• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    高效催化氧還原及氧析出反應(yīng)的摻雜石墨炔的設(shè)計(jì)與理論計(jì)算

    2021-02-26 13:44:22張珊珊黃儀珺張利鵬李亞平孫曉明夏振海
    關(guān)鍵詞:北京化工大學(xué)德克薩斯州工程系

    馬 駿,鐘 洋,張珊珊,黃儀珺,張利鵬,李亞平,孫曉明,夏振海

    (1.北京化工大學(xué)化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100029;2.北德克薩斯州大學(xué)材料科學(xué)與工程系,丹頓TX 76203,美國(guó))

    1 Introduction

    With mightily approving of sustainable development concept,the clean and efficient renewable energy storage and conversion devices,such as fuel cells,metal-air batteries and water electrolyzers,have aroused tremendous attention currently because of their advantages of no pollution,recyclability and high energy density[1—3].From the perspective of chemical reaction principles,the core of these technologies are two funda?mental oxygen-involving reactions,namely oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)[4,5].However,their sluggish reaction rates restrict seriously the widespread applications[6].In response to the above problem,rare metal catalysts,including platinum(Pt),iridium(Ir)and ruthenium(Ru),are commonly used to accelerate the kinetics of the ORR and OER[7—9].However,such catalysts are not only expensive and rare in reserves,but also have the weaknesses of poor durability and environmental pol?lution[10].Consequently,it is of great significance to explore and design low-cost catalysts with high-activity for ORR and OER[11].

    As the allotrope of carbon materials,graphdiyne(GDY)has emerged as a promising candidate in the field of ORR/OER electrocatalysis since 2010[12—16].The planar GDY skeleton is fabricated by the hexagonal ben?zene rings and diacetylenic linkages(—C≡C—C≡C—)[17].A large amount of experiments showed that the intrinsic ORR/OER activities of GDY were enhancedviaintroducingp-region elements(N,B and S)[18—20]into its matrix.For example,Zhanget al.[18]synthesized the N-doped GDY electrode,which showed ORR perfor?mance comparable to commercial Pt/C,and tolerance to cross-over effect.On this basis,tremendous efforts have been devoted to further precisely control the position and the content of doping heteroatoms.The highly controllable arrangements came into outstanding catalytic activities,whether forming the pyridinic nitrogen selectively[21]or anchoringsp-hybridized nitrogen atom through pericyclic replacement of the acetylene moieties[22].In addition,Wanget al.[23]gave a route to successfully control the relative sites between nitrogen and sulfur substitution,boosting the current density for OER,higher than the commercial RuO2.

    Although doping different heteroatoms is an effective strategy to improve the ORR/OER properties under experimental reports,trial-and-error approach has still been adopted to search ideal catalysts up to date[24,25],which is extremely time-consuming and resource-wasteful.On the contrary,theoretical simulations make it possible to accelerate development of advanced catalysts based on high-throughput screening and predic?tion[26,27].Herein,we designed heteroatom-doped GDY catalysts,and systematically studied their electronic structures,active sites and catalytic activities.The correlation between the electrochemical activity and properties of the active sites was unveiled,which provides a guiding principle for rational design of twodimensional(2D)carbon-based catalysts for clean energy conversion and storage technologies.

    2 Computational Methods

    The first-principles calculations of all the heteroatom-doped GDY catalysts were made utilizing the Vien?naAb initioSimulation Package(VASP)software package[28].Taking the density functional theory(DFT)as the framework,the projection-augmented plane wave(PAW)[29]was employed to deal with the nuclei-electron interaction,and in the meanwhile the generalized gradient approximation(GGA-PBE)[30]was applied to de?scribe the electron-electron effects.The cutoff energy of the plane wave basis was set to 500 eV.Under the conjugate gradient algorithm,when the energy difference between the two electron steps was less than 10?5eV and the average force of each atom was less than 0.1 eV/nm,the relaxed process reached required end.In the first Brillouin zone,a 3×3×1k-point was generated automatically withΓpoint as the center according to the Monkhorst-Pack way.According to previous reports,with regard to carbon-based catalysts,the solvent effect contributed marginally and negligibly to catalytic performance compared to the effect of heteroatom doping[31].Hence,on account of the typical monolayer nanostructure of GDY,a 1.5 nm vacuum layer was imposed along thecaxis direction to eliminate interlayer forces.

    3 Results and Discussion

    3.1 p-Block Element Doped GDY Structures and Stability

    Scheme 1 shows the geometric structure of periodic GDY arrays.After optimization,the lattice constantaandbequaled to 0.947 nm,which is consistent with the results in the literature[32—34].The 2D network of GDY are porous structures with triangular holes that not only impedes the erosion of larger acid ions,but also keep access for transporting small molecules(O2,H2O).This unique structure is beneficial to enhance the catalyst in the acid system.In addition,since the surface of the structure is filled withsp-sp2hybrid carbon,this un?even electron distribution may lead to highly active sites.For convenience of expression,the atoms in the model were numbered from 1 to 12.M-GDY means that the elements in thepregion are doped into the GDY ma?trix,where M=B,Si,Ge,N,P,As,Sb,S,Se,Te,Cl,Br,I.Due to the ultra-high symmetry,there are three typical positions as following:1(sp2-C),2 and 3(sp-C),respectively.Due to the difference in the num?ber of electrons in the outer layer,the halogen elements enter the carbon skeleton in the form of adsorption while the other elements mainly substitute the carbon.For every possible positions and doping elements,we calculated the possible adsorption sites from 1 to 12.aM/GDY-b represents that heteroatom M dopes at the site-a of GDY and then it reacts at site-b.

    Scheme 1 Schematic diagram of a graphdiyne model with p?block element doping

    In order to evaluate whether the carbon skeleton is stable or not after doping,the cohesive energies(Ecoh)were calculated.It is obtained by the formula[35]:Ecoh=(EDFT?XμC?YμM)/(X+Y),whereEDFTis the total energy obtained after optimizing.μCandμMrepresent the averaged chemical potential per atom in the most crystal phase of carbon atoms and heteroatoms(Table S1,see the Electronic Supplementary Matcrial of this paper),andXandYmean the number of carbon atoms and heteroatoms,respectively.As can be seen from Fig.1,in stably existing systems,P is the easiest element to enter the carbon skeleton,while Sb is the most difficult one.According to the relatively stable sites,all the elements can be divided into two categories,the first cate?gory includes B and Si,which are more inclined to replacesp2-hybridized carbon atoms,and the second one in?cludes Ge,N,P,As,Sb,S,Se,Te,Cl,Br and I,which prefer to dope adjacent tosp-hybridized carbon.Except 1Br/GDY and 1I/GDY,most of the doped GDYs haveEcohless than zero,indicating that they are thermodynamically stable and can be synthesized experimentally.The band structures of pristine and doped GDY were further investigated as it is significant to transport electron during catalytic reactions(Fig.S1—Fig.S14,see the Electronic Supplementary Material of this paper).For pure GDY,the band gap is about 0.50 eV,which is consistent with the result previously reported[36].On the one hand,some doped structures,such as B-GDY,2Ge-GDY,N-GDY,etc.,exhibit metallic features for a certain amount of energy states at the Fermi level,while others form a band gap and spin polarization near the Femi level.However,it still re?mains unaffected on their conductivity because the electron is facile to jump the narrow band gap.

    Fig.1 Cohesion energies of different heteroatoms?doped graphdiyne

    3.2 Catalytic Performance of Doped GDYs for ORR/OER

    For the above-mentioned stable structures,ORR/OER pathways were explored.According to Norskov’s theory[37,38],the ORR reaction under acidic conditions is that O2transfers four electrons to generate H2O.The mechanism mainly includes four steps:

    where*represents the active site,HOO*,O*,and HO*represents the adsorbed intermediate,g and l refers to the gas and liquid states,respectively.The OER can be regarded as the reverse process of the ORR.Hence,the mechanism is opposite to ORR:

    The free energy change(ΔG)of the elementary reactions in every steps is calculated by the following formula[39]:ΔG=ΔE+ΔZPE?TΔS?eU?kbTln[H+],whereΔE(eV),ΔZPE(eV)andΔS(eV/K)refer to the calculated energy,zero point energy and entropy changes after reactions,respectively,T(K),e(e),U(V),kb(eV/K)and[H+]denote the temperature,charge number,electric potential,Boltzmann constant and hydro?gen ion concentration(pH=0),respectively.ΔG1,ΔG2,ΔG3andΔG4,referred to free energy changes of the elementary reactions from(ORR/OER-1)to(ORR/OER-4),respectively.Similar to classic Norskov’s method,the overpotential parameterηwas also introduced as a measure for the intrinsic activity of M-GDY.For the ORR,η=ΔGmin/e+1.23 V;for the OER,η=ΔGmax/e?1.23 V,whereΔGmaxandΔGminare the maximum and minimum values of free energy changes in the four-step elementary reactions,respectively[40].Correspondingly,this step is the reaction limit step.

    In order to compare the performance before and after doping,the ORR/OER pathways of pristine GDY was first calculated and shown in Fig.2(A)and(B).The catalytic activity of carbon in the ethynyl units is higher than that of aromatic moiety rings(Table S2,see the Electronic Supplementary Material of this paper).The overpotentialsηof the pristine GDY are 1.33 V(ORR)and 1.10 V(OER).Under the thermodynamic equilibrium potential(U=1.23 V),steps(ORR-1)and(OER-4)are“uphill”processes,indicating that they cannot be spontaneous.In particular,the conversion of adsorbed O2to HOO*is the rate-limiting step of the ORR.Similarly,there is rate-limiting step in OER:O*combining with H2O to form HOO*and releases H+.In both ORR and OER,pure GDY has a large thermodynamic energy barrier in the catalytic processes,which is required to be further modified to boost its catalytic activities.

    Fig.2 Free energy diagrams for ORR(A)and OER(B)of GDY at different electrode potential U,and ORR(C)and OER(D)of a series of doped GDY(U=0 V)

    After introducing heteroatoms into the GDY system,a large number of possible active sites were calculated,and the best catalytic performance of the M-GDY structure was selected for each doping element,as shown in Fig.2(C)and(D).For ORR,those M-GDYs with N and Sb substitution or Cl,Br,and I adsorption onsp-C site exhibit the improved catalytic performance,but the substitution of other atoms forsp2-C results in better performance.The improvement of the catalytic activities is attributed to the heteroatom-doping that breaks the highly symmetrical electronic structure,and thus change the adsorption strength of the intermediates on the catalyst surface.This doping effect significantly enhances the ORR activity of M-GDY.Among all the doping structures,pnictogen group doping shows the best catalytic effect:1P/GDY-9 has the lowest overpotential(0.50 V),followed by 1As/GDY-4(0.51 V)<3N/GDY-4(0.52 V)<2Sb/GDY-2(0.53 V).In OER,heteroatoms can be divided into three types according to the optimal doping sites:(1)at site-1:Ge,S,Se,Te,and Cl;(2)at site-2(sp-C):Si,P,As,Br,and I;(3)at site-3(sp-C):B,N and Sb.Com?pared with GDY,the rate-limiting steps of the GDY doped with all the elements except for B and S elements,change from the first step(OER-1)due to the different intermediates adsorption.The GDY with Ge,P,As and Cl change to the second step(OER-2)while the limiting step become the third step(OER-3)for those with Si,N,Sb,Se,Te,Br and I.Among those doping structures,the OER overpotential of 3Sb/GDY-1 is the lowest(0.41 V),while for the other doping structures,including 2P/GDY-12(0.43 V),2As/GDY-12(0.43 V),1Cl/GDY-6(0.45 V),2Br/GDY-1(0.47 V),2I/GDY-1(0.50 V)and 3B/GDY-7(0.50 V),the OER overpotemtial is within 0.50 V.It was noted that the above overpotentials were obtained from an idealized model as most reports[40,41].Although some experimental studies indicated that macroscopic struc?tures had no noticeable changes before and after electrochemical measurements[23],they may still variate at the atomic level in which the carbon materials were easily oxidized.The stabilities and activities of GDY catalysts were evaluated by an hydroxyl adsorbed on the surface,one of the simplest models,in an alkaline electrolyte,as the pervious work[42].In this reaction,the performance decayed from 0.41 V to 1.12 V(Fig.S15,see the Electronic Supplementary Material of this paper),indicating that we should pay more attention to the dynamic degradation mechanisms to prevent performance downgrading in the future.For experiments,it is significant to develop more advanced characterization tools to determine how they evolve during reactions.For theoretical predictions,the model should be developed to study the detail how the GYD is oxidized in the reactions.

    3.3 Scaling Relationship and Intrinsic Descriptors

    Firstly,the adsorption energy of intermediates was used as a descriptor to evaluate the catalytic activity of different doped GDY structures.The adsorption energy of the reaction intermediates HOO*,O*and HO*can be calculated by the following equations[43,44]:

    Fig.3 shows the scaling relationship betweenΔGHOO*andΔGHO*.There exists a linear correlation between them and the specific relationship is described by ΔGHO*=ΔGHOO*?3.35.Thus,in GDY system,the ad?sorption free energy of all the intermediates are corre?lated with each other and the minimum value of the po?tential the system could reach can be estimated from the relationship.According to the chemical principle,ΔG1+ΔG2+ΔG3+ΔG4=4.92 eV.This equation and the above scaling relation betweenΔGHO*andΔGHOO*,joint?ly set a constraint onΔG2+ΔG3andΔG1+ΔG4as fol?lows:ΔG2+ΔG3=ΔGHOO*?ΔGHO*=3.35 eV,ΔG1+ΔG4=4.92?(ΔG2+ΔG3)=1.57 eV.Hence,the ORR/OER overpotential has the minimum value,ηmin=0.44 V.Viadoping heteroatoms,the overpotentials of GDY-based catalysts almost reached the minimum value in the OER process.

    As shown in Fig.4(A)and(B),multitudinous calculations and statistical results indicate that the ORR and OER overpotentials show a“volcanic”trend withΔGHO*,andΔGO*?ΔGHO*,respectively.WhenΔGHO*isca.0.8 eV,the ORR overpotential is close to the“volcano”peak,about 0.4 V.Similarly,the catalysts achieve its best OER performance(ηca.0.5 V)if the value ofΔGO*?ΔGHO*is near a region of 1.6 eV.Al?though the above descriptors are regarded as tools to predict the ORR/OER overpotentials of different catalytic sites in different models,it is still inconvenient to use the adsorption energies of the reaction intermediates.

    Fig.3 Relationship between HOO*and HO*adsorp?tion free energies of doped GDY structures at different sites

    A simple intrinsic descriptorφwas found after a lot of testing and exploration.First of all,since the intro?duction of dopants will affect the electronic structure of carbon atoms in GDY,it is critical to effectively ex?press the electron transfer utilizing electronegativity,first ionization energy and electron affinity.Secondly,the difference between the radius of the heteroatoms and the carbon atom deforms the GDY structure,which eventually changes the effect on the electronic structure.Therefore,the catalytic activity is also related to the relative radius of the heteroatom and the carbon atom.Based on the above two aspects,we defined the mathe?matical expression of the intrinsic descriptor asφ=(χM/χC)×(IMYC/ICYM)0.5×(RM/RC),whereχ,I,YandRrepre?sent the electrical negativity,first ionization energy,electron affinity energy,and atomic radius,subscripts M and C indicate heteroatoms and carbon atom,respectively.The regulations of catalytic activities originates from the variation of electronic structure,which is related to the above intrinsic factors of dopants.To better investigate how the dimensionless descriptor denotes the effect of these characteristics,we calculated the elec?tron charge distributions,represented by 1P-GDY and 3Sb-GDY.As can be seen in Fig.S16 and Fig.S17(see the Electronic Supplementary Material of this paper),doping gave rise to the charge transfer,which altered the adsorption energies of reactive intermediates.The electron flow,from P and Sb to carbon framework,made the charge accumulated at active sites,which accordingly brought the more positive charge values for P(+1.71)and Sb(+1.03).Furthermore,the spin density redistributions were also altered by the heteroatoms substitution(Fig.S17).It is well known that the electron-rich and high-spin states are beneficial to catalytic re?action.Hence,it is essential to introduce parameters associated with electron transfer,such as electrical nega?tivity,first ionization energy,electron affinity energy and so on,so that the charge and spin density can be ex?pressed indirectly.In addition,unlike the graphene,there is the extreme distortion at atomic level in doped GDY chains(Fig.S18,see the Electronic Supplementary Material of this paper),which is related to the dop?ant radius.These basic parameters in the descriptor correlate material structure with electrochemical reactivi?ty.Fig.4(C)and(D)show the overpotential as a function of the intrinsic descriptor.A volcano-shaped rela?tionship is established between the catalytic activities(overpotential)and the descriptor.When 1.0<φ<1.3,the overpotential of ORR/OER is at the“volcanic peak”(within 0.5 V).Compared with the energy descrip?tors,this intrinsic descriptor can measure and predict the reactivity of ORR/OER only through the fundamen?tal physical and chemical parameters of the dopant and carbon atoms,which has more physical meaning and practical value for application.

    Fig.4 ORR(A)and OER(B)overpotentials versus adsorption free energiesΔGHO*andΔGO*-ΔGHO*and ORR(C)and OER(D)minimum overpotentials versus the intrinsic descriptor

    We compared the catalytic characteristics of GDY and graphene,since they are two typical carbon allo?tropes.Firstly,heteroatom doping is a general strategy for both to facilitate the catalytic performance.According to the previous reports[40,41],N and P elements are ideal dopants to achieve highly bifunctional activ?ities for graphene,while P,Sb and As atoms for GDY.It is only for ORR that N-GDY exhibits satisfactory per?formance than noble-metal counterparts.Secondly,the electrochemical activities for GDY and graphene sys?tems were described in two similar descriptors,both of which were related with electrical negativity and elec?tron affinity energy[40,41].However,attributed to the co-exist of two hybrid types and the flexibility of its numer?ous diacetylenic chains,the GDY catalyst correlate more intrinsic material factors in the descriptor than gra?phene.Last but not the least,unlike graphene,GDY with non-uniform hybrid structures provide more modu?late possibilities to accelerate the catalytic processes.The network framework of GDY is not only more benefi?cial to the diffusion of small molecules involved in the ORR/OER,but also favorable for the design of next generation of foldable and stretchable energy devices[45,46].As an emerging candidate for ORR/OER catalysts,GDY is gaining more and more attention,and our predictions provide a theoretical base for GDY as an excel?lent catalyst.

    4 Conclusions

    We have carried out the first-principles calculations,and systematically studied the ORR and OER cata?lytic properties of GDY doped with differentp-block elements.The formation energy calculations show that these doping structures can exist stably.The catalysts with good ORR/OER performance are predicted by cal?culating the reaction pathways and overpotentials,with the priority orders of 1P/GDY-9>1As/GDY-4>3N/GDY-4 for ORR,and 3Sb/GDY-1>2P/GDY-12>2As/GDY-12 for OER.In order to efficiently predict its catalytic ac?tivity,we found an intrinsic descriptorφ=(χM/χC)×(IMYC/ICYM)0.5×(RM/RC),which provides a guiding principle in the design of low-cost GDY even other carbon-based catalysts for the development of clean energy conver?sion devices in the future.

    Acknowledement

    The authors thank the Sino-Foreign Cooperative Training Project of BUCT.We are also grateful to Prof.LIN Wen-feng(Loughborough University)for his insightful suggestions.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20200332.

    This work is supported by the National Natural Science Foundation of China(Nos.21675007,21676015,21520102002,91622116,51973174),the National Key Research and Development Project,China(Nos.2018YFB1502401,2018YFA0702002,2017YFA0206500)and the Royal Society and the Newton Fund Through the Newton Advanced Fellowship Award(No.NAFR1191294).

    猜你喜歡
    北京化工大學(xué)德克薩斯州工程系
    美國(guó)少年司法替代性教育項(xiàng)目的運(yùn)行框架與經(jīng)驗(yàn)啟示——以德克薩斯州為例
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    2020年8月18日,美軍在德克薩斯州胡德堡試驗(yàn)新型M1A2 SEPv3坦克的火力
    軍事文摘(2020年19期)2020-10-13 12:24:36
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    Animals at Work 動(dòng)物也當(dāng)官
    電子信息工程系
    亚洲三区欧美一区| 久久国产亚洲av麻豆专区| 黄色怎么调成土黄色| 精品卡一卡二卡四卡免费| 精品少妇久久久久久888优播| 最新中文字幕久久久久| 欧美精品国产亚洲| 欧美日韩精品网址| 亚洲精品久久成人aⅴ小说| 亚洲经典国产精华液单| 亚洲av成人精品一二三区| 中文字幕最新亚洲高清| 人妻少妇偷人精品九色| 赤兔流量卡办理| 熟女电影av网| 女人精品久久久久毛片| 最近中文字幕高清免费大全6| 爱豆传媒免费全集在线观看| 欧美亚洲 丝袜 人妻 在线| av女优亚洲男人天堂| 国产成人aa在线观看| 三级国产精品片| 久久久久久久大尺度免费视频| 精品亚洲成a人片在线观看| 如何舔出高潮| 男女午夜视频在线观看| 午夜福利,免费看| 免费观看av网站的网址| 99香蕉大伊视频| 日韩av免费高清视频| 两个人看的免费小视频| 国产精品三级大全| 久久ye,这里只有精品| 青青草视频在线视频观看| 热99国产精品久久久久久7| 性色av一级| 久久久久久久大尺度免费视频| 久久久欧美国产精品| 亚洲精品一二三| 美女脱内裤让男人舔精品视频| 如日韩欧美国产精品一区二区三区| 日韩一本色道免费dvd| 一区在线观看完整版| 在线观看三级黄色| 午夜福利视频精品| 国产精品熟女久久久久浪| 国产精品久久久久成人av| av国产久精品久网站免费入址| 女性被躁到高潮视频| 在线观看www视频免费| 久久精品国产鲁丝片午夜精品| 国产在线视频一区二区| 国产精品秋霞免费鲁丝片| 亚洲精品av麻豆狂野| 丝袜在线中文字幕| 成人亚洲欧美一区二区av| 亚洲欧美成人综合另类久久久| 啦啦啦视频在线资源免费观看| 香蕉精品网在线| 精品人妻熟女毛片av久久网站| 一区二区三区精品91| 国产精品一区二区在线不卡| 国产乱来视频区| 欧美老熟妇乱子伦牲交| 欧美日韩一级在线毛片| 性色avwww在线观看| 女人高潮潮喷娇喘18禁视频| 国产av码专区亚洲av| 亚洲av男天堂| 99久久精品国产国产毛片| 一个人免费看片子| 电影成人av| 97在线视频观看| 97精品久久久久久久久久精品| 18+在线观看网站| 婷婷色麻豆天堂久久| 成人影院久久| 老汉色∧v一级毛片| 亚洲,欧美,日韩| 国产精品成人在线| 国产成人a∨麻豆精品| 伊人久久大香线蕉亚洲五| 国产白丝娇喘喷水9色精品| 又大又黄又爽视频免费| 高清欧美精品videossex| 丝袜喷水一区| 久久免费观看电影| 精品少妇久久久久久888优播| 中文字幕制服av| 五月开心婷婷网| 日韩制服骚丝袜av| 欧美xxⅹ黑人| 各种免费的搞黄视频| 日韩免费高清中文字幕av| 国产一区有黄有色的免费视频| 亚洲欧美一区二区三区黑人 | 亚洲四区av| 欧美精品高潮呻吟av久久| av.在线天堂| 777米奇影视久久| av女优亚洲男人天堂| 国产又色又爽无遮挡免| 国产精品无大码| 久久99热这里只频精品6学生| 久久久久久人人人人人| 国产av码专区亚洲av| 啦啦啦在线观看免费高清www| 亚洲一区中文字幕在线| 国产伦理片在线播放av一区| 精品国产一区二区久久| 亚洲av免费高清在线观看| 国产淫语在线视频| 亚洲av中文av极速乱| 久久久久久久久免费视频了| www.自偷自拍.com| 国产成人精品无人区| 男女高潮啪啪啪动态图| 亚洲国产成人一精品久久久| 中文字幕人妻丝袜制服| www.熟女人妻精品国产| 丝袜在线中文字幕| 国产免费福利视频在线观看| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久久免| 精品国产乱码久久久久久男人| 大片电影免费在线观看免费| 黄网站色视频无遮挡免费观看| 午夜福利,免费看| 久久精品国产自在天天线| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 搡女人真爽免费视频火全软件| 一区二区三区乱码不卡18| 天天影视国产精品| 久久99蜜桃精品久久| av在线播放精品| av线在线观看网站| 老鸭窝网址在线观看| 两个人看的免费小视频| 波多野结衣av一区二区av| 精品福利永久在线观看| 最近中文字幕高清免费大全6| 伊人久久国产一区二区| 日韩av在线免费看完整版不卡| 久久热在线av| videos熟女内射| 男女下面插进去视频免费观看| 精品一区在线观看国产| 亚洲图色成人| 国产黄色免费在线视频| 99九九在线精品视频| 精品一区二区三卡| 最黄视频免费看| 性色avwww在线观看| 午夜免费观看性视频| av免费观看日本| 亚洲精品国产av成人精品| 久久精品aⅴ一区二区三区四区 | 色婷婷久久久亚洲欧美| 国产成人一区二区在线| av片东京热男人的天堂| 一二三四在线观看免费中文在| 亚洲男人天堂网一区| 26uuu在线亚洲综合色| 夜夜骑夜夜射夜夜干| av视频免费观看在线观看| 一区在线观看完整版| av电影中文网址| 秋霞伦理黄片| 久久精品久久久久久噜噜老黄| 亚洲综合精品二区| 久久精品国产亚洲av涩爱| av片东京热男人的天堂| 老汉色∧v一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 国产xxxxx性猛交| 日本av免费视频播放| 性色avwww在线观看| 久久毛片免费看一区二区三区| 美女主播在线视频| 一二三四在线观看免费中文在| www.av在线官网国产| 一本色道久久久久久精品综合| 狂野欧美激情性bbbbbb| 久久久久久久久久人人人人人人| 91久久精品国产一区二区三区| 九九爱精品视频在线观看| 亚洲国产精品一区二区三区在线| 亚洲色图综合在线观看| 久热这里只有精品99| 久久精品国产自在天天线| 老司机影院成人| 国产又色又爽无遮挡免| 可以免费在线观看a视频的电影网站 | 欧美少妇被猛烈插入视频| 老汉色∧v一级毛片| 免费在线观看完整版高清| 汤姆久久久久久久影院中文字幕| 中文字幕精品免费在线观看视频| 国产一区二区三区综合在线观看| 国产亚洲午夜精品一区二区久久| 丝瓜视频免费看黄片| 一级,二级,三级黄色视频| 精品少妇内射三级| 亚洲在久久综合| 成人国产av品久久久| 精品99又大又爽又粗少妇毛片| 寂寞人妻少妇视频99o| 黑人欧美特级aaaaaa片| 久久精品aⅴ一区二区三区四区 | 国产精品蜜桃在线观看| 天堂中文最新版在线下载| 黑人欧美特级aaaaaa片| 免费黄频网站在线观看国产| 观看av在线不卡| 在线 av 中文字幕| 亚洲人成77777在线视频| 免费av中文字幕在线| 免费黄网站久久成人精品| 中文天堂在线官网| 又黄又粗又硬又大视频| 国产成人精品福利久久| 久久ye,这里只有精品| videos熟女内射| 91aial.com中文字幕在线观看| 亚洲四区av| 欧美日本中文国产一区发布| 国产人伦9x9x在线观看 | 国产精品免费大片| 女人高潮潮喷娇喘18禁视频| av福利片在线| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| 亚洲国产欧美网| 啦啦啦啦在线视频资源| 满18在线观看网站| videossex国产| 欧美黄色片欧美黄色片| 午夜久久久在线观看| 成人二区视频| 女性生殖器流出的白浆| av.在线天堂| 午夜福利视频在线观看免费| 熟女av电影| 亚洲精品,欧美精品| 国产精品免费大片| 国产精品99久久99久久久不卡 | 国产色婷婷99| 天堂中文最新版在线下载| 一本—道久久a久久精品蜜桃钙片| 99久久综合免费| 国产深夜福利视频在线观看| 亚洲人成77777在线视频| 亚洲av男天堂| 超碰成人久久| 少妇被粗大的猛进出69影院| 18在线观看网站| 国产成人免费无遮挡视频| 国产成人午夜福利电影在线观看| av又黄又爽大尺度在线免费看| 国产成人欧美| 一级片免费观看大全| 亚洲国产最新在线播放| 国产白丝娇喘喷水9色精品| 国产日韩一区二区三区精品不卡| 午夜免费观看性视频| 日日撸夜夜添| 亚洲美女搞黄在线观看| 99热国产这里只有精品6| 久久久久国产精品人妻一区二区| 亚洲一码二码三码区别大吗| 99久国产av精品国产电影| 久久久国产精品麻豆| 久久午夜综合久久蜜桃| 久久精品aⅴ一区二区三区四区 | 精品亚洲成国产av| 亚洲欧美成人综合另类久久久| 激情视频va一区二区三区| 高清黄色对白视频在线免费看| 卡戴珊不雅视频在线播放| 日韩在线高清观看一区二区三区| 欧美中文综合在线视频| 亚洲国产精品国产精品| 精品一区二区三区四区五区乱码 | av在线播放精品| 国产又色又爽无遮挡免| 国产激情久久老熟女| 伊人久久国产一区二区| 国产麻豆69| 999精品在线视频| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久精品久久久| 久久鲁丝午夜福利片| 国产亚洲最大av| 亚洲第一av免费看| 美女国产视频在线观看| 极品少妇高潮喷水抽搐| av片东京热男人的天堂| 国产日韩欧美亚洲二区| av免费在线看不卡| 免费黄频网站在线观看国产| 一本—道久久a久久精品蜜桃钙片| 伊人久久大香线蕉亚洲五| 国产精品一国产av| 热re99久久精品国产66热6| 久久久亚洲精品成人影院| 在现免费观看毛片| 男女下面插进去视频免费观看| 一级毛片我不卡| 久久久国产精品麻豆| av国产精品久久久久影院| 蜜桃在线观看..| 高清av免费在线| 欧美av亚洲av综合av国产av | 亚洲精品国产av成人精品| 国产成人精品在线电影| 亚洲国产欧美网| 国产一区二区激情短视频 | 国产成人精品久久久久久| 丝袜美足系列| 亚洲经典国产精华液单| 好男人视频免费观看在线| 性高湖久久久久久久久免费观看| 一二三四中文在线观看免费高清| 九草在线视频观看| 一区二区三区四区激情视频| 亚洲精品美女久久av网站| 两个人看的免费小视频| 18禁国产床啪视频网站| 两个人看的免费小视频| 中文字幕人妻丝袜一区二区 | 亚洲国产欧美日韩在线播放| 黄片无遮挡物在线观看| 免费看av在线观看网站| 91国产中文字幕| 在线免费观看不下载黄p国产| 日韩人妻精品一区2区三区| 国产精品嫩草影院av在线观看| 叶爱在线成人免费视频播放| 夜夜骑夜夜射夜夜干| 99国产综合亚洲精品| 国产成人a∨麻豆精品| 国产一区二区激情短视频 | 国产女主播在线喷水免费视频网站| 我要看黄色一级片免费的| 久久国产精品大桥未久av| 免费观看性生交大片5| 精品少妇黑人巨大在线播放| 午夜免费鲁丝| 五月开心婷婷网| 国产免费视频播放在线视频| 日韩熟女老妇一区二区性免费视频| 国精品久久久久久国模美| 不卡视频在线观看欧美| av在线播放精品| 看免费成人av毛片| 国产免费视频播放在线视频| 99精国产麻豆久久婷婷| 不卡av一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 老司机影院成人| 亚洲一码二码三码区别大吗| 男人爽女人下面视频在线观看| 成年美女黄网站色视频大全免费| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区黑人 | 日本av免费视频播放| 国产无遮挡羞羞视频在线观看| 亚洲人成电影观看| 丝袜在线中文字幕| 日本wwww免费看| 韩国精品一区二区三区| 日韩大片免费观看网站| 久久精品熟女亚洲av麻豆精品| 日本猛色少妇xxxxx猛交久久| 午夜免费观看性视频| 激情五月婷婷亚洲| 亚洲,欧美精品.| 搡老乐熟女国产| kizo精华| 黄色怎么调成土黄色| 久久鲁丝午夜福利片| 91精品国产国语对白视频| 亚洲中文av在线| 精品卡一卡二卡四卡免费| 国产av精品麻豆| 精品久久久精品久久久| 永久免费av网站大全| 久久久久精品性色| 日产精品乱码卡一卡2卡三| 激情视频va一区二区三区| 国产一区二区三区av在线| 成人二区视频| 日韩制服骚丝袜av| 久久国产精品男人的天堂亚洲| 亚洲精品国产一区二区精华液| 日韩精品免费视频一区二区三区| 搡老乐熟女国产| 在线精品无人区一区二区三| 国产精品久久久久久av不卡| 国产有黄有色有爽视频| 中文乱码字字幕精品一区二区三区| 美女大奶头黄色视频| 亚洲欧美一区二区三区国产| 欧美精品一区二区免费开放| 少妇的丰满在线观看| 99久久人妻综合| 18禁裸乳无遮挡动漫免费视频| 日韩视频在线欧美| 欧美日韩亚洲国产一区二区在线观看 | 一级黄片播放器| 中文字幕人妻丝袜一区二区 | 国产精品免费大片| 欧美成人午夜免费资源| 人成视频在线观看免费观看| 亚洲精品国产色婷婷电影| 国产日韩欧美亚洲二区| 国产成人精品无人区| 亚洲,一卡二卡三卡| tube8黄色片| 午夜av观看不卡| 亚洲精品日本国产第一区| 久久久久国产网址| 久久久久久伊人网av| 成年av动漫网址| 日日撸夜夜添| 精品人妻在线不人妻| 国产一区二区 视频在线| 久久鲁丝午夜福利片| 久久午夜福利片| 中文字幕人妻丝袜制服| 久久久久国产精品人妻一区二区| 哪个播放器可以免费观看大片| 久久精品国产亚洲av天美| 十分钟在线观看高清视频www| 美女午夜性视频免费| 欧美另类一区| 老汉色av国产亚洲站长工具| 一级毛片我不卡| 亚洲精品aⅴ在线观看| 少妇 在线观看| 亚洲色图 男人天堂 中文字幕| 九九爱精品视频在线观看| 亚洲成国产人片在线观看| 青春草视频在线免费观看| 中文字幕最新亚洲高清| 女人久久www免费人成看片| 精品久久久精品久久久| 久久久亚洲精品成人影院| 国产无遮挡羞羞视频在线观看| 成人国产麻豆网| 亚洲精品美女久久av网站| 日日摸夜夜添夜夜爱| 成人亚洲欧美一区二区av| 久久久久网色| 91aial.com中文字幕在线观看| www.自偷自拍.com| 国产亚洲欧美精品永久| 高清视频免费观看一区二区| 亚洲成人手机| 午夜福利网站1000一区二区三区| 国产精品一二三区在线看| 国产国语露脸激情在线看| 一个人免费看片子| 国产精品一区二区在线不卡| 色94色欧美一区二区| 五月天丁香电影| 在线观看免费日韩欧美大片| 国产在线一区二区三区精| 大片电影免费在线观看免费| 99re6热这里在线精品视频| 精品国产国语对白av| 欧美精品一区二区大全| 国产一级毛片在线| 七月丁香在线播放| 人妻 亚洲 视频| 国产av国产精品国产| 美女脱内裤让男人舔精品视频| 欧美日韩av久久| 亚洲熟女精品中文字幕| 欧美av亚洲av综合av国产av | 亚洲精品在线美女| 国产成人免费观看mmmm| 国产成人午夜福利电影在线观看| 国产精品久久久久久av不卡| 亚洲av欧美aⅴ国产| 久热久热在线精品观看| 日韩中文字幕视频在线看片| 18禁国产床啪视频网站| 久久精品国产综合久久久| 精品人妻偷拍中文字幕| 久久久久久久国产电影| 亚洲av福利一区| 熟女av电影| 99九九在线精品视频| 久久免费观看电影| 日韩制服丝袜自拍偷拍| 亚洲欧洲日产国产| 久久久久国产网址| 亚洲一区中文字幕在线| 婷婷色综合大香蕉| 亚洲第一av免费看| 日本av手机在线免费观看| 一级毛片黄色毛片免费观看视频| 在线免费观看不下载黄p国产| 日韩不卡一区二区三区视频在线| 亚洲精品久久成人aⅴ小说| 免费观看性生交大片5| 黄频高清免费视频| 妹子高潮喷水视频| 一本色道久久久久久精品综合| a级片在线免费高清观看视频| 国产成人免费无遮挡视频| 成人毛片60女人毛片免费| 精品国产超薄肉色丝袜足j| 桃花免费在线播放| 久久久欧美国产精品| 热re99久久国产66热| 电影成人av| 免费黄网站久久成人精品| 色哟哟·www| 亚洲中文av在线| 国产 精品1| 中文字幕人妻熟女乱码| 青春草视频在线免费观看| 91在线精品国自产拍蜜月| 狠狠婷婷综合久久久久久88av| 欧美成人午夜精品| 99久久中文字幕三级久久日本| 熟女av电影| 亚洲精品国产av成人精品| 国产精品偷伦视频观看了| 久久久国产欧美日韩av| 9色porny在线观看| 免费观看av网站的网址| 国产成人欧美| 大片电影免费在线观看免费| 国产一区二区激情短视频 | 免费播放大片免费观看视频在线观看| 精品国产一区二区三区四区第35| 黄色怎么调成土黄色| 大话2 男鬼变身卡| 国产成人欧美| 国产男女内射视频| 大香蕉久久网| 午夜激情av网站| 中文字幕人妻熟女乱码| 久热这里只有精品99| 嫩草影院入口| 边亲边吃奶的免费视频| 国产日韩欧美视频二区| 一区在线观看完整版| 欧美97在线视频| 日日摸夜夜添夜夜爱| 欧美日韩综合久久久久久| 热99国产精品久久久久久7| 亚洲精品自拍成人| 精品亚洲成国产av| 看免费av毛片| 永久免费av网站大全| 伊人久久大香线蕉亚洲五| 男女国产视频网站| 国产男女超爽视频在线观看| 国产亚洲一区二区精品| 自拍欧美九色日韩亚洲蝌蚪91| 黄色一级大片看看| 丝袜脚勾引网站| 精品久久久久久电影网| 亚洲男人天堂网一区| 女性被躁到高潮视频| 日韩精品有码人妻一区| av视频免费观看在线观看| 咕卡用的链子| 亚洲熟女精品中文字幕| 亚洲精品久久成人aⅴ小说| 好男人视频免费观看在线| 国产精品偷伦视频观看了| 久久国产精品男人的天堂亚洲| 一二三四中文在线观看免费高清| 午夜日本视频在线| 国产一区有黄有色的免费视频| 久久97久久精品| 视频在线观看一区二区三区| 老女人水多毛片| 久久99热这里只频精品6学生| 电影成人av| 丁香六月天网| 国产av国产精品国产| 视频在线观看一区二区三区| 一个人免费看片子| 免费观看无遮挡的男女| 亚洲av国产av综合av卡| 午夜影院在线不卡| 免费观看无遮挡的男女| 亚洲人成电影观看| 精品一区二区三卡| 精品国产国语对白av| 成人黄色视频免费在线看| 两个人免费观看高清视频| 亚洲国产最新在线播放| 哪个播放器可以免费观看大片| 成人午夜精彩视频在线观看| 又黄又粗又硬又大视频| 久久久久精品久久久久真实原创| 国产精品国产av在线观看| 亚洲四区av| 国产麻豆69| 国产探花极品一区二区| 国产黄色视频一区二区在线观看| 十分钟在线观看高清视频www| 岛国毛片在线播放| 国产精品国产三级国产专区5o|