• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高效催化氧還原及氧析出反應(yīng)的摻雜石墨炔的設(shè)計(jì)與理論計(jì)算

    2021-02-26 13:44:22張珊珊黃儀珺張利鵬李亞平孫曉明夏振海
    關(guān)鍵詞:北京化工大學(xué)德克薩斯州工程系

    馬 駿,鐘 洋,張珊珊,黃儀珺,張利鵬,李亞平,孫曉明,夏振海

    (1.北京化工大學(xué)化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100029;2.北德克薩斯州大學(xué)材料科學(xué)與工程系,丹頓TX 76203,美國(guó))

    1 Introduction

    With mightily approving of sustainable development concept,the clean and efficient renewable energy storage and conversion devices,such as fuel cells,metal-air batteries and water electrolyzers,have aroused tremendous attention currently because of their advantages of no pollution,recyclability and high energy density[1—3].From the perspective of chemical reaction principles,the core of these technologies are two funda?mental oxygen-involving reactions,namely oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)[4,5].However,their sluggish reaction rates restrict seriously the widespread applications[6].In response to the above problem,rare metal catalysts,including platinum(Pt),iridium(Ir)and ruthenium(Ru),are commonly used to accelerate the kinetics of the ORR and OER[7—9].However,such catalysts are not only expensive and rare in reserves,but also have the weaknesses of poor durability and environmental pol?lution[10].Consequently,it is of great significance to explore and design low-cost catalysts with high-activity for ORR and OER[11].

    As the allotrope of carbon materials,graphdiyne(GDY)has emerged as a promising candidate in the field of ORR/OER electrocatalysis since 2010[12—16].The planar GDY skeleton is fabricated by the hexagonal ben?zene rings and diacetylenic linkages(—C≡C—C≡C—)[17].A large amount of experiments showed that the intrinsic ORR/OER activities of GDY were enhancedviaintroducingp-region elements(N,B and S)[18—20]into its matrix.For example,Zhanget al.[18]synthesized the N-doped GDY electrode,which showed ORR perfor?mance comparable to commercial Pt/C,and tolerance to cross-over effect.On this basis,tremendous efforts have been devoted to further precisely control the position and the content of doping heteroatoms.The highly controllable arrangements came into outstanding catalytic activities,whether forming the pyridinic nitrogen selectively[21]or anchoringsp-hybridized nitrogen atom through pericyclic replacement of the acetylene moieties[22].In addition,Wanget al.[23]gave a route to successfully control the relative sites between nitrogen and sulfur substitution,boosting the current density for OER,higher than the commercial RuO2.

    Although doping different heteroatoms is an effective strategy to improve the ORR/OER properties under experimental reports,trial-and-error approach has still been adopted to search ideal catalysts up to date[24,25],which is extremely time-consuming and resource-wasteful.On the contrary,theoretical simulations make it possible to accelerate development of advanced catalysts based on high-throughput screening and predic?tion[26,27].Herein,we designed heteroatom-doped GDY catalysts,and systematically studied their electronic structures,active sites and catalytic activities.The correlation between the electrochemical activity and properties of the active sites was unveiled,which provides a guiding principle for rational design of twodimensional(2D)carbon-based catalysts for clean energy conversion and storage technologies.

    2 Computational Methods

    The first-principles calculations of all the heteroatom-doped GDY catalysts were made utilizing the Vien?naAb initioSimulation Package(VASP)software package[28].Taking the density functional theory(DFT)as the framework,the projection-augmented plane wave(PAW)[29]was employed to deal with the nuclei-electron interaction,and in the meanwhile the generalized gradient approximation(GGA-PBE)[30]was applied to de?scribe the electron-electron effects.The cutoff energy of the plane wave basis was set to 500 eV.Under the conjugate gradient algorithm,when the energy difference between the two electron steps was less than 10?5eV and the average force of each atom was less than 0.1 eV/nm,the relaxed process reached required end.In the first Brillouin zone,a 3×3×1k-point was generated automatically withΓpoint as the center according to the Monkhorst-Pack way.According to previous reports,with regard to carbon-based catalysts,the solvent effect contributed marginally and negligibly to catalytic performance compared to the effect of heteroatom doping[31].Hence,on account of the typical monolayer nanostructure of GDY,a 1.5 nm vacuum layer was imposed along thecaxis direction to eliminate interlayer forces.

    3 Results and Discussion

    3.1 p-Block Element Doped GDY Structures and Stability

    Scheme 1 shows the geometric structure of periodic GDY arrays.After optimization,the lattice constantaandbequaled to 0.947 nm,which is consistent with the results in the literature[32—34].The 2D network of GDY are porous structures with triangular holes that not only impedes the erosion of larger acid ions,but also keep access for transporting small molecules(O2,H2O).This unique structure is beneficial to enhance the catalyst in the acid system.In addition,since the surface of the structure is filled withsp-sp2hybrid carbon,this un?even electron distribution may lead to highly active sites.For convenience of expression,the atoms in the model were numbered from 1 to 12.M-GDY means that the elements in thepregion are doped into the GDY ma?trix,where M=B,Si,Ge,N,P,As,Sb,S,Se,Te,Cl,Br,I.Due to the ultra-high symmetry,there are three typical positions as following:1(sp2-C),2 and 3(sp-C),respectively.Due to the difference in the num?ber of electrons in the outer layer,the halogen elements enter the carbon skeleton in the form of adsorption while the other elements mainly substitute the carbon.For every possible positions and doping elements,we calculated the possible adsorption sites from 1 to 12.aM/GDY-b represents that heteroatom M dopes at the site-a of GDY and then it reacts at site-b.

    Scheme 1 Schematic diagram of a graphdiyne model with p?block element doping

    In order to evaluate whether the carbon skeleton is stable or not after doping,the cohesive energies(Ecoh)were calculated.It is obtained by the formula[35]:Ecoh=(EDFT?XμC?YμM)/(X+Y),whereEDFTis the total energy obtained after optimizing.μCandμMrepresent the averaged chemical potential per atom in the most crystal phase of carbon atoms and heteroatoms(Table S1,see the Electronic Supplementary Matcrial of this paper),andXandYmean the number of carbon atoms and heteroatoms,respectively.As can be seen from Fig.1,in stably existing systems,P is the easiest element to enter the carbon skeleton,while Sb is the most difficult one.According to the relatively stable sites,all the elements can be divided into two categories,the first cate?gory includes B and Si,which are more inclined to replacesp2-hybridized carbon atoms,and the second one in?cludes Ge,N,P,As,Sb,S,Se,Te,Cl,Br and I,which prefer to dope adjacent tosp-hybridized carbon.Except 1Br/GDY and 1I/GDY,most of the doped GDYs haveEcohless than zero,indicating that they are thermodynamically stable and can be synthesized experimentally.The band structures of pristine and doped GDY were further investigated as it is significant to transport electron during catalytic reactions(Fig.S1—Fig.S14,see the Electronic Supplementary Material of this paper).For pure GDY,the band gap is about 0.50 eV,which is consistent with the result previously reported[36].On the one hand,some doped structures,such as B-GDY,2Ge-GDY,N-GDY,etc.,exhibit metallic features for a certain amount of energy states at the Fermi level,while others form a band gap and spin polarization near the Femi level.However,it still re?mains unaffected on their conductivity because the electron is facile to jump the narrow band gap.

    Fig.1 Cohesion energies of different heteroatoms?doped graphdiyne

    3.2 Catalytic Performance of Doped GDYs for ORR/OER

    For the above-mentioned stable structures,ORR/OER pathways were explored.According to Norskov’s theory[37,38],the ORR reaction under acidic conditions is that O2transfers four electrons to generate H2O.The mechanism mainly includes four steps:

    where*represents the active site,HOO*,O*,and HO*represents the adsorbed intermediate,g and l refers to the gas and liquid states,respectively.The OER can be regarded as the reverse process of the ORR.Hence,the mechanism is opposite to ORR:

    The free energy change(ΔG)of the elementary reactions in every steps is calculated by the following formula[39]:ΔG=ΔE+ΔZPE?TΔS?eU?kbTln[H+],whereΔE(eV),ΔZPE(eV)andΔS(eV/K)refer to the calculated energy,zero point energy and entropy changes after reactions,respectively,T(K),e(e),U(V),kb(eV/K)and[H+]denote the temperature,charge number,electric potential,Boltzmann constant and hydro?gen ion concentration(pH=0),respectively.ΔG1,ΔG2,ΔG3andΔG4,referred to free energy changes of the elementary reactions from(ORR/OER-1)to(ORR/OER-4),respectively.Similar to classic Norskov’s method,the overpotential parameterηwas also introduced as a measure for the intrinsic activity of M-GDY.For the ORR,η=ΔGmin/e+1.23 V;for the OER,η=ΔGmax/e?1.23 V,whereΔGmaxandΔGminare the maximum and minimum values of free energy changes in the four-step elementary reactions,respectively[40].Correspondingly,this step is the reaction limit step.

    In order to compare the performance before and after doping,the ORR/OER pathways of pristine GDY was first calculated and shown in Fig.2(A)and(B).The catalytic activity of carbon in the ethynyl units is higher than that of aromatic moiety rings(Table S2,see the Electronic Supplementary Material of this paper).The overpotentialsηof the pristine GDY are 1.33 V(ORR)and 1.10 V(OER).Under the thermodynamic equilibrium potential(U=1.23 V),steps(ORR-1)and(OER-4)are“uphill”processes,indicating that they cannot be spontaneous.In particular,the conversion of adsorbed O2to HOO*is the rate-limiting step of the ORR.Similarly,there is rate-limiting step in OER:O*combining with H2O to form HOO*and releases H+.In both ORR and OER,pure GDY has a large thermodynamic energy barrier in the catalytic processes,which is required to be further modified to boost its catalytic activities.

    Fig.2 Free energy diagrams for ORR(A)and OER(B)of GDY at different electrode potential U,and ORR(C)and OER(D)of a series of doped GDY(U=0 V)

    After introducing heteroatoms into the GDY system,a large number of possible active sites were calculated,and the best catalytic performance of the M-GDY structure was selected for each doping element,as shown in Fig.2(C)and(D).For ORR,those M-GDYs with N and Sb substitution or Cl,Br,and I adsorption onsp-C site exhibit the improved catalytic performance,but the substitution of other atoms forsp2-C results in better performance.The improvement of the catalytic activities is attributed to the heteroatom-doping that breaks the highly symmetrical electronic structure,and thus change the adsorption strength of the intermediates on the catalyst surface.This doping effect significantly enhances the ORR activity of M-GDY.Among all the doping structures,pnictogen group doping shows the best catalytic effect:1P/GDY-9 has the lowest overpotential(0.50 V),followed by 1As/GDY-4(0.51 V)<3N/GDY-4(0.52 V)<2Sb/GDY-2(0.53 V).In OER,heteroatoms can be divided into three types according to the optimal doping sites:(1)at site-1:Ge,S,Se,Te,and Cl;(2)at site-2(sp-C):Si,P,As,Br,and I;(3)at site-3(sp-C):B,N and Sb.Com?pared with GDY,the rate-limiting steps of the GDY doped with all the elements except for B and S elements,change from the first step(OER-1)due to the different intermediates adsorption.The GDY with Ge,P,As and Cl change to the second step(OER-2)while the limiting step become the third step(OER-3)for those with Si,N,Sb,Se,Te,Br and I.Among those doping structures,the OER overpotential of 3Sb/GDY-1 is the lowest(0.41 V),while for the other doping structures,including 2P/GDY-12(0.43 V),2As/GDY-12(0.43 V),1Cl/GDY-6(0.45 V),2Br/GDY-1(0.47 V),2I/GDY-1(0.50 V)and 3B/GDY-7(0.50 V),the OER overpotemtial is within 0.50 V.It was noted that the above overpotentials were obtained from an idealized model as most reports[40,41].Although some experimental studies indicated that macroscopic struc?tures had no noticeable changes before and after electrochemical measurements[23],they may still variate at the atomic level in which the carbon materials were easily oxidized.The stabilities and activities of GDY catalysts were evaluated by an hydroxyl adsorbed on the surface,one of the simplest models,in an alkaline electrolyte,as the pervious work[42].In this reaction,the performance decayed from 0.41 V to 1.12 V(Fig.S15,see the Electronic Supplementary Material of this paper),indicating that we should pay more attention to the dynamic degradation mechanisms to prevent performance downgrading in the future.For experiments,it is significant to develop more advanced characterization tools to determine how they evolve during reactions.For theoretical predictions,the model should be developed to study the detail how the GYD is oxidized in the reactions.

    3.3 Scaling Relationship and Intrinsic Descriptors

    Firstly,the adsorption energy of intermediates was used as a descriptor to evaluate the catalytic activity of different doped GDY structures.The adsorption energy of the reaction intermediates HOO*,O*and HO*can be calculated by the following equations[43,44]:

    Fig.3 shows the scaling relationship betweenΔGHOO*andΔGHO*.There exists a linear correlation between them and the specific relationship is described by ΔGHO*=ΔGHOO*?3.35.Thus,in GDY system,the ad?sorption free energy of all the intermediates are corre?lated with each other and the minimum value of the po?tential the system could reach can be estimated from the relationship.According to the chemical principle,ΔG1+ΔG2+ΔG3+ΔG4=4.92 eV.This equation and the above scaling relation betweenΔGHO*andΔGHOO*,joint?ly set a constraint onΔG2+ΔG3andΔG1+ΔG4as fol?lows:ΔG2+ΔG3=ΔGHOO*?ΔGHO*=3.35 eV,ΔG1+ΔG4=4.92?(ΔG2+ΔG3)=1.57 eV.Hence,the ORR/OER overpotential has the minimum value,ηmin=0.44 V.Viadoping heteroatoms,the overpotentials of GDY-based catalysts almost reached the minimum value in the OER process.

    As shown in Fig.4(A)and(B),multitudinous calculations and statistical results indicate that the ORR and OER overpotentials show a“volcanic”trend withΔGHO*,andΔGO*?ΔGHO*,respectively.WhenΔGHO*isca.0.8 eV,the ORR overpotential is close to the“volcano”peak,about 0.4 V.Similarly,the catalysts achieve its best OER performance(ηca.0.5 V)if the value ofΔGO*?ΔGHO*is near a region of 1.6 eV.Al?though the above descriptors are regarded as tools to predict the ORR/OER overpotentials of different catalytic sites in different models,it is still inconvenient to use the adsorption energies of the reaction intermediates.

    Fig.3 Relationship between HOO*and HO*adsorp?tion free energies of doped GDY structures at different sites

    A simple intrinsic descriptorφwas found after a lot of testing and exploration.First of all,since the intro?duction of dopants will affect the electronic structure of carbon atoms in GDY,it is critical to effectively ex?press the electron transfer utilizing electronegativity,first ionization energy and electron affinity.Secondly,the difference between the radius of the heteroatoms and the carbon atom deforms the GDY structure,which eventually changes the effect on the electronic structure.Therefore,the catalytic activity is also related to the relative radius of the heteroatom and the carbon atom.Based on the above two aspects,we defined the mathe?matical expression of the intrinsic descriptor asφ=(χM/χC)×(IMYC/ICYM)0.5×(RM/RC),whereχ,I,YandRrepre?sent the electrical negativity,first ionization energy,electron affinity energy,and atomic radius,subscripts M and C indicate heteroatoms and carbon atom,respectively.The regulations of catalytic activities originates from the variation of electronic structure,which is related to the above intrinsic factors of dopants.To better investigate how the dimensionless descriptor denotes the effect of these characteristics,we calculated the elec?tron charge distributions,represented by 1P-GDY and 3Sb-GDY.As can be seen in Fig.S16 and Fig.S17(see the Electronic Supplementary Material of this paper),doping gave rise to the charge transfer,which altered the adsorption energies of reactive intermediates.The electron flow,from P and Sb to carbon framework,made the charge accumulated at active sites,which accordingly brought the more positive charge values for P(+1.71)and Sb(+1.03).Furthermore,the spin density redistributions were also altered by the heteroatoms substitution(Fig.S17).It is well known that the electron-rich and high-spin states are beneficial to catalytic re?action.Hence,it is essential to introduce parameters associated with electron transfer,such as electrical nega?tivity,first ionization energy,electron affinity energy and so on,so that the charge and spin density can be ex?pressed indirectly.In addition,unlike the graphene,there is the extreme distortion at atomic level in doped GDY chains(Fig.S18,see the Electronic Supplementary Material of this paper),which is related to the dop?ant radius.These basic parameters in the descriptor correlate material structure with electrochemical reactivi?ty.Fig.4(C)and(D)show the overpotential as a function of the intrinsic descriptor.A volcano-shaped rela?tionship is established between the catalytic activities(overpotential)and the descriptor.When 1.0<φ<1.3,the overpotential of ORR/OER is at the“volcanic peak”(within 0.5 V).Compared with the energy descrip?tors,this intrinsic descriptor can measure and predict the reactivity of ORR/OER only through the fundamen?tal physical and chemical parameters of the dopant and carbon atoms,which has more physical meaning and practical value for application.

    Fig.4 ORR(A)and OER(B)overpotentials versus adsorption free energiesΔGHO*andΔGO*-ΔGHO*and ORR(C)and OER(D)minimum overpotentials versus the intrinsic descriptor

    We compared the catalytic characteristics of GDY and graphene,since they are two typical carbon allo?tropes.Firstly,heteroatom doping is a general strategy for both to facilitate the catalytic performance.According to the previous reports[40,41],N and P elements are ideal dopants to achieve highly bifunctional activ?ities for graphene,while P,Sb and As atoms for GDY.It is only for ORR that N-GDY exhibits satisfactory per?formance than noble-metal counterparts.Secondly,the electrochemical activities for GDY and graphene sys?tems were described in two similar descriptors,both of which were related with electrical negativity and elec?tron affinity energy[40,41].However,attributed to the co-exist of two hybrid types and the flexibility of its numer?ous diacetylenic chains,the GDY catalyst correlate more intrinsic material factors in the descriptor than gra?phene.Last but not the least,unlike graphene,GDY with non-uniform hybrid structures provide more modu?late possibilities to accelerate the catalytic processes.The network framework of GDY is not only more benefi?cial to the diffusion of small molecules involved in the ORR/OER,but also favorable for the design of next generation of foldable and stretchable energy devices[45,46].As an emerging candidate for ORR/OER catalysts,GDY is gaining more and more attention,and our predictions provide a theoretical base for GDY as an excel?lent catalyst.

    4 Conclusions

    We have carried out the first-principles calculations,and systematically studied the ORR and OER cata?lytic properties of GDY doped with differentp-block elements.The formation energy calculations show that these doping structures can exist stably.The catalysts with good ORR/OER performance are predicted by cal?culating the reaction pathways and overpotentials,with the priority orders of 1P/GDY-9>1As/GDY-4>3N/GDY-4 for ORR,and 3Sb/GDY-1>2P/GDY-12>2As/GDY-12 for OER.In order to efficiently predict its catalytic ac?tivity,we found an intrinsic descriptorφ=(χM/χC)×(IMYC/ICYM)0.5×(RM/RC),which provides a guiding principle in the design of low-cost GDY even other carbon-based catalysts for the development of clean energy conver?sion devices in the future.

    Acknowledement

    The authors thank the Sino-Foreign Cooperative Training Project of BUCT.We are also grateful to Prof.LIN Wen-feng(Loughborough University)for his insightful suggestions.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20200332.

    This work is supported by the National Natural Science Foundation of China(Nos.21675007,21676015,21520102002,91622116,51973174),the National Key Research and Development Project,China(Nos.2018YFB1502401,2018YFA0702002,2017YFA0206500)and the Royal Society and the Newton Fund Through the Newton Advanced Fellowship Award(No.NAFR1191294).

    猜你喜歡
    北京化工大學(xué)德克薩斯州工程系
    美國(guó)少年司法替代性教育項(xiàng)目的運(yùn)行框架與經(jīng)驗(yàn)啟示——以德克薩斯州為例
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    2020年8月18日,美軍在德克薩斯州胡德堡試驗(yàn)新型M1A2 SEPv3坦克的火力
    軍事文摘(2020年19期)2020-10-13 12:24:36
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    Animals at Work 動(dòng)物也當(dāng)官
    電子信息工程系
    黄色一级大片看看| 免费人成在线观看视频色| 禁无遮挡网站| 毛片一级片免费看久久久久| 亚洲精品国产色婷婷电影| av又黄又爽大尺度在线免费看| 看免费成人av毛片| 看免费成人av毛片| 亚洲成人av在线免费| 国产伦理片在线播放av一区| 赤兔流量卡办理| 人妻 亚洲 视频| 国产伦精品一区二区三区四那| 成年女人在线观看亚洲视频 | 插逼视频在线观看| 亚洲av二区三区四区| 久久久久九九精品影院| 春色校园在线视频观看| 最近的中文字幕免费完整| 内地一区二区视频在线| 新久久久久国产一级毛片| 欧美潮喷喷水| 在线精品无人区一区二区三 | 九九久久精品国产亚洲av麻豆| 我要看日韩黄色一级片| 亚洲高清免费不卡视频| 国产男人的电影天堂91| 国产一区二区亚洲精品在线观看| 久久久久久伊人网av| 听说在线观看完整版免费高清| 国产精品熟女久久久久浪| 久久人人爽人人片av| 少妇熟女欧美另类| 观看免费一级毛片| 免费看不卡的av| 特级一级黄色大片| 搞女人的毛片| 国产伦在线观看视频一区| 国产探花极品一区二区| 国产在线男女| 99久久九九国产精品国产免费| 日本三级黄在线观看| 久久99热6这里只有精品| 久久久久久久国产电影| 麻豆乱淫一区二区| 成年人午夜在线观看视频| 亚洲高清免费不卡视频| 国产精品熟女久久久久浪| 91精品伊人久久大香线蕉| 国语对白做爰xxxⅹ性视频网站| 禁无遮挡网站| 午夜福利视频1000在线观看| 色婷婷久久久亚洲欧美| 一本久久精品| 黄色视频在线播放观看不卡| 国产精品国产三级国产专区5o| 韩国av在线不卡| 免费看av在线观看网站| 国产精品国产三级国产专区5o| 亚洲不卡免费看| 国产探花在线观看一区二区| 国产探花极品一区二区| 只有这里有精品99| av一本久久久久| 亚洲国产色片| 欧美高清性xxxxhd video| 亚洲性久久影院| 成人免费观看视频高清| 日本黄大片高清| 神马国产精品三级电影在线观看| 精品一区二区免费观看| 少妇丰满av| 国产成人福利小说| 噜噜噜噜噜久久久久久91| 国产一区二区亚洲精品在线观看| 久久精品久久精品一区二区三区| 中文精品一卡2卡3卡4更新| 国产精品爽爽va在线观看网站| 免费观看性生交大片5| 天美传媒精品一区二区| 久久午夜福利片| 成人综合一区亚洲| 国产午夜精品一二区理论片| 亚洲欧美成人精品一区二区| 看黄色毛片网站| 成人高潮视频无遮挡免费网站| 美女脱内裤让男人舔精品视频| 2022亚洲国产成人精品| 成人黄色视频免费在线看| 国产成年人精品一区二区| 亚洲精品乱久久久久久| av在线播放精品| 日韩一区二区三区影片| 日韩欧美一区视频在线观看 | 亚洲欧美中文字幕日韩二区| 青春草视频在线免费观看| 亚洲成人av在线免费| 亚洲伊人久久精品综合| 日韩欧美精品免费久久| 久久精品国产a三级三级三级| 国产高清不卡午夜福利| 亚洲欧美成人综合另类久久久| 超碰av人人做人人爽久久| 韩国高清视频一区二区三区| 18禁动态无遮挡网站| 中文资源天堂在线| 亚洲自拍偷在线| 久久综合国产亚洲精品| 亚洲国产色片| 看黄色毛片网站| 亚洲精品日韩在线中文字幕| 青青草视频在线视频观看| 亚洲精品成人av观看孕妇| 成年女人在线观看亚洲视频 | 亚洲欧美一区二区三区国产| 在线观看一区二区三区激情| 成年女人看的毛片在线观看| 丰满人妻一区二区三区视频av| 欧美成人一区二区免费高清观看| 高清毛片免费看| 久久女婷五月综合色啪小说 | 亚洲欧美日韩另类电影网站 | 看免费成人av毛片| 又大又黄又爽视频免费| 国产精品精品国产色婷婷| 国产精品一区www在线观看| 免费人成在线观看视频色| 三级国产精品欧美在线观看| 有码 亚洲区| 亚洲国产精品成人久久小说| 亚洲三级黄色毛片| 成人毛片60女人毛片免费| 99热网站在线观看| 婷婷色综合www| 国产一区有黄有色的免费视频| 黄色配什么色好看| 日本黄大片高清| 搡女人真爽免费视频火全软件| 少妇猛男粗大的猛烈进出视频 | 成人国产av品久久久| 午夜福利视频1000在线观看| 观看免费一级毛片| 国产免费一级a男人的天堂| 啦啦啦在线观看免费高清www| 精品一区二区三区视频在线| 波多野结衣巨乳人妻| 欧美精品人与动牲交sv欧美| 18禁在线播放成人免费| 成人亚洲精品av一区二区| 老司机影院毛片| 国产一区亚洲一区在线观看| 中文乱码字字幕精品一区二区三区| 日韩电影二区| 亚洲第一区二区三区不卡| 国产伦精品一区二区三区视频9| 欧美xxxx黑人xx丫x性爽| 国产精品蜜桃在线观看| 伦理电影大哥的女人| 日韩不卡一区二区三区视频在线| 丝袜美腿在线中文| 又爽又黄a免费视频| 大陆偷拍与自拍| 国产一区亚洲一区在线观看| 亚洲四区av| 特大巨黑吊av在线直播| 夜夜爽夜夜爽视频| 伦理电影大哥的女人| 亚洲成色77777| 人人妻人人澡人人爽人人夜夜| 国产一区二区三区综合在线观看 | 国产欧美另类精品又又久久亚洲欧美| 国产亚洲午夜精品一区二区久久 | 久久精品国产鲁丝片午夜精品| 麻豆精品久久久久久蜜桃| 久久久久久久久久久丰满| 亚洲,欧美,日韩| 你懂的网址亚洲精品在线观看| av国产免费在线观看| 黑人高潮一二区| 性插视频无遮挡在线免费观看| 国产精品国产三级国产专区5o| 精品视频人人做人人爽| 白带黄色成豆腐渣| 日产精品乱码卡一卡2卡三| 亚洲国产欧美人成| 婷婷色综合www| 欧美潮喷喷水| 日本与韩国留学比较| 国产av国产精品国产| 亚洲久久久久久中文字幕| 99视频精品全部免费 在线| 精品国产乱码久久久久久小说| av在线观看视频网站免费| 国精品久久久久久国模美| 国产 一区 欧美 日韩| 两个人的视频大全免费| 欧美一区二区亚洲| 中文字幕亚洲精品专区| 你懂的网址亚洲精品在线观看| 夫妻午夜视频| 91精品国产九色| 日本免费在线观看一区| 久久精品综合一区二区三区| 91精品国产九色| 午夜福利在线观看免费完整高清在| 欧美另类一区| 中文字幕制服av| av.在线天堂| 夫妻午夜视频| 亚洲久久久久久中文字幕| 国产精品一区二区性色av| 在线观看国产h片| 精品99又大又爽又粗少妇毛片| 欧美人与善性xxx| 亚洲怡红院男人天堂| 日韩亚洲欧美综合| 高清视频免费观看一区二区| 97超视频在线观看视频| 秋霞在线观看毛片| 成年版毛片免费区| 亚洲国产欧美人成| 别揉我奶头 嗯啊视频| 永久免费av网站大全| 偷拍熟女少妇极品色| 涩涩av久久男人的天堂| 亚洲精品视频女| 欧美zozozo另类| 久久精品国产a三级三级三级| 欧美精品人与动牲交sv欧美| 色播亚洲综合网| 亚洲在线观看片| 自拍偷自拍亚洲精品老妇| 王馨瑶露胸无遮挡在线观看| 亚洲av中文字字幕乱码综合| 亚洲国产av新网站| 精品一区二区三区视频在线| 国产毛片a区久久久久| 亚洲精品色激情综合| 久久久色成人| 欧美丝袜亚洲另类| 亚洲综合色惰| 99久久中文字幕三级久久日本| 天美传媒精品一区二区| 超碰97精品在线观看| 国产伦精品一区二区三区四那| 久久鲁丝午夜福利片| 精品国产一区二区三区久久久樱花 | 亚洲美女视频黄频| 欧美另类一区| 亚洲国产精品成人综合色| 久热久热在线精品观看| 黄色配什么色好看| 中文欧美无线码| 激情五月婷婷亚洲| 观看美女的网站| 婷婷色综合www| 亚洲在线观看片| 成年版毛片免费区| 亚洲国产av新网站| 国产精品久久久久久av不卡| 久久精品国产鲁丝片午夜精品| 五月开心婷婷网| 26uuu在线亚洲综合色| 国产成人a∨麻豆精品| 亚洲美女搞黄在线观看| 伦理电影大哥的女人| 国内揄拍国产精品人妻在线| 国产美女午夜福利| 久久久久久久久久人人人人人人| 超碰av人人做人人爽久久| 亚洲在线观看片| 国产一区二区在线观看日韩| 亚洲人与动物交配视频| 国产熟女欧美一区二区| 夫妻午夜视频| 亚洲精品一区蜜桃| 亚洲精品自拍成人| 免费观看性生交大片5| 久久久久久久久久久丰满| 成年女人看的毛片在线观看| 丝袜美腿在线中文| 国产精品不卡视频一区二区| 一级毛片 在线播放| 韩国高清视频一区二区三区| 亚洲精品aⅴ在线观看| 亚洲国产精品成人综合色| 国产精品国产av在线观看| 国产精品久久久久久精品电影| 热re99久久精品国产66热6| 精品熟女少妇av免费看| 日日摸夜夜添夜夜爱| 一级毛片aaaaaa免费看小| 少妇人妻 视频| 亚洲四区av| 色综合色国产| 超碰av人人做人人爽久久| 夜夜爽夜夜爽视频| 免费av毛片视频| 国产69精品久久久久777片| 国产高潮美女av| 毛片一级片免费看久久久久| 一个人看视频在线观看www免费| 午夜激情久久久久久久| 中文在线观看免费www的网站| av免费观看日本| 国产黄色视频一区二区在线观看| 欧美日韩综合久久久久久| 美女xxoo啪啪120秒动态图| 国产淫语在线视频| 国产成人91sexporn| 久久99热6这里只有精品| 日韩欧美 国产精品| 我要看日韩黄色一级片| 日韩欧美一区视频在线观看 | 身体一侧抽搐| 69人妻影院| 精品视频人人做人人爽| 97超视频在线观看视频| 国产在线一区二区三区精| 蜜臀久久99精品久久宅男| 欧美日韩国产mv在线观看视频 | 我的老师免费观看完整版| 亚洲内射少妇av| 丝袜美腿在线中文| 一本久久精品| 热99国产精品久久久久久7| 国产精品国产三级国产专区5o| 亚洲性久久影院| 只有这里有精品99| 黄色怎么调成土黄色| 狠狠精品人妻久久久久久综合| 国产毛片a区久久久久| 精品国产乱码久久久久久小说| 青青草视频在线视频观看| 欧美精品一区二区大全| 九九久久精品国产亚洲av麻豆| 在现免费观看毛片| 久热这里只有精品99| 国产极品天堂在线| 卡戴珊不雅视频在线播放| 尤物成人国产欧美一区二区三区| 制服丝袜香蕉在线| 97在线视频观看| 亚洲av不卡在线观看| 五月开心婷婷网| 高清日韩中文字幕在线| 97热精品久久久久久| 成人一区二区视频在线观看| 五月伊人婷婷丁香| 黄色视频在线播放观看不卡| 国产av码专区亚洲av| 色播亚洲综合网| 久久精品国产亚洲av涩爱| 国产av不卡久久| 久久久久久久久久久丰满| 亚洲成人精品中文字幕电影| 日韩亚洲欧美综合| 插逼视频在线观看| 好男人视频免费观看在线| 麻豆成人av视频| 亚洲国产av新网站| 国产精品久久久久久精品电影小说 | 2018国产大陆天天弄谢| 亚洲国产欧美人成| 亚洲精品成人av观看孕妇| 亚洲在久久综合| 亚洲精品久久久久久婷婷小说| 免费av毛片视频| 日韩免费高清中文字幕av| 国产综合懂色| 亚洲av国产av综合av卡| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 成年女人看的毛片在线观看| 18禁在线播放成人免费| 久久精品国产鲁丝片午夜精品| 三级经典国产精品| 国产亚洲午夜精品一区二区久久 | 亚洲精品aⅴ在线观看| 综合色丁香网| 亚洲av成人精品一区久久| 亚洲熟女精品中文字幕| 春色校园在线视频观看| av在线亚洲专区| 欧美日韩视频精品一区| 欧美成人a在线观看| 80岁老熟妇乱子伦牲交| 一区二区av电影网| 国产黄色视频一区二区在线观看| .国产精品久久| 亚洲精品国产色婷婷电影| tube8黄色片| 日韩一本色道免费dvd| 性插视频无遮挡在线免费观看| 午夜免费男女啪啪视频观看| 婷婷色综合大香蕉| 建设人人有责人人尽责人人享有的 | 国产精品一区www在线观看| 交换朋友夫妻互换小说| 亚洲国产精品成人久久小说| 神马国产精品三级电影在线观看| 又爽又黄无遮挡网站| 亚洲自拍偷在线| 51国产日韩欧美| 欧美精品人与动牲交sv欧美| 一级黄片播放器| 身体一侧抽搐| 少妇人妻精品综合一区二区| 欧美亚洲 丝袜 人妻 在线| 啦啦啦啦在线视频资源| 男女下面进入的视频免费午夜| 别揉我奶头 嗯啊视频| av免费在线看不卡| 日本一本二区三区精品| 久久精品综合一区二区三区| 国产伦在线观看视频一区| 国产高清有码在线观看视频| 国产高清不卡午夜福利| 一本一本综合久久| 久久久久久九九精品二区国产| 国产中年淑女户外野战色| 国产男女超爽视频在线观看| 国产精品久久久久久av不卡| av天堂中文字幕网| 嫩草影院新地址| 不卡视频在线观看欧美| 亚洲婷婷狠狠爱综合网| 亚洲色图av天堂| 久久精品久久久久久噜噜老黄| 精品亚洲乱码少妇综合久久| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 我要看日韩黄色一级片| 国产成人精品福利久久| 国模一区二区三区四区视频| 亚洲精品aⅴ在线观看| 韩国av在线不卡| 日本午夜av视频| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 国产精品蜜桃在线观看| 最近最新中文字幕免费大全7| 国产淫语在线视频| 爱豆传媒免费全集在线观看| 久久精品熟女亚洲av麻豆精品| 欧美另类一区| 天堂网av新在线| 日本午夜av视频| 婷婷色av中文字幕| 人妻夜夜爽99麻豆av| 欧美日韩综合久久久久久| 又大又黄又爽视频免费| 波多野结衣巨乳人妻| av网站免费在线观看视频| 久久影院123| 成人无遮挡网站| 国产一区有黄有色的免费视频| 少妇人妻一区二区三区视频| 少妇 在线观看| 中国美白少妇内射xxxbb| 中文精品一卡2卡3卡4更新| 国产片特级美女逼逼视频| 精品一区二区三区视频在线| 亚洲成人av在线免费| 欧美少妇被猛烈插入视频| 国产 一区 欧美 日韩| 国内少妇人妻偷人精品xxx网站| 白带黄色成豆腐渣| 交换朋友夫妻互换小说| 亚洲va在线va天堂va国产| 日日摸夜夜添夜夜添av毛片| 国内少妇人妻偷人精品xxx网站| 国产精品人妻久久久影院| xxx大片免费视频| 蜜桃亚洲精品一区二区三区| 有码 亚洲区| 国产亚洲5aaaaa淫片| 日本午夜av视频| 免费观看无遮挡的男女| 久久6这里有精品| 成人漫画全彩无遮挡| 欧美国产精品一级二级三级 | 一级片'在线观看视频| 欧美日韩视频精品一区| 免费看a级黄色片| 深夜a级毛片| 日韩中字成人| 男女国产视频网站| 久久精品国产自在天天线| 色5月婷婷丁香| av国产久精品久网站免费入址| 狂野欧美白嫩少妇大欣赏| 亚洲欧美清纯卡通| 国产综合懂色| 亚洲av成人精品一区久久| 成人美女网站在线观看视频| 看免费成人av毛片| 国产精品福利在线免费观看| 各种免费的搞黄视频| 亚洲精品国产色婷婷电影| 亚洲婷婷狠狠爱综合网| 日韩强制内射视频| 久热久热在线精品观看| 亚洲电影在线观看av| 偷拍熟女少妇极品色| 亚洲不卡免费看| 亚洲在久久综合| 美女主播在线视频| 大片免费播放器 马上看| 久久精品国产鲁丝片午夜精品| 蜜桃久久精品国产亚洲av| 成年女人在线观看亚洲视频 | 国产精品久久久久久久久免| 色婷婷久久久亚洲欧美| 国产亚洲av片在线观看秒播厂| 国产午夜福利久久久久久| 国产高清有码在线观看视频| 人人妻人人看人人澡| 在线天堂最新版资源| av在线观看视频网站免费| 亚洲,一卡二卡三卡| 久久精品国产亚洲网站| 国产毛片a区久久久久| 人人妻人人澡人人爽人人夜夜| 天天躁夜夜躁狠狠久久av| 精品久久久久久电影网| 一区二区三区免费毛片| 男女那种视频在线观看| 亚洲一区二区三区欧美精品 | 免费看av在线观看网站| 人妻制服诱惑在线中文字幕| 久久人人爽人人爽人人片va| 狠狠精品人妻久久久久久综合| 看十八女毛片水多多多| 中文资源天堂在线| 日韩av在线免费看完整版不卡| 新久久久久国产一级毛片| 精品人妻偷拍中文字幕| 一本久久精品| 插逼视频在线观看| 久久午夜福利片| 日韩成人伦理影院| 亚州av有码| 乱码一卡2卡4卡精品| 国产精品久久久久久精品电影| 禁无遮挡网站| 日韩电影二区| 亚洲精品乱久久久久久| 晚上一个人看的免费电影| 亚洲激情五月婷婷啪啪| 午夜老司机福利剧场| av在线亚洲专区| 色哟哟·www| 国产淫语在线视频| 日本wwww免费看| 18禁动态无遮挡网站| 日韩av不卡免费在线播放| 亚洲va在线va天堂va国产| 91精品一卡2卡3卡4卡| 久久久精品94久久精品| 亚洲av在线观看美女高潮| 少妇丰满av| 国产一级毛片在线| 亚洲av日韩在线播放| 99久久精品国产国产毛片| 久久久久久久亚洲中文字幕| 国产黄频视频在线观看| 亚洲成人久久爱视频| 国产精品.久久久| 国产综合精华液| 午夜视频国产福利| 丰满人妻一区二区三区视频av| 又爽又黄无遮挡网站| 亚洲av欧美aⅴ国产| 日韩免费高清中文字幕av| 成年av动漫网址| 肉色欧美久久久久久久蜜桃 | 国产精品国产三级国产专区5o| 国产黄片美女视频| 91在线精品国自产拍蜜月| 免费av观看视频| 欧美另类一区| 欧美97在线视频| 又大又黄又爽视频免费| 人妻系列 视频| 国产精品成人在线| 五月天丁香电影| 欧美最新免费一区二区三区| 69人妻影院| 99re6热这里在线精品视频| 日本av手机在线免费观看| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 精品亚洲乱码少妇综合久久| 国产一区二区三区av在线| 最后的刺客免费高清国语| 日韩,欧美,国产一区二区三区| 激情五月婷婷亚洲| 国产欧美日韩精品一区二区| 综合色av麻豆| 小蜜桃在线观看免费完整版高清| 久久久精品94久久精品| 国产在线一区二区三区精| 日韩不卡一区二区三区视频在线| 高清毛片免费看| freevideosex欧美| 建设人人有责人人尽责人人享有的 | 国产毛片在线视频| 国产高清国产精品国产三级 | 欧美成人午夜免费资源| 日产精品乱码卡一卡2卡三| 国产乱来视频区| 国产精品福利在线免费观看| 国产精品久久久久久精品古装| 欧美日韩精品成人综合77777|