出與原藥相當的毒力效果,材料的熒光性能有助于研究農藥在靶標中的吸收和傳導情況。然而,熒光介孔二氧化硅制備成本較高,限制其在實際生產中的應用。近年來,具有良好產業(yè)化前景的農藥微囊劑型已經成為研究的熱點,利用生物可降解材料為壁材,對農藥進行微囊化,可有效解決農藥活性成分釋放快、持效時間短、易光解及對人畜的刺激性和毒性等問題[9]。Tsuji[10]報道了微囊化可抑制農藥的蒸發(fā),降低施藥人員的暴露量和健康風險。目前農藥微囊的制備方法主要分為界面聚合法、原位聚合法、乳液聚合法、溶劑蒸發(fā)法、納米沉淀法、凝聚相法和噴霧干燥法等[11-12]。其中溶劑蒸發(fā)法制備微囊操作簡單,不需要相分離劑,具有體系穩(wěn)定、溫度改變小、溶劑可回收和殘留低等優(yōu)點[13-14]。因此,溶劑蒸發(fā)法可以作為制備農藥微囊的綠色環(huán)保方法。聚羥基脂肪酸酯(PHA)是目前唯一一種由微生物直接合成的生物基聚酯,能夠實現(xiàn)材料合成、制品加工和回收降解的全周期綠色生態(tài)循環(huán),已廣泛應用于醫(yī)學、工業(yè)等領域[15]。PHA作為農藥載體在殺菌劑腐霉利、乙烯菌核利、戊唑醇,殺蟲劑馬拉硫磷及除草劑苯磺隆、莠去津、莠滅凈、草克凈等均有報道[16]。CAO等利用PHA制備了氟樂靈微囊[17]和吡唑醚菌酯微囊[18],研究表明農藥的釋放主要是基質降解后的自發(fā)擴散并以緩慢釋放為主,且氟樂靈微囊顯著提高了氟樂靈的光穩(wěn)定性及除草活性,吡唑醚菌酯微囊對稻瘟病的防治效果與原藥相當?!颈狙芯壳腥朦c】丙硫菌唑微囊化劑型未見報道。充分發(fā)揮農藥微囊化和PHA的優(yōu)點制備PHA丙硫菌唑微囊,并深入考察微囊制備工藝及微囊化對丙硫菌唑性能提升的影響?!緮M解決的關鍵問題】利用生物可降解材料聚(3-羥基丁酸酯-co-4-羥基丁酸酯)(P(3HB-co-4HB))為壁材,通過乳化溶劑蒸發(fā)法制備丙硫菌唑微囊,通過單因素試驗、正交試驗研究制備參數對微囊粒徑、載藥量和包封率的影響,確定最佳制備工藝;通過釋放動力學、光解和室內毒力測定,明確丙硫菌唑微囊化對其性能提升的影響,為克服丙硫菌唑應用過程中的局限性提供理論指導。
試驗于2018—2019年在中國農業(yè)科學院植物保護研究所完成。
丙硫菌唑原藥(99%,四川華英化工有限公司);聚乙烯醇(PVA-124,國藥集團化學試劑有限公司);甲醇(色譜純,國藥集團化學試劑有限公司);三氯甲烷(北京化工廠);聚(3-羥基丁酸酯-co-4-羥基丁酸酯)(山東意可曼科技有限公司);透析袋(相對截留分子質量為8 000—14 000,北京索萊寶科技有限公司);供試花生白絹病菌()由中國農業(yè)大學植物保護學院植物病理學實驗室提供,試驗用水均為超純水。
DF-101S集熱式恒溫加熱磁力攪拌器(鞏義市英峪儀器廠);IKA T25型高速分散機(德國IKA集團);日立Regulus 8100冷場發(fā)射掃描電子顯微鏡(日本日立公司);高效液相色譜儀Agilent 1260(美國安捷倫科技有限公司);BT-9300ST型激光粒度分布儀(丹東百特有限公司);KQ-500DE 型數控超聲波清洗器(昆山市超聲波儀器有限公司);恒溫培養(yǎng)箱(上海圣科儀器設備有限公司);TG20-WS離心機(長沙湘智離心機儀器有限公司);CX22光學顯微鏡(日本奧林巴斯公司);FD-1-50型真空冷凍干燥機(北京博醫(yī)康實驗儀器有限公司)等。
1.3.1 丙硫菌唑微囊的制備 采用O/W(油相/水相)型乳化溶劑蒸發(fā)法制備丙硫菌唑微囊[19-20]。具體方法如下:分別準確稱取一定量的丙硫菌唑原藥(圖1)和P(3HB-co-4HB)(圖2),用三氯甲烷溶解分別配制成質量濃度為50 mg·mL-1的溶液,兩者按一定的比例混合為油相;準確稱取一定量的PVA加至去離子水中,90℃加熱攪拌使其溶解,冷卻后配制成一定質量濃度的PVA水溶液為水相;按照設定的油水相體積,將油相倒入水相混合置于燒杯中,高速剪切5 min;將剪切后的均質乳化液于40℃攪拌蒸發(fā)有機溶劑;待溶劑蒸發(fā)完全,在10 000 r/min下離心10 min,用去離子水洗滌沉淀3次,于低溫冷凍干燥機內冷凍干燥48 h,即得丙硫菌唑微囊粉末,干燥儲存。以相同條件制備P(3HB-co-4HB)未載藥微囊。
圖1 丙硫菌唑結構式
圖2 聚(3-羥基丁酸酯-co-4-羥基丁酸酯)結構式
1.3.2 丙硫菌唑微囊性能 微囊形貌表征:取適量微囊粉末稀釋成微囊懸浮液于光學顯微鏡下觀察其外貌形態(tài);取干燥微囊粉末涂抹在雙面膠帶上,經離子鍍膜儀噴金,噴金厚度為6—8 nm,采用掃描電子顯微鏡(SEM)觀察其表面形態(tài)。
微囊粒徑分布及測定:利用激光粒度分析儀測定其微囊懸浮液的粒徑大小及分布,由公式(1)計算跨距。
跨距=(D90-D10)/D50(1)
式中,D10、D50和 D90分別表示微囊累積粒度分布百分數為10%、50%和90%時所對應的粒徑;跨距值越小,微囊的單分散性越好,粒徑分布越窄,反之,跨距值越大,則單分散性越差,粒徑分布越寬。
紅外光譜分析:取適量溴化鉀分別與干燥的丙硫菌唑原藥、未載藥微囊和丙硫菌唑微囊混合均勻,壓片,采用傅里葉變換紅外光譜儀進行分析。
微囊載藥量與包封率測定:取0.025 g(精確至0.0001 g)微囊置于50 mL容量瓶中,用甲醇超聲定容至50 mL,將懸浮液超聲處理30 min。于離心機內10 000 r/min離心5 min,收集上清液過0.22 μm濾膜,利用高效液相色譜儀(HPLC)進行丙硫菌唑載藥量和包封率測定。分別采用公式(2)和(3)測定丙硫菌唑微囊載藥量和包封率:
高效液相色譜分析條件:流動相V(甲醇)﹕V(0.2%甲酸水)= 80﹕20,流速l.0 mL·min-1;Waters sunfire-C18色譜柱(4.6 mm×250 mm,5 μm);紫外檢測器波長260 nm;柱溫30℃;進樣體積5 μL。
1.3.3 單因素試驗設計 考察乳化溶劑蒸發(fā)法中微囊制備的工藝條件芯壁材質量比、油水體積比、乳化劑PVA質量分數和剪切速率對微囊粒徑大小、載藥量和包封率的影響(表1)。設芯壁材質量為1﹕5,油水體積比1﹕5,PVA質量分數為1%,剪切速率為12 000 r/min為基準條件,分別考察單個因素水平對微囊粒徑、包封率、載藥量的影響。每個試驗重復3次。
表1 單因素試驗水平表
1.3.4 正交試驗設計篩選最優(yōu)配方 采用L9(34)正交試驗,考察各因素之間的相互關系對微囊工藝的影響并篩選乳化溶劑蒸發(fā)法制備丙硫菌唑微囊最佳制備工藝條件。選取芯壁質量比、油水體積比、PVA質量分數和剪切速率4個因素作為考察對象,每個因素選擇3個水平,以載藥量和粒徑為考察指標,在測試條件下篩選丙硫菌唑微囊的最佳制備工藝。其因素水平見表2。
表2 正交試驗因素水平表
A:芯壁材質量比Mass ratio of core to wall;B:油水體積比Volume ratio of oil to water;C:PVA質量分數Mass fraction of PVA (%);D:剪切速率Shearing speed (r/min)。表7、表8同 The same as Table 7, Table 8
1.3.5 微囊緩釋性能 采用透析袋法[21]研究丙硫菌唑原藥與最優(yōu)制備工藝條件下丙硫菌唑微囊的釋放性能。將一定質量樣品浸入含200 mL 30%甲醇水溶液的密封容器中,室溫下于轉速200 r/min攪拌,每隔一段時間取一定體積上清液,每次取樣后立即補充相同體積緩沖溶液,通過HPLC測定丙硫菌唑的釋放量。按公式(4)計算丙硫菌唑累積釋放量并繪制累積釋放曲線。
:累積釋放量(%);:每次取樣體積(1 mL);C:第i次取樣時釋放液的濃度(mg·mL-1);V:釋放介質總體積(200 mL);:第次取樣釋放液的濃度(mg·mL-1);:取樣次數;m:丙硫菌唑微囊有效成分的總質量(mg)。
1.3.6 微囊水中光解 取一定量的丙硫菌唑微囊,分散于30 mL 0.2%吐溫-80水溶液中,置于具塞石英管內,以高壓氙燈作為光源,輻照度為25 mW·cm-2,石英管距光源10 cm,啟動轉動電機并不斷攪拌使反應液均勻受光,溫度保持在(20±1)℃,待光解儀穩(wěn)定后進行光解試驗。光照不同時間后分別取樣1 mL,用甲醇稀釋后超聲處理30 min,過0.22 μm濾膜后用HPLC檢測丙硫菌唑濃度(mg·L-1)。以丙硫菌唑原藥作為對照。每個試驗重復3次。
農藥在溶液中光化學降解可按一級反應動力學方程進行描述,其光解動力學方程及半衰期計算公式如(5)和(6):
Ct=C0e-kt(5)
T1/2=ln2/k (6)
式中,Ct為t時刻反應液中丙硫菌唑的質量濃度(mg·L-1),C0為丙硫菌唑的初始質量濃度(mg·L-1),k為光解速率常數(min-1),T1/2為光解半衰期(min)。
1.3.7 室內生物活性測定 采用菌絲生長速率法[22]測定丙硫菌唑微囊對花生白絹病菌的殺菌活性。將丙硫菌唑微囊分別使用二甲基亞砜(DMSO)、無菌水配制成相同濃度的母液,使用無菌水進行稀釋配制不同濃度的工作溶液。依次定量吸取不同濃度的藥液分別加入馬鈴薯葡萄糖瓊脂(PDA)培養(yǎng)基中,充分搖勻,然后倒入直徑為90 mm培養(yǎng)皿中,制成濃度分別為2.5、5、10、20和40 mg·L-1的含藥平板。丙硫菌唑原藥用DMSO溶解,無菌水稀釋作為對照。將培養(yǎng)好的花生白絹病菌接種于含藥平板中央,置于25℃培養(yǎng)箱中。當空白處理菌落直徑接近長滿培養(yǎng)皿直徑時,采用“十字交叉法”測量各處理菌落直徑,取其平均值按公式(7)計算菌絲生長抑制率。
1.3.8 數據統(tǒng)計與分析 各試驗因素對微囊性能的研究指標以平均值±標準誤(mean±SE)表示,通過SPSS 22.0軟件采用Duncan氏新復極差法進行差異顯著性分析。測量的數據采用Excel和Origin 9.1軟件統(tǒng)計分析并繪制丙硫菌累積釋放曲線。通過Origin 9.1軟件擬合方程,得到k值,通過降解動力學方程,計算半衰期。
2.1.1 PVA質量分數對丙硫菌唑微囊性能的影響 隨著PVA質量分數的增大,乳狀液體系逐漸達到穩(wěn)定,微囊粒徑呈減小的趨勢,跨距也逐漸減小,微囊粒徑D50由4.61 μm減至2.55 μm,單因素方差分析表明其對微囊粒徑的影響顯著。在0.5%—2%范圍內,PVA質量分數對微囊載藥量和包封率的影響并不顯著,分別為15.12%—15.69%和77.47%—80.47%(表3)。
2.1.2 芯壁質量比對丙硫菌唑微囊性能的影響 隨著芯壁質量比由1﹕20增至1﹕5,載藥量由4.66%逐漸增至15.31%,微囊粒徑D50由4.33 μm逐漸減至3.46 μm,包封率由71.72%增至77.04%。由單因素方差分析可知,芯壁質量比對微囊粒徑和載藥量的影響顯著,對包封率的影響不顯著(表4)。
表3 PVA質量分數對微囊性能的影響
同列數據后不同小寫字母表示經Duncan氏新復極差法檢驗在<0.05水平差異顯著。下同
Different lowercases after the data in the same column indicate significant difference at 0.05 level by Duncan’s new multiple range test. The same as below
表4 芯壁質量比對微囊性能的影響
2.1.3 油水體積比對丙硫菌唑微囊性能的影響 油水體積比由1﹕5降至1﹕20,載藥量為14.82%—15.38%,包封率67.07%—76.98%,粒徑2.65—3.46 μm。由單因素方差分析可知,油水體積比對微囊粒徑有顯著的影響,對微囊載藥量與包封率影響不顯著(表5)。油水體積比對形成穩(wěn)定的乳液具有很大的影響,當比例過小時,在溶劑蒸發(fā)過程中,乳化液滴變得不穩(wěn)定,易導致微囊發(fā)生聚結,造成微囊成囊率降低。
2.1.4 剪切速率對丙硫菌唑微囊性能的影響 隨著剪切速率的增大,微囊粒徑逐漸減小,跨距先增后減。單因素方差分析表明,剪切速率對微囊粒徑的影響顯著,對微囊載藥量和包封率的影響不顯著,分別為15.29%—15.84%和77.88%—78.33%(表6)。
以粒徑和載藥量為篩選試驗工藝的關鍵指標,采用極差法和綜合平衡法對L9(34)正交試驗結果進行分析(表7、表8)。結果表明,各因素對載藥量的影響程度依次為芯壁比>油水體積比>剪切速率>PVA質量分數;對粒徑的影響由大到小的因素:剪切速率>PVA質量分數>芯壁材質量比>油水體積比(表8)。綜合載藥量與粒徑進行考慮,其最佳制備工藝條件為A3B3C3D3,即芯壁比為1﹕5,油水體積比1﹕5,PVA質量分數2%,剪切速率為12 000 r/min。
表5 油水體積比對微囊性能的影響
表6 乳化剪切速率對微囊性能影響
表7 正交試驗結果
表8 正交試驗極差分析
按上述最佳工藝條件(A3B3C3D3)進行3次丙硫菌唑微囊制備,測得3次平均粒徑D50為3.32 μm,跨距為2.82,載藥量為15.52%,包封率為80.24%;與正交表中的試驗結果進行比較,符合其試驗分析結果,表明優(yōu)選條件合理,該工藝制備條件最佳。
最佳制備工藝條件下得到的微囊為彼此沒有黏連流動性良好的粉末狀固體,掃描電鏡結果顯示其為表面較為光滑、粒徑較為均勻的球形微囊,較大粒徑的微囊表面出現(xiàn)了凹陷(圖3)。制備工藝中油水體積比對微囊的分散性能影響顯著。通過光學顯微鏡觀察可以看出,隨著油水體積比的減小,微囊易發(fā)生聚結,使微囊跨距逐漸增大(圖4)。圖5為單因素試驗中油水體積比為1﹕20時的微囊SEM觀察圖,當對其微囊局部放大后,可以觀察到微囊之間彼此黏連,并未形成分散性良好的球形微囊。
由圖6可見,丙硫菌唑原藥在3 000 cm-1處出現(xiàn)苯環(huán)C-H鍵不對稱伸縮振動吸收峰,1 560 cm-1為苯環(huán)骨架伸縮振動,750 cm-1為C-Cl鍵的伸縮振動。載藥微囊在1 560和750 cm-1顯示出丙硫菌唑的特征峰;未載藥微囊在1 735 cm-1處有較大的吸收峰,由C=O鍵不對稱伸縮振動引起。載藥微囊與空載體相比,1 735 cm-1處的吸收峰出現(xiàn)了藍移,可能受到了丙硫菌唑的影響。丙硫菌唑原藥特征的1 560和750 cm-1吸收峰在載藥微囊中出現(xiàn),表明丙硫菌唑已成功包埋在P(3HB-co-4HB)載體中。
從丙硫菌唑原藥和微囊的累積釋放曲線(圖7)可以看出,室溫下原藥釋放20 h后不再釋放,累積釋放率為45%。丙硫菌唑微囊在前20 h釋放較快,之后緩慢釋放,84 h時累積釋放率達到84%。為了揭示藥物從緩控釋體系中釋放的機理或釋放動力學,一般將釋放數據進行數學模型的擬合。利用Origin軟件對累積釋放數據分別進行零級、一級、Higuchi、Ritger- Peppas釋放擬合[23],其擬合結果見表9。由回歸方程分析,丙硫菌唑原藥的釋放(決定系數2=0.9727)更符合一級動力學方程,為擴散釋放。丙硫菌唑原藥受其外觀形態(tài)、晶型及溶解性能的影響,其釋放過程受丙硫菌唑濃度的影響。丙硫菌唑微囊釋放更符合Higuchi(2=0.9596)與Ritger-Peppas(2= 0.9622)方程。當芯材均勻分布在整個微囊中或者部分芯材分布在外壁中,其釋放動力學更符合Higuchi擬合方程,微囊釋放的芯材質量與時間的平方根成正比,釋放機理是Fick擴散[24]。Ritger-Peppas方程的對數形式為:lg (Mt/M∞)=lgk+nlgt,其中,Mt/M∞為藥物累積釋放百分率,k為藥物釋放速率常數,n為擴散指數。根據n的數值可以推斷釋放機理的類型,當n≤0.45時,藥物釋放以Fick擴散為主;當0.45<n<0.89時,釋放以非Fick擴散為主,藥物釋放呈現(xiàn)擴散和溶蝕并存;當n>0.89時,以載藥體系骨架的溶蝕而釋放藥物為主[25]。丙硫菌唑微囊釋放Ritger-Peppas擬合方程n=0.42,屬于Fick擴散。丙硫菌唑釋放呈現(xiàn)先“突釋”后“緩釋”兩個過程,“突釋”比“緩釋”速率大,其屬于Fick擴散。方程擬合結果證明了P(3HB-co-4HB)丙硫菌唑微囊具有緩釋作用。
圖3 丙硫菌唑微囊掃描電鏡圖
A: 1﹕5; B: 1﹕10 ; C: 1﹕15; D: 1﹕20
圖5 油水體積比1﹕20丙硫菌唑微囊掃描電鏡圖
用一級反應動力學模型對丙硫菌唑原藥和微囊在水中的光降解反應進行擬合分析,光解曲線如圖8所示,擬合結果見表10。結果表明,丙硫菌唑的光降解反應符合一級反應動力學(2介于0.975—0.997),在高壓氙燈的照射下,丙硫菌唑微囊的光解半衰期為1.52 h,而丙硫菌唑原藥的半衰期為0.76 h。丙硫菌唑微囊化可顯著降低其在水環(huán)境中的光解速率,提高其穩(wěn)定性。
表9 丙硫菌唑原藥和微囊緩釋曲線擬合結果
圖6 丙硫菌唑原藥(a)、丙硫菌唑微囊(b)和未載藥P(3HB-co-4HB)微囊(c)紅外光譜圖
圖7 丙硫菌唑原藥和微囊緩釋曲線
為明確丙硫菌唑微囊化仍然保持有效成分的活性,采用菌絲生長抑制試驗進行室內毒力測定。微囊分別采用DMSO和無菌水進行母液配制。在測試質量濃度范圍內,丙硫菌唑測試藥劑對花生白絹病菌菌絲生長表現(xiàn)出顯著的抑制作用。當采用DMSO配制微囊母液時,微囊壁材因溶解于DMSO而導致微囊破壁,微囊中的丙硫菌唑游離釋放出來,與原藥具有基本一致的溶液濃度。質量濃度為40 mg·L-1的丙硫菌唑原藥與微囊對花生白絹病菌的抑制率分別為94.70%和92.98%,其毒力效果相當,在其他低濃度情況下也具有同等毒力。當采用無菌水配制微囊母液時,由于丙硫菌唑在水中具有一定的溶解度,微囊表面和初始階段釋放出來的丙硫菌唑可以發(fā)揮殺菌活性的作用。當微囊均勻分布在PDA培養(yǎng)基中,由于缺少液體釋放介質,微囊內部的丙硫菌唑釋放非常緩慢。因此,在低濃度時,無菌水配制的微囊溶液具有與原藥相當的生物活性,當濃度較高時,由于水中溶解度和釋放的限制,對靶標病原菌的抑制率低于同等濃度的原藥(表11)。
圖8 丙硫菌唑原藥和微囊水中光解曲線
表10 丙硫菌唑原藥和微囊水中光解動力學
表11 丙硫菌唑原藥和微囊對花生白絹病菌的毒力
農藥微囊的制備工藝會對微囊形態(tài)、粒徑及分布、載藥量、包封率及緩釋性能等理化性質產生影響,一套完善而可行的制備工藝對微囊的工業(yè)化生產具有重要意義。在微囊最佳制備工藝條件下,微囊呈球形且分散性良好。由SEM觀測到在某些粒徑較大的微囊表面出現(xiàn)凹陷,可能是在溶劑揮發(fā)過程中,微囊之間以及微囊與攪拌磁子之間的碰撞所致[26]。載體P(3HB-co-4HB)具有較寬的分子量分布,在溶劑蒸發(fā)時可能存在非均相沉析現(xiàn)象,高分子量鏈段首先析出,而低分子量鏈段后析出,導致微囊內外部出現(xiàn)微孔及表面產生皺縮現(xiàn)象,Embleton等[27]也觀察到類似現(xiàn)象。
PVA具有乳化劑及分散劑雙重作用,其質量分數增加連續(xù)相黏度增大,能夠防止乳滴聚合,導致微囊粒徑減小[28-31]。乳化劑用量對微囊包封率沒有顯著影響[32],但對微囊形態(tài)影響較大,乳化劑用量過大或者不足均會造成微囊乳狀液不穩(wěn)定。當PVA濃度過大,乳狀液黏稠,微囊難以離心分離,溶劑蒸發(fā)與干燥過程中微囊會黏結、形成形狀不規(guī)則的團聚體,使微囊收得率降低。隨著芯壁質量比增加,包裹在丙硫菌唑液滴周圍壁材的量逐漸減少,囊壁的厚度逐漸變薄,芯材所占比重增大,載藥量呈遞增趨勢[33]。隨著剪切速率的增大,微囊粒徑及其分布逐漸減小,其變化規(guī)律與文獻報道一致[34-36]。油水體積比例在合適范圍內降低,使乳滴分散效果好,凝聚機會減少,對載藥量與包封率沒有顯著影響。Conti等[37]發(fā)現(xiàn)當PVA的濃度為0.5%時,藥物的包封率依賴于攪拌速度,隨著攪拌速度的提高,包封率從17.5%升至90%。本研究單因素試驗中各因素對微囊包封率的影響均不顯著。丙硫菌唑微囊理論上應具有較高的包封率,然而在制備微囊的過程中,由于P(3HB-co-4HB)和丙硫菌唑溶解于三氯甲烷中所得溶液的黏度較大,在實驗室制備量較小的條件下,試驗材料黏附在與其接觸的容器上,造成損失,從而降低微囊包封率,隨著制備量的增加,損失量逐漸減小,包封率會有所提高,黃彬彬等[38]在文獻中也有相同的分析;另外,在微囊制備過程中微囊的收率是影響包封率的關鍵因素,并不是所有的微囊干燥后均為分散性良好的微囊,部分微囊黏結成塊,成為形狀不規(guī)則的團聚體,使得到的微囊質量下降,造成包封率降低。Shenderova等[39]則認為聚合物在載體溶液中的濃度降低,包封率也隨之降低,載體材料濃度下降,所需揮發(fā)溶劑時間較長,乳滴析出成固態(tài)的時間過長造成包封率降低。
除了試驗所考察的4個主要因素,其他參數如壁材的性質和濃度、制備溫度、溶劑蒸發(fā)時間和攪拌速率等也會對微囊的形態(tài)、性能產生一定的影響[40-42]。載體材料濃度提高使油相溶液黏度增加,乳滴中載體材料向外遷移困難,易發(fā)生粘連,使微囊形狀不規(guī)則。溫度升高過快或者蒸發(fā)時間太長,會使微囊材料析出,微囊粘結嚴重,分散性不好,控制蒸發(fā)時的溫度,可防止微囊粘連聚結。王光磊等[43]采用溶劑蒸發(fā)法制備牛樟芝總三萜微囊,加入抗粘劑硬脂酸鋁以防止微囊之間的粘結,增加其分散性,提高微囊收率。在本研究最佳制備工藝條件下得到的微囊具有良好的分散性,沒有黏結,但微囊跨距較大,值得進一步研究,比如油相加入水相時逐滴滴加,或者增加高速剪切的時間以降低微囊跨距。
微囊的釋放及降解速度與微囊形態(tài)及尺寸、內部結構、聚合物組成及降解方式等均有關系[44]。此外,藥物的含量也會影響微囊的釋藥,微囊中的藥物能提供釋藥過程中藥物擴散的勢能,所以藥物含量高,釋藥速度快。微球粒徑越小,表面積越大,釋藥加快[45-46]。由丙硫菌唑微囊的累積釋放曲線分析,丙硫菌唑的釋放大致可分為“突釋”和“緩釋”兩個階段:“突釋”階段為微囊在開始很短的時間內大量快速釋放藥物,吸附在微囊表面和淺層的丙硫菌唑在初始階段快速釋放到環(huán)境介質中,可保證速效性的要求;“緩釋”階段為藥物“突釋”后相對較長一段時間內持續(xù)緩慢釋放,包裹在微囊內部的丙硫菌唑持續(xù)緩慢釋放出來,可提高丙硫菌唑的持效期。生物完全可降解材料聚乳酸-羥基乙酸共聚物載藥微囊的釋放分為3個階段[47],除了上述的兩個階段,第3階段是藥物緩慢釋放后出現(xiàn)的較快藥物釋放,為快速釋放階段,這是聚合物降解所致。明確丙硫菌唑微囊的藥物釋放規(guī)律,可根據農作物病害對防控劑量的需求制備不同釋放速率的丙硫菌唑微囊,延長持效期、減少農藥使用量。
農藥水中光解是環(huán)境化學及環(huán)境毒理學的研究熱點之一。此外,噴灑使用后的農藥在植物及土壤表面也會受到光的影響而發(fā)生降解,使藥效逐步喪失。研究降解速度低的劑型及施藥方式,對于延長持效期,充分發(fā)揮農藥的綜合效益具有重要價值。丙硫菌唑微囊的光解半衰期約為丙硫菌唑原藥的兩倍,顯著降低了丙硫菌唑在水中的光解。在光降解試驗中,影響藥物在水環(huán)境中降解的因素有很多,比如溫度,隨著溫度的升高降解速率增大,pH、光源、藥物初始濃度等都會影響微囊的光降解行為[48]。管磊等以紫外燈為光源,研究了吡唑醚菌酯在水環(huán)境中光化學降解及微囊化對其光穩(wěn)定性的影響,結果表明微囊化明顯降低了吡唑醚菌酯在水中的光降解速率[49]。
丙硫菌唑微囊生物活性測定選用花生白絹病菌,主要原因是白絹病為花生田土傳病害,近幾年來危害嚴重,造成花生減產。聚羥基脂肪酸酯(PHA)在土壤中可生物降解,土壤中施用丙硫菌唑微囊后可隨著載體材料的降解緩慢釋放出丙硫菌唑,有效防控土傳病害。另外PHA可促進土壤中PHA降解菌的生長[50],調節(jié)土壤微生物群落結構,從而有利于土壤養(yǎng)分循環(huán)能力的保持和生態(tài)系統(tǒng)的穩(wěn)定[51]。
以生物可降解聚(3-羥基丁酸酯-co-4-羥基丁酸酯)為載體材料,采用乳化溶劑蒸發(fā)法制備丙硫菌唑微囊,對其制備工藝進行優(yōu)化,制備出分散性良好,粒徑D50為3.32 μm,跨距為2.82,載藥量為15.52%,包封率為80.24%的球形微囊。該微囊具有較好的緩釋性能,與原藥相比微囊在水溶液中的光穩(wěn)定性增強,菌絲生長抑制試驗表明其對花生白絹病菌的抑制活性與原藥相當。丙硫菌唑微囊化延長藥物持效期,降低丙硫菌唑對使用者的暴露風險,生物可降解的載體材料降低對環(huán)境的負面影響,具有較大的開發(fā)和應用潛力。
[1] SANKOH A I, WHITTLE R, SEMPLE K T, JONES K C, SWEETMAN A J. An assessment of the impacts of pesticide use on the environment and health of rice farmers in Sierra Leone. Environment International, 2016, 94: 458-466.
[2] ARIAS-ESTéVEZ M, LóPEZ-PERIAGO E, MARTíNEZ-CARBALLO E, SIMAL-GáNDARA J, MejutoJ C,García-Río L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems and Environment, 2008, 123(4): 247-260.
[3] PARKER J E, WARRILOW A G S, COOLS H J, MARTEL C M, NES W D, FRAAIJE B A, LUCAS J A, KELLY D E, KELLY S L. Mechanism of binding of prothioconazole toCYP51 differs from that of other azole antifungals. Applied and environmental microbiology, 2011, 77(4): 1460-1465.
[4] 程圓杰, 崔蕊蕊, 郭雯婷, 左文靜, 主艷飛, 莊占興, 范金勇. 丙硫菌唑研究開發(fā)現(xiàn)狀與展望. 山東化工, 2018, 47(6): 58-61.
CHENG Y J, CUI R R, GUO W T, ZUO W J, ZHU Y F, ZHUANG Z X, FAN J Y. A review of research progress in the development of prothioconazole. Shandong Chemical Industry, 2018, 47(6): 58-61. (in Chinese)
[5] 黃華樹, 柏亞羅. 丙硫菌唑的全球市場與應用開發(fā). 現(xiàn)代農藥, 2017, 16(6): 45-51.
HUANG H S, BAI Y L. Global market, application and development of prothioconazole.Modern Agrochemicals, 2017, 16(6): 45-51. (in Chinese)
[6] 于雪驪, 邢立國, 樓少巍. 殺菌劑丙硫菌唑施用人員健康風險評估. 農藥科學與管理, 2017, 38(7): 37-43.
YU X L, XING L G, LOU S W. Operators’ health risk assessment of fungicide prothioconazole. Pesticide Science and Administration, 2017, 38(7): 37-43. (in Chinese)
[7] 農業(yè)農村部農藥檢定所. 中國農藥信息網. http://www.chinapesticide. org.cn/.
Pesticide inspection institute, Ministry of Agriculture and Rural Affairs. China pesticide information network. http://www.chinapesticide. org.cn/. (in Chinese)
[8] 許春麗, BILAL M, 徐博, 冉剛超, 趙鵬躍, 曹沖, 李鳳敏, 曹立冬, 黃啟良. 熒光介孔二氧化硅負載丙硫菌唑納米顆粒的制備及性能研究. 農藥學學報, 2020, 22(2): 214-224.
XU C L, BILAL M, XU B, RAN G C, ZHAO P Y, CAO C, LI F M, CAO L D, HUANG Q L. Preparation and characterization of prothioconazole-loaded fluorescent mesoporous silica nanoparticles.Chinese Journal of Pesticide Science, 2020, 22(2): 214-224. (in Chinese)
[9] 李北興, 張大俠, 張燦光, 管磊, 王凱, 劉峰. 微囊化技術研究進展及其在農藥領域的應用. 農藥學學報, 2014, 16(5): 483-496.
LI B X, ZHANG D X, ZHANG C G, GUAN L, WANG K, LIU F. Research advances and application prospects of microencapsulation techniques in pesticide. Chinese Journal of Pesticide Science, 2014, 16(5): 483-496. (in Chinese)
[10] TSUJI K. Microencapsulation of pesticides and their improved handling safety. Journal of Microencapsulation, 2001, 18(2): 137-147.
[11] 王安琪, 王琰, 王春鑫, 崔博, 孫長嬌, 趙翔, 曾章華, 姚俊偉, 劉國強, 崔海信. 農藥納米微囊化劑型研究進展. 中國農業(yè)科技導報, 2018, 20(2): 10-18.
WANG A Q, WANG Y, WANG C X, CUI B, SUN C J, ZHAO X, ZENG Z H, YAO J W, LIU G Q, CUI H X. Research progress on nanocapsules formulations of pesticides. Journal of Agricultural Science and Technology, 2018, 20(2): 10-18. (in Chinese)
[12] 朱峰, 許春麗, 曹立冬, 曹沖, 李鳳敏, 杜鳳沛, 黃啟良. 農藥微囊劑及其制備技術研究進展. 現(xiàn)代農藥, 2018, 17(2): 12-16.
ZHU F, XU C L, CAO L D, CAO C, LI F M, DU F P, HUANG Q L. Research advances of pesticide microcapsule and its preparative technique. Modern Agrochemicals, 2018, 17(2): 12-16. (in Chinese)
[13] 馮建國, 徐妍, 羅湘仁, 嚴寒, 吳學民. 淺談溶劑蒸發(fā)法制備微膠囊與農藥膠囊的開發(fā). 農藥學學報, 2011, 13(6): 568-575.
FENG J G, XU Y, LUO X R, YAN H, WU X M. Discussion on the solvent evaporation method for preparation of microcapsules and the development of the pesticides microcapsules. Chinese Journal of Pesticide Science, 2011, 13(6): 568-575. (in Chinese)
[14] 喬吉超, 胡小玲, 張團紅, 管萍. 溶劑蒸發(fā)法制備藥物微膠囊研究進展. 化工進展, 2006, 25(8): 885-889, 927.
QIAO J C, HU X L, ZHANG T H, GUAN P. Application of solvent evaporation method in preparation of drug microcapsule. Chemical Industry and Engineering Progress, 2006, 25(8): 885-889, 927. (in Chinese)
[15] THORAT GADQIL B S, KILLI N, RATHAN G V N. Polyhydroxyalkanoates as biomaterials. MedicinalCommunication, 2017, 8(9): 1774-1787.
[16] 陳歌, 許春麗, 徐博, 冉剛超, 曹沖, 趙鵬躍, 曹立冬, 黃啟良. 聚羥基脂肪酸酯作為農藥載體的研究進展. 農藥學學報, 2019, 21(5/6): 871-882.
CHEN G, XU C L, XU B, RAN G C, CAO C, ZHAO P Y, CAO L D, HUANG Q L. Research progress of polyhydroxyalkylates as pesticide carriers. ChineseJournal of Pesticide Science, 2019, 21(5/6): 871-882. (in Chinese)
[17] CAO L D, LIU Y J, XU C L, ZHOU Z L, ZHAO P Y, NIU S J, HUANG Q L. Biodegradable poly (3-hydroxybutyrate-co-4- hydroxybutyrate) microcapsules for controlled release of trifluralin with improved photostability and herbicidal activity.Materials Science and Engineering C, Materials for Biological Applications, 2019, 102: 134-141.
[18] 陳慧萍, 陳歌, 許春麗, 徐博, 曹立冬, 黃啟良. 吡唑醚菌酯微囊的制備及性能表征. 現(xiàn)代農藥, 2020, 19(1): 28-31, 39.
CHEN H P, CHEN G, XU C L, XU B, CAO L D, HUANG Q L. Preparation and characterization of pyraclostrobin microcapsules.Modern Agrochemicals, 2020, 19(1): 28-31, 39. (in Chinese)
[19] FREITAS S, MERKLE H P, GANDER B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release, 2005, 102(2): 313-332.
[20] Jelvehgari M, Barar J, Valizadeh H, SHADROU S, NOKHODCHI A. Formulation characterization andevaluation of theophylline-loaded Eudragit RS 100 microspheres prepared by an emulsion-solvent diffusion/evaporation technique. Pharmaceutical Development and Technology, 2011, 16(6): 637-644.
[21] ASRAR J, DING Y, MONICA R E, NESS L C. Controlled release of tebuconazole from a polymer matrix microparticle: release kinetics and length of efficacy. Journal of Agricultural and Food Chemistry, 2004, 52(15): 4814-4820.
[22] 孫廣宇, 宗兆鋒. 植物病理學實驗技術. 北京: 中國農業(yè)出版社, 2002: 141-142.
SUN G Y, ZONG Z F. Experimental Techniquesof plant pathology. Beijing: ChinaAgriculturePress, 2002: 141-142. (in Chinese)
[23] 葉玉杰, 李芳, 任德全, 張永忠, 劉嵩. Origin軟件擬合制劑體外釋藥規(guī)律的應用. 數理醫(yī)藥學雜志, 2014, 27(1): 93-94.
YE Y J, LI F, REN D Q, ZHANG Y Z, LIU S. Application of Origin software to fit the drug release.Journal of Mathematical Medicine, 2014, 27(1): 93-94. (in Chinese)
[24] RAVI P R, KOTREKA U K, SAHA R N. Controlled release matrix tablets of zidovudine: Effect of formulation variables on thedrug release kinetics. AAPS PharmSciTech, 2008, 9(1): 302-313.
[25] SATHE P, TSONG Y, SHAH V P.dissolution profile comparison: Statistics and analysis, model dependent approach. Pharmaceutical Research, 1996, 13(12): 1799-1803.
[26] 陳建海, 陳志良, 侯連兵, 劉世霆. 聚羥基丁酸酯緩釋微球的制備與性能. 功能高分子學報, 2000, 13(1): 61-64.
CHEN J H, CHEN Z L, HOU L B, LIU S T. Preparation and characterization of diazepam-polyhydroxybutyrate microspheres. Journal of Functional Polymers, 2000, 13(1): 61-64. (in Chinese)
[27] EMBLETON J K, TIGHE B J. Polymers for biodegradable medical devices. IX: Microencapsulation studies; effects of polymer composition and process parameters on poly-hydroxybutyrate- hydroxyvalerate microcapsule morphology. Journal of Microencapsulation, 1992, 9(1): 73-87.
[28] 舒丹丹, 張淑娟, 金麗娜, 王鐵闖, 李大吉. 乳化溶劑揮發(fā)法及在微囊化制劑中的應用. 北方藥學, 2012, 9(4): 22-23.
SHU D D, ZHANG S J, JIN L N, WANG T C, LI D J. Emulsion solvent evaporation method and its application in microencapsulated preparations.Journal of North Pharmacy, 2012, 9(4): 22-23. (in Chinese)
[29] LI M, ROUAUD O, PONCELET D. Microencapsulation by solvent evaporation: state of the art for process engineering approaches. International Journal of Pharmaceutics, 2008, 363(1/2): 26-39.
[30] LI D, LIU B X, YANG F, WANG X, SHEN H, WU D C. Preparation of uniform starch microcapsules by premix membrane emulsion for controlled release of avermectin. Carbohydrate Polymers, 2016, 136: 341-349.
[31] MAIA J L, SANTANA M H, Ré M I. The effect of some processing conditions on the characteristics of biodegradable microspheres obtained by an emulsion solvent evaporation process. Brazilian Journal of Chemical Engineering, 2004, 21(1): 1-12.
[32] YAN X F, WANG Y, LIU H H, LI R H, QIAN C Q. Synthesis and characterization of melamine-formaldehyde microcapsules containing pyraclostrobin bypolymerization. Polymer Science Series B, 2018, 60(6): 798-805.
[33] 滑海濤, 李敏, 翟曉曼, 曲文巖, 折冬梅, 李鳳敏, 黃啟良. 反應時間、芯壁比及表面活性劑用量對阿維菌素微囊制備的影響. 農藥學學報, 2010, 12(1): 54-60.
HUA H T, LI M, ZHAI X M, QU W Y, SHE D M, LI F M, HUANG Q L. Studies on the influence of polymerization time, ratio of core material to wall material and percentage of SDS on the preparation of abamectin capsule suspensions.Chinese Journal of Pesticide Science, 2010, 12(1): 54-60. (in Chinese)
[34] HEISKANEN H, DENIFL P, PITK?NEN P, HURME M. E?ect of preparation conditions on the properties of microspheres prepared using an emulsion-solvent extraction process. Chemical Engineering Research and Design, 2012, 90(10): 1517-1526.
[35] BAHRI Z, TAVERDET J. Preparation and optimization of 2, 4-D loaded cellulose derivatives microspheres by solvent evaporation technique.Journal of Applied Polymer Science, 2007, 103(4): 2742-2751.
[36] MATEOVIC T, KRIZNAR B, BOGATAJ M, MRHAR A. The in?uence of stirring rate on biopharmaceutical properties of eudragit RS microspheres. Journal of Microencapsulation, 2002, 19(1): 29-36.
[37] CONTI B, GENTA I, MODENA T, PAVANETTO F. Investigation on process parameters involved in polylactide-co-glycolide microspheres preparation. Drug Development and Industrial Pharmacy, 2008, 21(5): 615-622.
[38] 黃彬彬, 楊豐梅, 張旭溪, 鐘建斌, 吳祖建, 吳剛. 多殺菌素微球制備關鍵工藝研究:Ⅱ. 農藥學學報, 2011, 13(4): 402-408.
HUANG B B, YANG F M, ZHANG X X, ZHONG J B, WU Z J, WU G. Study on key process of preparation of spinosad microsphere: Ⅱ. Chinese Journal of Pesticide Science, 2011, 13(4): 402-408. (in Chinese)
[39] SHENDEROVA A, BURKE T G, SCHWENDEMAN S P. Stabilization of 10-hydroxycampthecin in poly (lactide-co-glycolide) microsphere delivery vehicles. Pharmaceutical Research, 1997, 14(10): 1406-1414.
[40] HEISKANEN H, DENIFL P, PITK?NEN P, HURME M. Effect of concentration and temperature on the properties of the microspheres prepared using an emulsion-solvent extraction process. Advanced Powder Technology, 2012, 23(6): 779-786.
[41] GüRSEL I, HASIRCI V. Properties and drug release behaviour of poly (3-hydroxybutyric acid) and various poly (3-hydroxybutyrate- hydroxyvalerate) copolymer microcapsules. Journal of Microencapsulation, 1995, 12(2): 185-193.
[42] YANG Y Y, CHIA H H, CHUNG T S. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Journal of Controlled Release, 2000, 69(1): 81-96.
[43] 王光磊, 陳璨, 魏文增, 王宮. 溶劑揮發(fā)法制備牛樟芝總三萜微囊的研究. 海峽藥學, 2019, 31(2): 5-10.
WANG G L, CHEN C, WEI W Z, WANG G. Study on preparation of microcapsule loaded total triterpene from theby emulsion-solvent evaporation technique. Strait Pharmaceutical Journal, 2019, 31(2): 5-10. (in Chinese)
[44] MORITA T, HORIKIRI Y, YAMAHARA H, SUZUKI T, YOSHINO H. Formation and isolation of spherical fine protein microparticles through lyophilization of protein-poly (ethylene glycol) aqueous mixture. Pharmaceutical Research, 2000, 17(11): 1367-1373.
[45] O’DONNELL P B, MOGINITY J W. Influence of processing of the stability and release properties of biodegradable microspheres containing thioridazine hydrochloride. European Journal of Pharmaceutics Biopharmaceutics, 1998, 45(1): 83-94.
[46] LIU B X, WANG Y, YANG F, WANG X, SHEN H, CUI H X, WU D C. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.Colloids and Surfaces B: Biointerfaces, 2016, 14: 38-45.
[47] ROSKOS K V, MASKIEWICZ R. Degradable controlled release systems useful for protein delivery. Pharmaceutical Biotechnology, 1997, 10: 45-92.
[48] 劉曉旭, 侯志廣, 吳敬慧, 王雪, 逯忠斌. 嘧菌酯水解動力學研究. 農業(yè)環(huán)境科學學報, 2012, 31(8): 1603-1607.
LIU X X, HOU Z G, WU J H, WANG X, LU Z B. Hydrolyze kinetics and mechanism of azoxystrobin. Journal of Agro-Environment Science, 2012, 31(8): 1603-1607. (in Chinese)
[49] 管磊, 張鵬, 王曉坤, 任玉鵬, 郭貝貝, 劉峰. 吡唑醚菌酯在水環(huán)境中的光解及微囊化對其光穩(wěn)定性的影響. 農業(yè)環(huán)境科學學報, 2015, 34(8): 1493-1497.
GUAN L, ZHANG P, WANG X K, REN Y P, GUO B B, LIU F. Photodegradation of pyraclostrobin in water environment and microencapsulation effect on its photostability. Journal of Agro- Environment Science, 2015, 34(8): 1493-1497. (in Chinese)
[50] VOLOVA T, ZHILA N, VINOGRADOVA O, SHUMILOVA A, PRUDNIKOVA S, SHISHATSKAYA E. Characterization of biodegradable poly-3-hydroxybutyrate films and pellets loaded with the fungicide tebuconazole.Environmental Science and Pollution Research International, 2016, 23(6): 5243-5254.
[51] XU W B, LI W, XIONG W, REN Y, LIU Y P, MIAO Y Z, XU Z H, ZHANG N, SHEN Q R, ZHANG R F. Diversity-triggered deterministic bacterial assembly constrains community functions. Nature Communications, 2019, 10: 3833.
Performance Study of Prothioconazole Microcapsules Prepared by Solvent Evaporation Method
Chen Ge, CAO LiDong, XU ChunLi, ZHAO PengYue, CAO Chong, LI FengMin, HUANG QiLiang
Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
【】The biodegradable material poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P (3HB-co-4HB)) was used as the wall material to prepare prothioconazole microcapsules. The effect of preparation process on the microcapsule size, pesticide loading and encapsulation efficiency was optimized. The microcapsules with good dispersion, small particle size, and high pesticide loading were screened out, and the preliminary researches on the release kinetics, photodegradation, and indoor biological activity onwere carried out. The purpose of this study is to provide a theoretical basis and technical support for improving the stability and utilization efficiency of prothioconazole in the environment.【】The solvent evaporation method was used to prepare prothioconazole microcapsules, and the effects of the mass ratio of core to wall material, volume ratio of oil to water, mass fraction of emulsifier and shearing speed on the particle size, pesticide loading and encapsulation efficiency of the microcapsules were investigated through a single factor test. Taking pesticide loading and particle size as the key technical indicators, the optimal preparation parameters were screened out through the L9(34) orthogonal test, which was further verified. The morphological and structural features, release performance and photodegradability of the microcapsules were determined by scanning electron microscope (SEM), fourier transform infrared (FTIR) spectrometer, and high performance liquid chromatography (HPLC). The toxicity of prothioconazole microcapsules onwas investigated by indoor bioassay.【】The mass ratio of core to wall material had a significant effect on the pesticide loading capacity of the microcapsules. As the ratio of core material increased, the loading capacity gradually increased. the volume ratio of oil to water, PVA mass fraction, and shearing speed had significant effects on the microcapsule particle size. As the shearing speed and PVA mass fraction increased, the microcapsule particle size gradually decreased. The volume ratio of oil to water had a great influence on the morphology and dispersion of microcapsules, and the influence of various factors on the encapsulation efficiency of the microcapsules was not significant. The optimal preparation parameters obtained through the L9(34) orthogonal test was as follows: the mass ratio of core to wall material of 1﹕5, volume ratio of oil to water of 1﹕5, PVA mass fraction of 2%, and shearing speed of 12 000 r/min. Under the optimal preparation process, spherical prothioconazole microcapsules with a particle size (D50) of 3.32 μm and a span of 2.82 were prepared with a loading content of 15.52% and an encapsulation efficiency of 80.24%. Compared with prothioconazole technical material, the microcapsules had better sustained-release performance, and the release kinetics conformed to Fick’s diffusion law, presenting two processes of “burst release” followed by “sustained release”. The photostability of prothioconazole in the microcapsules in aqueous solution was enhanced, and the half-life of photolysis was doubled. The mycelial growth rate inhibition result showed that the fungicidal activity of prothioconazole microcapsules againstwas equivalent to that of prothioconazole technical material.【】Prothioconazole microcapsules with biodegradable material P (3HB-co-4HB) as a carrier were prepared, and different preparation processes affect the pesticide loading, dispersion state and particle size of microcapsules. The slow and sustained release and photostability are of great significance for reducing the amount of pesticide applied and improving the utilization efficiency of pesticide, which has potential application in control of peanut southern blight.
prothioconazole; polyhydroxybutyrate; microcapsule; preparation process; controlled release;
10.3864/j.issn.0578-1752.2021.04.008
2020-05-14;
2020-07-08
國家重點研發(fā)計劃(2017YFD0200300)、中央級公益性科研院所基本科研業(yè)務費(Y2020XK14)
陳歌,E-mail:chenge0036@126.com。通信作者曹立冬,E-mail:caolidong@caas.cn。通信作者黃啟良,E-mail:qlhuang@ippcaas.cn
(責任編輯 岳梅)