• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    層狀釩青銅納米片的制備及其鋰離子電池陽(yáng)極材料性能

    2021-02-26 13:44:32馬錄芳譚超良
    關(guān)鍵詞:電機(jī)工程香港城市大學(xué)化工學(xué)院

    周 戰(zhàn),馬錄芳,譚超良

    (1.洛陽(yáng)師范學(xué)院化學(xué)化工學(xué)院,河南省功能多孔材料重點(diǎn)實(shí)驗(yàn)室,洛陽(yáng)471934;2.香港城市大學(xué)電機(jī)工程系,香港九龍)

    1 Introduction

    Layered two-dimensional(2D)materials,such as graphene,transition metal dichalcogenides and layered metal oxides,have been proven to be promising in a wide range of applications,including electronics,optoelectronics,sensors,energy storage and conversion,biomedicine,etc.,owing to their unique physical,chemical and electronic properties[1—15].Among these 2D materials,layered 2D metal oxides have been widely explored as electrode materials for various rechargeable batteries,especially Li-ion batteries(LIBs)[16—20].Previous study[21]has demonstrated that layered 2D nanosheets normally have large surface area and short diffusion path as compared to other kinds of nanomaterials,making them promising electrode materials for high-performance LIBs.As one of the typical layered metal oxides,2D V2O5nanosheets have been extensively investigated as an electrode material due to its reasonable price and high theoretical specific capacity[22—26].For example,Xuet al.[24]reported the synthesis of 2D V2O5network by an one-step polymer-assisted chemical method and the synthesized V2O5delivered a high capacity(e.g.165 mA·h/g at 3 C)and excellent stability when used as a cathode for LIBs.Wanget al.[25]also reported the preparation of 2D V2O5@C nanosheets used as anode for LIBs,exhibiting a large discharge capacity(e.g.802 mA·h/g at 1 A/g),good cycling perfor?mance and high rate capability.In addition,Zhanget al.[26]reported that liquid-phase exfoliated 2D V2O5nanosheets exhibited a high discharge capacity of 370 mA·h/g at 0.05 C when used as the cathode for LIBs.However,previous reports still suffer from unsatisfied performance or relatively complicated synthetic processes.

    It is known that adjacent layers of layered 2D materials are stacking together through weak van der Waals interactions.Therefore,it is feasible to exfoliate the bulk powders into nanosheets through the exfoliation techniques including mechanical exfoliation,liquid-phase exfoliation,intercalation-assisted liquid exfolia?tion,and so on[27—31].Importantly,the layered structure makes them ideal hosts to be intercalated with various intercalants,such as Li+,Na+,K+,Zn2+,Ca2+,Mg2+,Mn2+,polyaniline,polypyrrole and polythiophene[32—35].More importantly,the intercalation of layered materials by various intercalants can enlarge their interlayer spacing,making them promising in energy storage with enhanced capacity and long-term cycling stability,including LIBs,sodium-ion batteries(SIBs),Zn-ion batteries(ZIBs)and supercapacitors[35—44].For example,Xiaet al.[43]reported that the calcium vanadium oxide bronze can deliver a high capacity(340 mA·h/g at 0.2 C),good rate capability and very long cycling life when used as the cathode material for ZIBs.Genget al.[44]also reported that the interlayer Mn2+-doped layered vanadium oxide(Mn0.15V2O5·nH2O)exhibited enhanced electrochemical performance than that of the V2O5When used as the cathode for ZIBs.

    In this paper,we report the preparation of layered 2D(NH4)2V6O16·H2O nanosheets by simply reacting commercial V2O5nanoparticles with ammonium persulfates in aqueous solution at room temperature.The com?mercial V2O5nanoparticles can be transformed into(NH4)2V6O16·H2O nanosheets with a size of 2—10μm and thickness of 50—250 nm due to the co-intercalation with ammonium ions and water molecules.Importantly,when used as an anode material for LIBs,the(NH4)2V6O16·H2O nanosheets exhibit much enhanced capacity,rate performance and cycling performance in comparison with commercial V2O5nanoparticles.Our study demonstrates that the(NH4)2V6O16·H2O nanosheets can be used as an excellent anode material for LIBs,which may be also promising for other rechargeable batteries,such as SIBs and ZIBs.

    2 Experimental

    2.1 Chemicals

    Vanadium pentoxides(V2O5,99%)and ammonium persulfates(98%)were purchased from Aladdin.Polyvinylidenefluoride(PVDF,99.9%)andN-methyl-2-pyrrolidinone(NMP,A.R.)were obtained from Sigma-Aldrich.Acetylene black was purchased from Lion Corporation(Japan).The lithium ion battery elec?trolyte(LiPF6,1 mol/L),lithium foil,Separator(polypropylene film),and copper foil were obtained from Dongguan Shanshan Battery Materials Co.,Ltd.(China).

    2.2 Synthesis of(NH4)2V6O16·H2O Nanosheets

    The(NH4)2V6O16·H2O nanosheets were synthesized by a facile approach in aqueous solution at room temperature according to the method reported in literature[45].Typically,1.5 g of commercial V2O5powders and 18.3 g of ammonium persulfate[(NH4)2S2O6]were dissolved in 150 mL of DI water.After stirring the dark yellow solution at room temperature for 48 h,the golden-yellow product was collected by centrifuge,washed thoroughly with DI water,and drying at 80°C overnight to obtain the(NH4)2V6O16·H2O nanosheets.

    2.3 Characterization

    The morphology and structure characterization of the samples was performed by a scanning electron mi?croscopy(SEM,Sigma 500)and an H-8100 transmission electron microscopy(TEM).The crystal structure of the samples was analyzed by wide-angle powder X-ray diffraction(XRD,Bruker D8)with CuKαradiation.The valence state of the products was determined by X-ray photoelectron spectroscopy(XPS,EscaLab 250Xi).Thermogravimetric analysis(TGA)was collected on a DTG-60AH instrument from 30°C to 700°C at a heating rate of 5°C/min in the air flow.The Raman spectra were recorded on an Invia Raman spectrometer.

    2.4 Electrochemical Measurements

    The working electrodes are prepared by following procedure.70%(mass fraction)active materials,20%(mass fraction)acetylene black and 10%(mass fraction)PVDF binder were mixed in N-methyl-2-pyrrolidone(NMP)and ground in a mortar to prepare a homogeneous slurry.The resulting slurry was spread on a Cu foil current collector,which was then dried in a vacuum oven at 120 °C for 12 h.After that,the coin-type cells were assembled in an argon-filled glovebox.The Neware CT-3008W was carried out to record the chargedischarge profiles of the electrodes in the potential range of 0.01—3 V at different current rates(0.1,0.4 and 1 A/g).It is worth pointing out that the current rate of 0.1 A/g was used for the first 4 cycles to activate the materials before testing at 1 A/g.A Parstat 4000+workstation(Princeton Applied Research,USA)was used to measure the cyclic voltammetry(CV)curves and electrochemical impedance spectroscopy(EIS).CV curves in the potential range from 0.01 V to 3.0 VversusLi/Li+were measured at a scanning rate of 0.1 mV/s.EIS were measured from 0.01 Hz to 100 kHz with an AC amplitude of 5 mV.

    3 Results and Discussion

    The layered(NH4)2V6O16·H2O nanosheets were synthesized by reacting of commercial V2O5nanoparticles with(NH4)2S2O6in solution at room temperature for 48 h.Note that ammonium ions and water molecules are interacted into the layered V2O5to stable(NH4)2V6O16·H2O compound,thus the compound can be considered as an intercalated compound.The SEM image shows that the commercial V2O5samples are aggregated nanopar?ticles with a size of several hundred nanometers(Fig.S1,see the Supporting Information of this paper).After the reaction,the commercial V2O5nanoparticles are transformed into micro-sized(NH4)2V6O16·H2O nanosheets.As shown in Fig.1(A),the obtained(NH4)2V6O16·H2O nanosheets show a plate-like morpho-logy with a size of 2—10μm.The thickness of the(NH4)2V6O16·H2O nanosheets measured from its atomic force(AFM)height images is ranging from 50 nm to 250 nm[Fig.1(B)and Fig.S2,see the Supporting Information of this paper].The TEM image further confirms the sheet-like morphology of the(NH4)2V6O16·H2O sample with a micrometer lateral size[Fig.1(C)].Moreover,the associated selected area electron diffraction(SAED)pattern reveals the crystalline structure of the(NH4)2V6O16·H2O nanosheets[Fig.1(D)].Both of the samples are then characterized by powder X-ray diffraction(XRD).As shown in Fig.2(A),all the XRD peaks of the commercial V2O5nanoparticles match well with the standard PDF card of V2O5(JCPDS:41-1426),confirming its crystal phase.Note that the diffraction peak located at 15.349° corresponded to the(200)plane of V2O5,indicating the interlayer distance of layered V2O5.After intercalation,the XRD pattern of the obtained nanosheets is assignable to the standard PDF of(NH4)2V6O16·H2O(JCPDS:41-0492),confirming that the obtained nanosheets are(NH4)2V6O16·H2O.It is worth pointing out that the(200)peak of(NH4)2V6O16·H2O shifts to the lower degree(11.200°)as compared to that of the V2O5sample.Such shift can be considered asd-spacing expansion induced by the co-intercalation of ammonium ions and water molecules into layered V2O5.It is worth noting that the obtained(NH4)2V6O16·H2O nanosheets still keep the layered structure,similar to the layered V2O5[45].

    Fig.1 SEM image of the(NH4)2V6O16·H2O nanosheets(A),AFM height image of a typical(NH4)2V6O16·H2O nanosheet(B),TEM image(C)and its corresponding SAED pattern(D)of the(NH4)2V6O16·H2O nanosheets

    Fig.2 XRD patterns(A),Raman spectra(B),FTIR spectra(C)and TGA curves(D)of the commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets

    The commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets were further characterized by Raman spectroscopy[Fig.2(B)].The Raman spectrum of the commercial V2O5nanoparticles shows its charac?teristic peaks at 146,198,286,404,706 and 994 cm—1,which are corresponded to the OA—V—OBbond bending vibration modeB3g,the OA—V—OBbond bending vibration modeAg,V—OCbond bending vibration modeB2g,V—OB—V bond bending vibration modeAg,V—OCbond stretching vibration modeB2gand V—OAbond stretching vibration modeAg,respectively[46].The Raman spectrum of(NH4)2V6O16·H2O nanosheets shows similar peaks as the V2O5,but with more peaks at low frequency region,which might be originated from the vibration of NH4+in the(NH4)2V6O16·H2O nanosheets.

    To further confirm the intercalation of ammonium ions and water molecules,the commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets were characterized by Fourier transform infrared(FTIR)spectroscopy.As displayed in Fig.2(C),the FTIR spectrum of(NH4)2V6O16·H2O nanosheets exhibits a few additional peaks as compared to that of the commercial V2O5nanoparticles.The two bands at 735 and 527 cm—1are assignable to the asymmetric and symmetric stretching vibrations of V—O—V bonds[47].The peaks at 1006 and 969 cm—1are attributed to the stretching vibration of V4+=O and V5+=O groups,corresponding to the distorted VO6octahedra and VO5square pyramids,respectively[47].The peaks at around 3230 and 1407 cm—1are assigned to the asymmetric stretching vibration and symmetric bending of N—H bonds,indicating the presence of NH4+ions.FTIR results demonstrate the existence of NH4+in the framework of the as-synthesized(NH4)2V6O16·H2O nanosheets.X-Ray photoelectron spectroscopy(XPS)measurements were performed to characterize the electronic state of commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets.As shown in Fig.S3(A)(see the Supporting Information of this paper),the XPS survey spectrum of the(NH4)2V6O16·H2O nanosheets shows same peaks except an additional N1speak,which is further evident by the high-resolution XPS N1sspectra[Fig.S3(B),see the Supporting Information of this paper].The additional N1ssignal in the(NH4)2V6O16·H2O nanosheets can be attributed to NH4+.Both the XPS V2pand O1sspectra of the(NH4)2V6O16·H2O nanosheets are almost the same as compared to that of commercial V2O5nanoparticles,suggesting that the intercalation of ammonium ions and water molecules does not change the electronic structure of the oxide.In addition,thermogravimetric analysis(TGA)was performed in air atmosphere to investigate the two samples.As the temperature increases from 30 to 700 °C,the commercial V2O5powder remains stable over the entire temperature range[Fig.2(D)].While the(NH4)2V6O16·H2O nanosheets were found to lose weight suddenly byca.11.7% around 270—330 °C[Fig.2(D)].The weight change could be attributed to the thermal decomposition of NH4+and lose of water molecules,which is close to calculated weigh percentage of interacted NH4+and H2O(11.4%).All the aforementioned analysis suggests the preparation of(NH4)2V6O16·H2O nanosheets by co-intercalation of commercial V2O5nanoparticles with NH4+and H2O.

    2D V2O5nanosheets have been widely used as electrodes in various rechargeable batteries,specially LIBs[48,49].Therefore,the electrochemical lithium-ion storage properties of the commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets as anode materials for LIBs are evaluated in detail.Fig.3(A)presents the CV curves of the two electrodes at a scan rate of 0.1 mV/s in a voltage range from 0.01 V to 3.0 V.Two pairs of redox peaks of(NH4)2V6O16·H2O nanosheets located at 2.40/1.98 V and 1.23/0.72 V can be identified,which indicate the reversible intercalation process of Li+and the phase transformation during cycling.In con?trast,the potential gap of redox peaks of the commercial V2O5electrode is worse than(NH4)2V6O16·H2O nanosheets in the first CV since the larger activation polarization for(NH4)2V6O16·H2O nanosheets.In addi?tion,the first five charge and discharge voltage curves of the commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets at a current density of 0.1,0.4,and 1 A/g are shown in Fig.3(B,C)and Fig.S4(see the Supporting Information of this paper)respectively.It can be observed that both of them have the multiple dis?charge/charge voltage plateaus,corresponding to different redox reactions related to Li+insertion/extraction.The(NH4)2V6O16·H2O nanosheets exhibit higher capacity in comparison with that of the bulk commercial V2O5nanoparticles.Thereafter,the rate performance of the 2D(NH4)2V6O16·H2O nanosheets was investigated.Fig.3(D)clearly shows that the(NH4)2V6O16·H2O nanosheets has an excellent rate capability.The(NH4)2V6O16·H2O nanosheets delivers the discharge capacities of 1070 mA·h/g when the current density is 0.1 A/g.Even at the high current densities of 1.0 A/g,the discharge capacity remains approximately 355 mA·h/g.By comparison,the capacities of commercial V2O5is much less than that of(NH4)2V6O16·H2O nanosheets,especially at low current densities[Fig.3(D)].For example,the commercial V2O5delivers charge/discharge capacities of 584 and 316 mA·h/g at the current densities of 0.1 and 1 A/g,respectively.

    Fig.3 CV curves of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets(A),Galvanostatic charge?discharge profiles of commercial V2O5 nanoparticles(B)and(NH4)2V6O16·H2O nanosheets(C)for the first five cycles at 0.1 A/g,rate capabilities of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets at varying current rates(D)

    The cycling performance of commercial V2O5and(NH4)2V6O16·H2O nanosheets were also investigated at different current densities of 0.1,0.4 and 1 A/g in a voltage range of 0.01—3 V.The capacity was calculated based on the mass of electrode materials.As shown in Fig.4(A)—(C),the(NH4)2V6O16·H2O nanosheets exhibited excellent cycle capacity retention.At a current density of 0.1 Ah/g,(NH4)2V6O16·H2O nanosheets delivers an average capacity of 1002 mA·h/g at the end of 70 cycles[Fig.4(A)],while the commercial V2O5nanoparticles gave an inferior capacity only around 349 mA·h/g at the same cycles.Although the discharge capacity of(NH4)2V6O16·H2O nanosheets decreased from 522 mA·h/g for the first cycle to 334 mA·h/g for the 50th cycle at 0.4 A/g due to the slow lithium ion diffusion and high charge-discharge resistance,its performance was surprisingly increased to 742 mA·h/g for the 450th cycle because the lithium intercalation and deintercalation during the cycling process could activate the materials to provide more active sties for lithi?um storage[Fig.4(B)].For the comparison,the commercial V2O5nanoparticles also presented good cycling performance at 0.4 A/g during the whole 450 cycles but with a much lower capacity.At the high current densi?ties of 1.0 A/g,the discharge capacity of(NH4)2V6O16·H2O nanosheets remains approximately 390 mA·h/g at the 450th cycle,while the commercial V2O5nanoparticles displayed lower discharge capacity(221 mA·h/g at the 450th cycle)than that of(NH4)2V6O16·H2O nanosheets[Fig.4(C)].All the aforementioned results suggest that the(NH4)2V6O16·H2O nanosheets have excellent cycling performance when used as a LIB electrode.

    Fig.4 Cycling performance of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets at 0.1 A/g(A),0.4 A/g(B)and 1 A/g(C),nyquist-diagram of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets(Inset is the equivalent circuit diagram)(D)

    EIS measurements were performed to reveal different electrochemical behaviors between the commercial V2O5and the(NH4)2V6O16·H2O nanosheets[Fig.4(D)].The Nyquist plots of the commercial V2O5and(NH4)2V6O16·H2O nanosheets are composed of the intercept at Z′-axis at the high frequency region,a semicir?cle in high to medium frequency regions and an inclined line in low frequency regions,corresponding to the re?sistance of electrolyte and cell components(Rs)and the charge transfer resistance(Rct).As listed in Table S1(see the Supporting Information of this paper),the value ofRctfor the(NH4)2V6O16·H2O nanosheets was 299.95Ω,which was significantly lower than that of the commercial V2O5counterpart(878.6Ω).This reduc?tion in charge transfer resistance results from the unique mesoporous nanosheet structure with larger surface area,which can shorten the pathways for Li+ion diffusion,thus leads to a higher rate capability.Based on the aforementioned results,we believed that the enhanced LIB performance of the(NH4)2V6O16·H2O nanosheets could be attributed to the following two reasons:(1)The 2D nanosheet structure endows the(NH4)2V6O16·H2O with faster transfer path for both lithium ions and electrons as compared to the commercial V2O5;(2)The expanded interlayer distance of the(NH4)2V6O16·H2O induced by co-intercalation of NH4+and H2O makes Li ions easier diffusion during the charge and discharge processes and more space for Li ion storages.

    4 Conclusions

    We have reported the preparation of layered 2D layered(NH4)2V6O16·H2O nanosheets by co-intercalation of NH4+and H2O into commercial V2O5nanoparticles.The ultrathin layered nanosheet structure provides short Li+diffusion pathways,large exposed surface and high electronic/ionic conductivity.Therefore,when used as anode material for LIBs,the as-synthesized(NH4)2V6O16·H2O nanosheets exhibited excellent electrochemical performances.Importantly,the discharge capacity is 390 mA·h/g under a current density as high as 1 A/g af?ter 450 cycles.We have demonstrated that the(NH4)2V6O16·H2O nanosheets can be a promising anode for LIBs.It is believed that this intercalated(NH4)2V6O16·H2O nanosheets could be also a promising electrode ma?terial in other rechargeable batteries,such as SIBs and ZIBs.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20200609.

    This work is supported by the Project of Central Plains Science and Technology Innovation Leading Talents of Henan Province,China(No.204200510001),and the Funding Support from the Start-Up Grant from City University of Hong Kong,China(No.9610495).

    猜你喜歡
    電機(jī)工程香港城市大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    香港城市大學(xué)“重探索、求創(chuàng)新”課程教學(xué)改革的路徑探索與啟示
    廣西師大社與香港城市大學(xué)出版社達(dá)成戰(zhàn)略合作
    出版人(2017年8期)2017-08-16 11:05:27
    香港城市大學(xué)今年擬在內(nèi)地招生211名
    高校招生(2017年1期)2017-06-30 08:38:38
    《化工學(xué)報(bào)》贊助單位
    名校校訓(xùn)
    中國(guó)電機(jī)工程學(xué)會(huì)第十屆理事會(huì)第二次理事長(zhǎng)會(huì)議召開(kāi)
    《江蘇電機(jī)工程》2014年總目次
    国产午夜精品久久久久久一区二区三区 | 一级黄色大片毛片| 国产 一区 欧美 日韩| 亚洲四区av| 久久久久久九九精品二区国产| 三级经典国产精品| av在线天堂中文字幕| 中文亚洲av片在线观看爽| 亚洲最大成人av| 欧美日韩国产亚洲二区| 久久久久久久午夜电影| 日韩成人伦理影院| 麻豆国产av国片精品| 午夜福利在线观看免费完整高清在 | 亚洲乱码一区二区免费版| 国产精品永久免费网站| 麻豆成人午夜福利视频| 搞女人的毛片| 高清毛片免费观看视频网站| 久久中文看片网| 黄色一级大片看看| 国产精品久久电影中文字幕| or卡值多少钱| 亚洲自拍偷在线| 精品熟女少妇av免费看| 亚洲av中文字字幕乱码综合| 久久精品国产亚洲网站| 久久人人爽人人爽人人片va| 真人做人爱边吃奶动态| 亚洲欧美日韩高清专用| 九九久久精品国产亚洲av麻豆| 亚洲无线观看免费| 老司机福利观看| 亚洲最大成人av| 日产精品乱码卡一卡2卡三| 久久久a久久爽久久v久久| 18禁在线无遮挡免费观看视频 | 中文字幕久久专区| 色播亚洲综合网| 最新中文字幕久久久久| 中文字幕av在线有码专区| 最近在线观看免费完整版| a级毛片免费高清观看在线播放| 欧美bdsm另类| 中文资源天堂在线| 久久99热6这里只有精品| 欧美bdsm另类| 国内精品一区二区在线观看| 免费看日本二区| 国产精品爽爽va在线观看网站| 99久久九九国产精品国产免费| 亚洲自偷自拍三级| 国内精品美女久久久久久| 亚洲av二区三区四区| 精品无人区乱码1区二区| 日韩av在线大香蕉| 国产精品三级大全| 亚洲经典国产精华液单| 一级av片app| 中国国产av一级| 看非洲黑人一级黄片| 欧美日韩国产亚洲二区| 免费在线观看成人毛片| 国产真实伦视频高清在线观看| 18+在线观看网站| 在线免费十八禁| 国国产精品蜜臀av免费| 国产成人91sexporn| 人人妻人人澡欧美一区二区| 又黄又爽又免费观看的视频| 午夜精品一区二区三区免费看| 啦啦啦啦在线视频资源| 日本a在线网址| 男女做爰动态图高潮gif福利片| 搞女人的毛片| 精品午夜福利视频在线观看一区| АⅤ资源中文在线天堂| 寂寞人妻少妇视频99o| 亚洲第一电影网av| 夜夜爽天天搞| 亚洲欧美成人综合另类久久久 | 亚洲中文字幕一区二区三区有码在线看| 精品午夜福利视频在线观看一区| 亚洲精品影视一区二区三区av| 免费看光身美女| 99久久精品国产国产毛片| 日韩强制内射视频| 日韩人妻高清精品专区| 国产精品亚洲美女久久久| 欧美成人精品欧美一级黄| 亚洲av熟女| 国产蜜桃级精品一区二区三区| 色综合色国产| 国产av一区在线观看免费| 久久国内精品自在自线图片| 美女xxoo啪啪120秒动态图| 亚洲国产精品sss在线观看| 在线天堂最新版资源| 老女人水多毛片| 亚洲成a人片在线一区二区| 欧美性猛交黑人性爽| 一a级毛片在线观看| 日产精品乱码卡一卡2卡三| 欧美日韩一区二区视频在线观看视频在线 | 在线免费观看不下载黄p国产| 麻豆国产97在线/欧美| 国内少妇人妻偷人精品xxx网站| 国产伦在线观看视频一区| 非洲黑人性xxxx精品又粗又长| 淫秽高清视频在线观看| av在线蜜桃| 看片在线看免费视频| 男人的好看免费观看在线视频| 天堂动漫精品| 人人妻人人看人人澡| 久久精品国产99精品国产亚洲性色| 深爱激情五月婷婷| 色综合亚洲欧美另类图片| 国内精品美女久久久久久| 免费观看精品视频网站| 亚洲最大成人手机在线| 色哟哟·www| 亚洲国产精品sss在线观看| 日本 av在线| 久久精品国产自在天天线| 在线a可以看的网站| 中文字幕久久专区| 非洲黑人性xxxx精品又粗又长| 欧美在线一区亚洲| 精品免费久久久久久久清纯| 精品一区二区免费观看| 欧美国产日韩亚洲一区| 别揉我奶头~嗯~啊~动态视频| 中国国产av一级| 人人妻人人澡欧美一区二区| 成人一区二区视频在线观看| 美女高潮的动态| 国产精品女同一区二区软件| 久久精品国产亚洲av香蕉五月| 欧美一区二区精品小视频在线| 亚洲成av人片在线播放无| 亚洲欧美精品综合久久99| 免费观看的影片在线观看| 哪里可以看免费的av片| 22中文网久久字幕| 国产精品人妻久久久久久| 啦啦啦韩国在线观看视频| 男插女下体视频免费在线播放| 一区福利在线观看| 熟女电影av网| 日韩大尺度精品在线看网址| 99热6这里只有精品| 欧美日韩精品成人综合77777| 全区人妻精品视频| 天堂影院成人在线观看| 国产成人aa在线观看| 两个人视频免费观看高清| 看非洲黑人一级黄片| 色综合色国产| 日本一本二区三区精品| 麻豆乱淫一区二区| 免费看美女性在线毛片视频| 又粗又爽又猛毛片免费看| 午夜激情欧美在线| 一个人免费在线观看电影| 日本 av在线| 日韩精品有码人妻一区| 精品一区二区三区人妻视频| 精品不卡国产一区二区三区| 美女被艹到高潮喷水动态| 午夜精品国产一区二区电影 | 亚洲精品在线观看二区| 看免费成人av毛片| 中文在线观看免费www的网站| 女的被弄到高潮叫床怎么办| 国产中年淑女户外野战色| 国模一区二区三区四区视频| 精品久久久久久久久av| 国产精品久久久久久久电影| 久久久欧美国产精品| 亚洲欧美精品综合久久99| 狂野欧美白嫩少妇大欣赏| 久久天躁狠狠躁夜夜2o2o| 毛片一级片免费看久久久久| 日本免费a在线| 99久久精品热视频| 在线观看av片永久免费下载| 国产精品久久久久久久电影| 网址你懂的国产日韩在线| 免费人成在线观看视频色| 亚洲天堂国产精品一区在线| 亚洲成a人片在线一区二区| 99在线视频只有这里精品首页| 91久久精品国产一区二区三区| 精品人妻偷拍中文字幕| 亚洲专区国产一区二区| 亚洲人成网站在线观看播放| 高清毛片免费看| 久久久久性生活片| 亚洲欧美清纯卡通| 99热只有精品国产| 日韩制服骚丝袜av| 看非洲黑人一级黄片| 男人舔奶头视频| 久久亚洲国产成人精品v| 亚洲在线自拍视频| 99久久成人亚洲精品观看| 午夜福利成人在线免费观看| 级片在线观看| 老司机午夜福利在线观看视频| 亚洲成a人片在线一区二区| 热99re8久久精品国产| 一级黄片播放器| aaaaa片日本免费| 免费看日本二区| 精品久久久久久成人av| 如何舔出高潮| 欧美日本亚洲视频在线播放| 成人亚洲精品av一区二区| 最近的中文字幕免费完整| 国产69精品久久久久777片| 国产淫片久久久久久久久| 老司机影院成人| 国产欧美日韩一区二区精品| 精品人妻熟女av久视频| 蜜桃久久精品国产亚洲av| 在线看三级毛片| 成年免费大片在线观看| 夜夜夜夜夜久久久久| 精品无人区乱码1区二区| 最近手机中文字幕大全| 在线观看美女被高潮喷水网站| 欧美性感艳星| 观看美女的网站| 男女视频在线观看网站免费| 波多野结衣高清无吗| 精品人妻偷拍中文字幕| 国产 一区精品| 丰满人妻一区二区三区视频av| 成人特级av手机在线观看| 亚洲国产精品成人综合色| 亚洲va在线va天堂va国产| 99热6这里只有精品| 中文在线观看免费www的网站| 亚洲精华国产精华液的使用体验 | 亚洲图色成人| 午夜福利在线观看吧| 国模一区二区三区四区视频| 最近2019中文字幕mv第一页| 丝袜喷水一区| 在线观看66精品国产| 国产一级毛片七仙女欲春2| 欧美日韩精品成人综合77777| 69人妻影院| 人妻少妇偷人精品九色| 亚洲在线观看片| 久久久久免费精品人妻一区二区| 久久鲁丝午夜福利片| 国产女主播在线喷水免费视频网站 | 晚上一个人看的免费电影| 精品久久久久久久久久免费视频| 欧美日韩一区二区视频在线观看视频在线 | 一进一出抽搐gif免费好疼| 国产高清视频在线观看网站| 久99久视频精品免费| 中国美白少妇内射xxxbb| 日本黄色视频三级网站网址| 少妇的逼好多水| 午夜精品在线福利| 久久精品国产鲁丝片午夜精品| 天天躁夜夜躁狠狠久久av| 91久久精品国产一区二区成人| 人妻丰满熟妇av一区二区三区| 亚洲精品一区av在线观看| 欧美zozozo另类| 国产高清三级在线| 男人舔奶头视频| av卡一久久| 大又大粗又爽又黄少妇毛片口| 亚洲精品日韩在线中文字幕 | 校园春色视频在线观看| 日本成人三级电影网站| 久久久久久久久久黄片| 久久天躁狠狠躁夜夜2o2o| av专区在线播放| 国产精品一区二区性色av| 亚洲av美国av| 最近的中文字幕免费完整| 国产亚洲精品综合一区在线观看| 少妇被粗大猛烈的视频| 搡老妇女老女人老熟妇| 日韩欧美国产在线观看| 亚洲激情五月婷婷啪啪| 卡戴珊不雅视频在线播放| 精品久久久噜噜| 日韩欧美精品v在线| 亚洲欧美清纯卡通| 国产欧美日韩精品一区二区| 国产欧美日韩精品一区二区| av在线亚洲专区| 国产蜜桃级精品一区二区三区| 久99久视频精品免费| 黄色日韩在线| 男女边吃奶边做爰视频| 成人亚洲精品av一区二区| 午夜福利高清视频| 国产精品久久久久久av不卡| 国产激情偷乱视频一区二区| 99久久精品热视频| 国产视频内射| 你懂的网址亚洲精品在线观看 | 国产精品免费一区二区三区在线| 一本一本综合久久| 淫妇啪啪啪对白视频| 亚洲色图av天堂| 热99在线观看视频| 91在线精品国自产拍蜜月| 91精品国产九色| 亚洲色图av天堂| 丰满的人妻完整版| 欧美xxxx黑人xx丫x性爽| 又爽又黄a免费视频| 欧美三级亚洲精品| av天堂在线播放| 国产精品三级大全| 日韩成人av中文字幕在线观看 | 精品国内亚洲2022精品成人| a级一级毛片免费在线观看| 三级经典国产精品| 欧美日韩综合久久久久久| 日本成人三级电影网站| 村上凉子中文字幕在线| 女生性感内裤真人,穿戴方法视频| 六月丁香七月| 久久久久久久久久久丰满| 精品少妇黑人巨大在线播放 | 亚洲专区国产一区二区| 欧美又色又爽又黄视频| 激情 狠狠 欧美| 欧美丝袜亚洲另类| 久久久久性生活片| 男女那种视频在线观看| 成人高潮视频无遮挡免费网站| 久久精品人妻少妇| 久久精品国产清高在天天线| 最近中文字幕高清免费大全6| 三级毛片av免费| 乱码一卡2卡4卡精品| 久久久久国产网址| 久久欧美精品欧美久久欧美| 久久精品国产清高在天天线| 午夜亚洲福利在线播放| 日韩亚洲欧美综合| 亚洲第一电影网av| 国产 一区 欧美 日韩| 亚洲国产日韩欧美精品在线观看| 精品国内亚洲2022精品成人| 亚洲av免费高清在线观看| 一区二区三区免费毛片| 两个人视频免费观看高清| 久久6这里有精品| or卡值多少钱| 国产国拍精品亚洲av在线观看| 国产一区二区三区在线臀色熟女| 中国国产av一级| 久久婷婷人人爽人人干人人爱| 我的老师免费观看完整版| 全区人妻精品视频| 欧美区成人在线视频| 国语自产精品视频在线第100页| 日韩欧美 国产精品| 国产精品久久久久久亚洲av鲁大| 国产真实伦视频高清在线观看| 国产一区二区在线观看日韩| 国产精品,欧美在线| 丰满人妻一区二区三区视频av| 日韩av在线大香蕉| 国内精品宾馆在线| 免费看日本二区| 精品99又大又爽又粗少妇毛片| 国产高清三级在线| 亚洲,欧美,日韩| 国产精品久久久久久久电影| 无遮挡黄片免费观看| 丰满人妻一区二区三区视频av| 18禁在线播放成人免费| 欧美成人一区二区免费高清观看| 一进一出抽搐动态| 欧洲精品卡2卡3卡4卡5卡区| 亚洲图色成人| 亚洲在线自拍视频| 最近最新中文字幕大全电影3| 国产又黄又爽又无遮挡在线| 99久久精品一区二区三区| 不卡视频在线观看欧美| 日韩,欧美,国产一区二区三区 | 你懂的网址亚洲精品在线观看 | 国产亚洲91精品色在线| 一级毛片电影观看 | 九九久久精品国产亚洲av麻豆| 69av精品久久久久久| 精品一区二区三区视频在线| 亚洲人与动物交配视频| 精品一区二区三区av网在线观看| 特级一级黄色大片| av中文乱码字幕在线| 日韩精品有码人妻一区| 长腿黑丝高跟| 国产精品一二三区在线看| 国产视频内射| 在线播放国产精品三级| 精品久久久久久久久久免费视频| 青春草视频在线免费观看| 免费观看精品视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲第一区二区三区不卡| av在线观看视频网站免费| 国产 一区精品| 日日干狠狠操夜夜爽| 午夜激情欧美在线| 国产在线精品亚洲第一网站| 日日摸夜夜添夜夜添小说| 大香蕉久久网| 麻豆久久精品国产亚洲av| 久久人人爽人人爽人人片va| 亚洲av一区综合| 国产成人a∨麻豆精品| 久久九九热精品免费| 欧美丝袜亚洲另类| 亚洲中文日韩欧美视频| 两个人视频免费观看高清| 欧美性猛交╳xxx乱大交人| 99热网站在线观看| 自拍偷自拍亚洲精品老妇| 亚洲真实伦在线观看| 一a级毛片在线观看| 成人特级av手机在线观看| 亚洲国产精品成人综合色| 久久久色成人| 天堂影院成人在线观看| 伊人久久精品亚洲午夜| 最好的美女福利视频网| 久久久精品94久久精品| 亚洲性夜色夜夜综合| 日韩欧美精品免费久久| av黄色大香蕉| 亚洲欧美成人精品一区二区| av天堂中文字幕网| 日本熟妇午夜| 精华霜和精华液先用哪个| 国产精品人妻久久久影院| 亚洲欧美日韩卡通动漫| 亚洲精品国产成人久久av| 九色成人免费人妻av| 亚洲内射少妇av| 中国美女看黄片| 成人av在线播放网站| 麻豆一二三区av精品| 夜夜看夜夜爽夜夜摸| 男女下面进入的视频免费午夜| 99久久中文字幕三级久久日本| 97超碰精品成人国产| 亚洲精品一卡2卡三卡4卡5卡| av中文乱码字幕在线| 国国产精品蜜臀av免费| 美女内射精品一级片tv| 老司机福利观看| av专区在线播放| 国产精品久久久久久久电影| 久久人人爽人人爽人人片va| 最近手机中文字幕大全| 成人av在线播放网站| av专区在线播放| 91久久精品电影网| 欧美一区二区国产精品久久精品| av卡一久久| 色尼玛亚洲综合影院| 12—13女人毛片做爰片一| 97超视频在线观看视频| 亚洲精品影视一区二区三区av| 成熟少妇高潮喷水视频| 国产精品野战在线观看| 看非洲黑人一级黄片| 亚洲va在线va天堂va国产| 国产精品99久久久久久久久| 婷婷色综合大香蕉| 国产精品女同一区二区软件| 国产成人a区在线观看| 又粗又爽又猛毛片免费看| 日本爱情动作片www.在线观看 | 夜夜夜夜夜久久久久| 美女被艹到高潮喷水动态| 亚洲av中文av极速乱| 观看美女的网站| 国产视频内射| 日韩成人伦理影院| 少妇丰满av| 性插视频无遮挡在线免费观看| 免费看日本二区| 人妻制服诱惑在线中文字幕| 日韩一本色道免费dvd| 久久久久久国产a免费观看| 麻豆乱淫一区二区| 国产色婷婷99| 国产乱人视频| 69av精品久久久久久| 成熟少妇高潮喷水视频| 亚洲av成人精品一区久久| 97人妻精品一区二区三区麻豆| 久久精品影院6| 美女cb高潮喷水在线观看| 欧美成人精品欧美一级黄| 91久久精品电影网| 丰满乱子伦码专区| 欧美xxxx性猛交bbbb| 中文资源天堂在线| 亚洲电影在线观看av| 欧美激情在线99| 99久久成人亚洲精品观看| 国产三级中文精品| 亚洲五月天丁香| 国产成人一区二区在线| 一a级毛片在线观看| 欧美xxxx性猛交bbbb| 色综合色国产| 日韩成人av中文字幕在线观看 | 精品久久久久久久人妻蜜臀av| www.色视频.com| 日韩 亚洲 欧美在线| 亚洲中文字幕一区二区三区有码在线看| 天美传媒精品一区二区| 中国美白少妇内射xxxbb| 成人漫画全彩无遮挡| 日日摸夜夜添夜夜添小说| 欧美一区二区亚洲| 亚洲欧美日韩高清在线视频| 国产精品人妻久久久影院| 久久精品国产亚洲网站| 熟妇人妻久久中文字幕3abv| 国产精品免费一区二区三区在线| 国产亚洲精品久久久com| 美女被艹到高潮喷水动态| 3wmmmm亚洲av在线观看| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播| 国产亚洲精品av在线| 国产三级在线视频| 狂野欧美激情性xxxx在线观看| 男人和女人高潮做爰伦理| 国产毛片a区久久久久| 亚洲精品成人久久久久久| 国内精品宾馆在线| 在线播放国产精品三级| 精品熟女少妇av免费看| 精品久久久久久久末码| 极品教师在线视频| 免费一级毛片在线播放高清视频| 少妇熟女aⅴ在线视频| 99久久中文字幕三级久久日本| 六月丁香七月| av在线老鸭窝| 国产精品久久久久久亚洲av鲁大| 少妇的逼好多水| 禁无遮挡网站| 伦理电影大哥的女人| 久久亚洲精品不卡| 插阴视频在线观看视频| 欧美日本视频| 精品人妻视频免费看| 国产黄色小视频在线观看| 精品一区二区三区av网在线观看| 久久久久久九九精品二区国产| 波多野结衣高清作品| 精品欧美国产一区二区三| 人妻丰满熟妇av一区二区三区| 永久网站在线| 日本爱情动作片www.在线观看 | 精品欧美国产一区二区三| 国产午夜精品论理片| 热99在线观看视频| 精品日产1卡2卡| 日本-黄色视频高清免费观看| 欧美激情在线99| 久久久久免费精品人妻一区二区| 欧美精品国产亚洲| 国产乱人偷精品视频| 久久国产乱子免费精品| 狠狠狠狠99中文字幕| 国产伦一二天堂av在线观看| 日韩三级伦理在线观看| 精品久久久久久成人av| 亚洲激情五月婷婷啪啪| 国模一区二区三区四区视频| 欧美激情国产日韩精品一区| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久久久久| 久久国产乱子免费精品| 国产精品伦人一区二区| 日产精品乱码卡一卡2卡三| 麻豆国产av国片精品| 夜夜看夜夜爽夜夜摸| 亚洲五月天丁香| 久久精品国产亚洲av涩爱 | 国产精品乱码一区二三区的特点| 久久国产乱子免费精品| 色视频www国产| 精品人妻偷拍中文字幕| 欧美在线一区亚洲| 亚洲不卡免费看| 一区二区三区高清视频在线| 成人漫画全彩无遮挡| 久久久久久久亚洲中文字幕| 日韩欧美在线乱码| 国内少妇人妻偷人精品xxx网站| videossex国产|