• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    層狀釩青銅納米片的制備及其鋰離子電池陽(yáng)極材料性能

    2021-02-26 13:44:32馬錄芳譚超良
    關(guān)鍵詞:電機(jī)工程香港城市大學(xué)化工學(xué)院

    周 戰(zhàn),馬錄芳,譚超良

    (1.洛陽(yáng)師范學(xué)院化學(xué)化工學(xué)院,河南省功能多孔材料重點(diǎn)實(shí)驗(yàn)室,洛陽(yáng)471934;2.香港城市大學(xué)電機(jī)工程系,香港九龍)

    1 Introduction

    Layered two-dimensional(2D)materials,such as graphene,transition metal dichalcogenides and layered metal oxides,have been proven to be promising in a wide range of applications,including electronics,optoelectronics,sensors,energy storage and conversion,biomedicine,etc.,owing to their unique physical,chemical and electronic properties[1—15].Among these 2D materials,layered 2D metal oxides have been widely explored as electrode materials for various rechargeable batteries,especially Li-ion batteries(LIBs)[16—20].Previous study[21]has demonstrated that layered 2D nanosheets normally have large surface area and short diffusion path as compared to other kinds of nanomaterials,making them promising electrode materials for high-performance LIBs.As one of the typical layered metal oxides,2D V2O5nanosheets have been extensively investigated as an electrode material due to its reasonable price and high theoretical specific capacity[22—26].For example,Xuet al.[24]reported the synthesis of 2D V2O5network by an one-step polymer-assisted chemical method and the synthesized V2O5delivered a high capacity(e.g.165 mA·h/g at 3 C)and excellent stability when used as a cathode for LIBs.Wanget al.[25]also reported the preparation of 2D V2O5@C nanosheets used as anode for LIBs,exhibiting a large discharge capacity(e.g.802 mA·h/g at 1 A/g),good cycling perfor?mance and high rate capability.In addition,Zhanget al.[26]reported that liquid-phase exfoliated 2D V2O5nanosheets exhibited a high discharge capacity of 370 mA·h/g at 0.05 C when used as the cathode for LIBs.However,previous reports still suffer from unsatisfied performance or relatively complicated synthetic processes.

    It is known that adjacent layers of layered 2D materials are stacking together through weak van der Waals interactions.Therefore,it is feasible to exfoliate the bulk powders into nanosheets through the exfoliation techniques including mechanical exfoliation,liquid-phase exfoliation,intercalation-assisted liquid exfolia?tion,and so on[27—31].Importantly,the layered structure makes them ideal hosts to be intercalated with various intercalants,such as Li+,Na+,K+,Zn2+,Ca2+,Mg2+,Mn2+,polyaniline,polypyrrole and polythiophene[32—35].More importantly,the intercalation of layered materials by various intercalants can enlarge their interlayer spacing,making them promising in energy storage with enhanced capacity and long-term cycling stability,including LIBs,sodium-ion batteries(SIBs),Zn-ion batteries(ZIBs)and supercapacitors[35—44].For example,Xiaet al.[43]reported that the calcium vanadium oxide bronze can deliver a high capacity(340 mA·h/g at 0.2 C),good rate capability and very long cycling life when used as the cathode material for ZIBs.Genget al.[44]also reported that the interlayer Mn2+-doped layered vanadium oxide(Mn0.15V2O5·nH2O)exhibited enhanced electrochemical performance than that of the V2O5When used as the cathode for ZIBs.

    In this paper,we report the preparation of layered 2D(NH4)2V6O16·H2O nanosheets by simply reacting commercial V2O5nanoparticles with ammonium persulfates in aqueous solution at room temperature.The com?mercial V2O5nanoparticles can be transformed into(NH4)2V6O16·H2O nanosheets with a size of 2—10μm and thickness of 50—250 nm due to the co-intercalation with ammonium ions and water molecules.Importantly,when used as an anode material for LIBs,the(NH4)2V6O16·H2O nanosheets exhibit much enhanced capacity,rate performance and cycling performance in comparison with commercial V2O5nanoparticles.Our study demonstrates that the(NH4)2V6O16·H2O nanosheets can be used as an excellent anode material for LIBs,which may be also promising for other rechargeable batteries,such as SIBs and ZIBs.

    2 Experimental

    2.1 Chemicals

    Vanadium pentoxides(V2O5,99%)and ammonium persulfates(98%)were purchased from Aladdin.Polyvinylidenefluoride(PVDF,99.9%)andN-methyl-2-pyrrolidinone(NMP,A.R.)were obtained from Sigma-Aldrich.Acetylene black was purchased from Lion Corporation(Japan).The lithium ion battery elec?trolyte(LiPF6,1 mol/L),lithium foil,Separator(polypropylene film),and copper foil were obtained from Dongguan Shanshan Battery Materials Co.,Ltd.(China).

    2.2 Synthesis of(NH4)2V6O16·H2O Nanosheets

    The(NH4)2V6O16·H2O nanosheets were synthesized by a facile approach in aqueous solution at room temperature according to the method reported in literature[45].Typically,1.5 g of commercial V2O5powders and 18.3 g of ammonium persulfate[(NH4)2S2O6]were dissolved in 150 mL of DI water.After stirring the dark yellow solution at room temperature for 48 h,the golden-yellow product was collected by centrifuge,washed thoroughly with DI water,and drying at 80°C overnight to obtain the(NH4)2V6O16·H2O nanosheets.

    2.3 Characterization

    The morphology and structure characterization of the samples was performed by a scanning electron mi?croscopy(SEM,Sigma 500)and an H-8100 transmission electron microscopy(TEM).The crystal structure of the samples was analyzed by wide-angle powder X-ray diffraction(XRD,Bruker D8)with CuKαradiation.The valence state of the products was determined by X-ray photoelectron spectroscopy(XPS,EscaLab 250Xi).Thermogravimetric analysis(TGA)was collected on a DTG-60AH instrument from 30°C to 700°C at a heating rate of 5°C/min in the air flow.The Raman spectra were recorded on an Invia Raman spectrometer.

    2.4 Electrochemical Measurements

    The working electrodes are prepared by following procedure.70%(mass fraction)active materials,20%(mass fraction)acetylene black and 10%(mass fraction)PVDF binder were mixed in N-methyl-2-pyrrolidone(NMP)and ground in a mortar to prepare a homogeneous slurry.The resulting slurry was spread on a Cu foil current collector,which was then dried in a vacuum oven at 120 °C for 12 h.After that,the coin-type cells were assembled in an argon-filled glovebox.The Neware CT-3008W was carried out to record the chargedischarge profiles of the electrodes in the potential range of 0.01—3 V at different current rates(0.1,0.4 and 1 A/g).It is worth pointing out that the current rate of 0.1 A/g was used for the first 4 cycles to activate the materials before testing at 1 A/g.A Parstat 4000+workstation(Princeton Applied Research,USA)was used to measure the cyclic voltammetry(CV)curves and electrochemical impedance spectroscopy(EIS).CV curves in the potential range from 0.01 V to 3.0 VversusLi/Li+were measured at a scanning rate of 0.1 mV/s.EIS were measured from 0.01 Hz to 100 kHz with an AC amplitude of 5 mV.

    3 Results and Discussion

    The layered(NH4)2V6O16·H2O nanosheets were synthesized by reacting of commercial V2O5nanoparticles with(NH4)2S2O6in solution at room temperature for 48 h.Note that ammonium ions and water molecules are interacted into the layered V2O5to stable(NH4)2V6O16·H2O compound,thus the compound can be considered as an intercalated compound.The SEM image shows that the commercial V2O5samples are aggregated nanopar?ticles with a size of several hundred nanometers(Fig.S1,see the Supporting Information of this paper).After the reaction,the commercial V2O5nanoparticles are transformed into micro-sized(NH4)2V6O16·H2O nanosheets.As shown in Fig.1(A),the obtained(NH4)2V6O16·H2O nanosheets show a plate-like morpho-logy with a size of 2—10μm.The thickness of the(NH4)2V6O16·H2O nanosheets measured from its atomic force(AFM)height images is ranging from 50 nm to 250 nm[Fig.1(B)and Fig.S2,see the Supporting Information of this paper].The TEM image further confirms the sheet-like morphology of the(NH4)2V6O16·H2O sample with a micrometer lateral size[Fig.1(C)].Moreover,the associated selected area electron diffraction(SAED)pattern reveals the crystalline structure of the(NH4)2V6O16·H2O nanosheets[Fig.1(D)].Both of the samples are then characterized by powder X-ray diffraction(XRD).As shown in Fig.2(A),all the XRD peaks of the commercial V2O5nanoparticles match well with the standard PDF card of V2O5(JCPDS:41-1426),confirming its crystal phase.Note that the diffraction peak located at 15.349° corresponded to the(200)plane of V2O5,indicating the interlayer distance of layered V2O5.After intercalation,the XRD pattern of the obtained nanosheets is assignable to the standard PDF of(NH4)2V6O16·H2O(JCPDS:41-0492),confirming that the obtained nanosheets are(NH4)2V6O16·H2O.It is worth pointing out that the(200)peak of(NH4)2V6O16·H2O shifts to the lower degree(11.200°)as compared to that of the V2O5sample.Such shift can be considered asd-spacing expansion induced by the co-intercalation of ammonium ions and water molecules into layered V2O5.It is worth noting that the obtained(NH4)2V6O16·H2O nanosheets still keep the layered structure,similar to the layered V2O5[45].

    Fig.1 SEM image of the(NH4)2V6O16·H2O nanosheets(A),AFM height image of a typical(NH4)2V6O16·H2O nanosheet(B),TEM image(C)and its corresponding SAED pattern(D)of the(NH4)2V6O16·H2O nanosheets

    Fig.2 XRD patterns(A),Raman spectra(B),FTIR spectra(C)and TGA curves(D)of the commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets

    The commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets were further characterized by Raman spectroscopy[Fig.2(B)].The Raman spectrum of the commercial V2O5nanoparticles shows its charac?teristic peaks at 146,198,286,404,706 and 994 cm—1,which are corresponded to the OA—V—OBbond bending vibration modeB3g,the OA—V—OBbond bending vibration modeAg,V—OCbond bending vibration modeB2g,V—OB—V bond bending vibration modeAg,V—OCbond stretching vibration modeB2gand V—OAbond stretching vibration modeAg,respectively[46].The Raman spectrum of(NH4)2V6O16·H2O nanosheets shows similar peaks as the V2O5,but with more peaks at low frequency region,which might be originated from the vibration of NH4+in the(NH4)2V6O16·H2O nanosheets.

    To further confirm the intercalation of ammonium ions and water molecules,the commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets were characterized by Fourier transform infrared(FTIR)spectroscopy.As displayed in Fig.2(C),the FTIR spectrum of(NH4)2V6O16·H2O nanosheets exhibits a few additional peaks as compared to that of the commercial V2O5nanoparticles.The two bands at 735 and 527 cm—1are assignable to the asymmetric and symmetric stretching vibrations of V—O—V bonds[47].The peaks at 1006 and 969 cm—1are attributed to the stretching vibration of V4+=O and V5+=O groups,corresponding to the distorted VO6octahedra and VO5square pyramids,respectively[47].The peaks at around 3230 and 1407 cm—1are assigned to the asymmetric stretching vibration and symmetric bending of N—H bonds,indicating the presence of NH4+ions.FTIR results demonstrate the existence of NH4+in the framework of the as-synthesized(NH4)2V6O16·H2O nanosheets.X-Ray photoelectron spectroscopy(XPS)measurements were performed to characterize the electronic state of commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets.As shown in Fig.S3(A)(see the Supporting Information of this paper),the XPS survey spectrum of the(NH4)2V6O16·H2O nanosheets shows same peaks except an additional N1speak,which is further evident by the high-resolution XPS N1sspectra[Fig.S3(B),see the Supporting Information of this paper].The additional N1ssignal in the(NH4)2V6O16·H2O nanosheets can be attributed to NH4+.Both the XPS V2pand O1sspectra of the(NH4)2V6O16·H2O nanosheets are almost the same as compared to that of commercial V2O5nanoparticles,suggesting that the intercalation of ammonium ions and water molecules does not change the electronic structure of the oxide.In addition,thermogravimetric analysis(TGA)was performed in air atmosphere to investigate the two samples.As the temperature increases from 30 to 700 °C,the commercial V2O5powder remains stable over the entire temperature range[Fig.2(D)].While the(NH4)2V6O16·H2O nanosheets were found to lose weight suddenly byca.11.7% around 270—330 °C[Fig.2(D)].The weight change could be attributed to the thermal decomposition of NH4+and lose of water molecules,which is close to calculated weigh percentage of interacted NH4+and H2O(11.4%).All the aforementioned analysis suggests the preparation of(NH4)2V6O16·H2O nanosheets by co-intercalation of commercial V2O5nanoparticles with NH4+and H2O.

    2D V2O5nanosheets have been widely used as electrodes in various rechargeable batteries,specially LIBs[48,49].Therefore,the electrochemical lithium-ion storage properties of the commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets as anode materials for LIBs are evaluated in detail.Fig.3(A)presents the CV curves of the two electrodes at a scan rate of 0.1 mV/s in a voltage range from 0.01 V to 3.0 V.Two pairs of redox peaks of(NH4)2V6O16·H2O nanosheets located at 2.40/1.98 V and 1.23/0.72 V can be identified,which indicate the reversible intercalation process of Li+and the phase transformation during cycling.In con?trast,the potential gap of redox peaks of the commercial V2O5electrode is worse than(NH4)2V6O16·H2O nanosheets in the first CV since the larger activation polarization for(NH4)2V6O16·H2O nanosheets.In addi?tion,the first five charge and discharge voltage curves of the commercial V2O5nanoparticles and(NH4)2V6O16·H2O nanosheets at a current density of 0.1,0.4,and 1 A/g are shown in Fig.3(B,C)and Fig.S4(see the Supporting Information of this paper)respectively.It can be observed that both of them have the multiple dis?charge/charge voltage plateaus,corresponding to different redox reactions related to Li+insertion/extraction.The(NH4)2V6O16·H2O nanosheets exhibit higher capacity in comparison with that of the bulk commercial V2O5nanoparticles.Thereafter,the rate performance of the 2D(NH4)2V6O16·H2O nanosheets was investigated.Fig.3(D)clearly shows that the(NH4)2V6O16·H2O nanosheets has an excellent rate capability.The(NH4)2V6O16·H2O nanosheets delivers the discharge capacities of 1070 mA·h/g when the current density is 0.1 A/g.Even at the high current densities of 1.0 A/g,the discharge capacity remains approximately 355 mA·h/g.By comparison,the capacities of commercial V2O5is much less than that of(NH4)2V6O16·H2O nanosheets,especially at low current densities[Fig.3(D)].For example,the commercial V2O5delivers charge/discharge capacities of 584 and 316 mA·h/g at the current densities of 0.1 and 1 A/g,respectively.

    Fig.3 CV curves of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets(A),Galvanostatic charge?discharge profiles of commercial V2O5 nanoparticles(B)and(NH4)2V6O16·H2O nanosheets(C)for the first five cycles at 0.1 A/g,rate capabilities of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets at varying current rates(D)

    The cycling performance of commercial V2O5and(NH4)2V6O16·H2O nanosheets were also investigated at different current densities of 0.1,0.4 and 1 A/g in a voltage range of 0.01—3 V.The capacity was calculated based on the mass of electrode materials.As shown in Fig.4(A)—(C),the(NH4)2V6O16·H2O nanosheets exhibited excellent cycle capacity retention.At a current density of 0.1 Ah/g,(NH4)2V6O16·H2O nanosheets delivers an average capacity of 1002 mA·h/g at the end of 70 cycles[Fig.4(A)],while the commercial V2O5nanoparticles gave an inferior capacity only around 349 mA·h/g at the same cycles.Although the discharge capacity of(NH4)2V6O16·H2O nanosheets decreased from 522 mA·h/g for the first cycle to 334 mA·h/g for the 50th cycle at 0.4 A/g due to the slow lithium ion diffusion and high charge-discharge resistance,its performance was surprisingly increased to 742 mA·h/g for the 450th cycle because the lithium intercalation and deintercalation during the cycling process could activate the materials to provide more active sties for lithi?um storage[Fig.4(B)].For the comparison,the commercial V2O5nanoparticles also presented good cycling performance at 0.4 A/g during the whole 450 cycles but with a much lower capacity.At the high current densi?ties of 1.0 A/g,the discharge capacity of(NH4)2V6O16·H2O nanosheets remains approximately 390 mA·h/g at the 450th cycle,while the commercial V2O5nanoparticles displayed lower discharge capacity(221 mA·h/g at the 450th cycle)than that of(NH4)2V6O16·H2O nanosheets[Fig.4(C)].All the aforementioned results suggest that the(NH4)2V6O16·H2O nanosheets have excellent cycling performance when used as a LIB electrode.

    Fig.4 Cycling performance of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets at 0.1 A/g(A),0.4 A/g(B)and 1 A/g(C),nyquist-diagram of commercial V2O5 nanoparticles and(NH4)2V6O16·H2O nanosheets(Inset is the equivalent circuit diagram)(D)

    EIS measurements were performed to reveal different electrochemical behaviors between the commercial V2O5and the(NH4)2V6O16·H2O nanosheets[Fig.4(D)].The Nyquist plots of the commercial V2O5and(NH4)2V6O16·H2O nanosheets are composed of the intercept at Z′-axis at the high frequency region,a semicir?cle in high to medium frequency regions and an inclined line in low frequency regions,corresponding to the re?sistance of electrolyte and cell components(Rs)and the charge transfer resistance(Rct).As listed in Table S1(see the Supporting Information of this paper),the value ofRctfor the(NH4)2V6O16·H2O nanosheets was 299.95Ω,which was significantly lower than that of the commercial V2O5counterpart(878.6Ω).This reduc?tion in charge transfer resistance results from the unique mesoporous nanosheet structure with larger surface area,which can shorten the pathways for Li+ion diffusion,thus leads to a higher rate capability.Based on the aforementioned results,we believed that the enhanced LIB performance of the(NH4)2V6O16·H2O nanosheets could be attributed to the following two reasons:(1)The 2D nanosheet structure endows the(NH4)2V6O16·H2O with faster transfer path for both lithium ions and electrons as compared to the commercial V2O5;(2)The expanded interlayer distance of the(NH4)2V6O16·H2O induced by co-intercalation of NH4+and H2O makes Li ions easier diffusion during the charge and discharge processes and more space for Li ion storages.

    4 Conclusions

    We have reported the preparation of layered 2D layered(NH4)2V6O16·H2O nanosheets by co-intercalation of NH4+and H2O into commercial V2O5nanoparticles.The ultrathin layered nanosheet structure provides short Li+diffusion pathways,large exposed surface and high electronic/ionic conductivity.Therefore,when used as anode material for LIBs,the as-synthesized(NH4)2V6O16·H2O nanosheets exhibited excellent electrochemical performances.Importantly,the discharge capacity is 390 mA·h/g under a current density as high as 1 A/g af?ter 450 cycles.We have demonstrated that the(NH4)2V6O16·H2O nanosheets can be a promising anode for LIBs.It is believed that this intercalated(NH4)2V6O16·H2O nanosheets could be also a promising electrode ma?terial in other rechargeable batteries,such as SIBs and ZIBs.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20200609.

    This work is supported by the Project of Central Plains Science and Technology Innovation Leading Talents of Henan Province,China(No.204200510001),and the Funding Support from the Start-Up Grant from City University of Hong Kong,China(No.9610495).

    猜你喜歡
    電機(jī)工程香港城市大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    香港城市大學(xué)“重探索、求創(chuàng)新”課程教學(xué)改革的路徑探索與啟示
    廣西師大社與香港城市大學(xué)出版社達(dá)成戰(zhàn)略合作
    出版人(2017年8期)2017-08-16 11:05:27
    香港城市大學(xué)今年擬在內(nèi)地招生211名
    高校招生(2017年1期)2017-06-30 08:38:38
    《化工學(xué)報(bào)》贊助單位
    名校校訓(xùn)
    中國(guó)電機(jī)工程學(xué)會(huì)第十屆理事會(huì)第二次理事長(zhǎng)會(huì)議召開(kāi)
    《江蘇電機(jī)工程》2014年總目次
    精品久久久久久电影网| 国产视频首页在线观看| 亚洲专区中文字幕在线| 欧美人与性动交α欧美精品济南到| 激情视频va一区二区三区| 女警被强在线播放| 妹子高潮喷水视频| 国产一区二区三区av在线| 黄色 视频免费看| 桃花免费在线播放| 亚洲欧美中文字幕日韩二区| 欧美日韩视频精品一区| 久久久久久人人人人人| 亚洲av电影在线观看一区二区三区| 国产精品.久久久| 男人爽女人下面视频在线观看| 美女大奶头黄色视频| 欧美日韩亚洲高清精品| 国产成人91sexporn| 80岁老熟妇乱子伦牲交| 亚洲色图综合在线观看| videosex国产| 丰满少妇做爰视频| cao死你这个sao货| 亚洲精品第二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区三区综合在线观看| 亚洲国产欧美网| 欧美在线一区亚洲| 久热爱精品视频在线9| 亚洲天堂av无毛| 久久精品国产a三级三级三级| 精品一区二区三区四区五区乱码 | 亚洲精品中文字幕在线视频| 在线观看免费午夜福利视频| 女人久久www免费人成看片| 日日夜夜操网爽| 久久中文字幕一级| 亚洲成人免费电影在线观看 | 国产女主播在线喷水免费视频网站| 悠悠久久av| 久久久久精品国产欧美久久久 | 少妇粗大呻吟视频| 日韩中文字幕视频在线看片| 亚洲,欧美,日韩| 午夜激情av网站| 欧美中文综合在线视频| 性高湖久久久久久久久免费观看| 五月天丁香电影| 久久精品久久久久久噜噜老黄| 午夜免费观看性视频| www.精华液| 波野结衣二区三区在线| 激情视频va一区二区三区| 久久久国产一区二区| 精品国产一区二区三区久久久樱花| 黄网站色视频无遮挡免费观看| 99久久精品国产亚洲精品| 国产一区二区三区综合在线观看| 国产亚洲av高清不卡| 久久久国产一区二区| 男女免费视频国产| 亚洲av在线观看美女高潮| 久久人人爽av亚洲精品天堂| 丝袜人妻中文字幕| av视频免费观看在线观看| a级毛片黄视频| 美女扒开内裤让男人捅视频| 大话2 男鬼变身卡| 人人妻,人人澡人人爽秒播 | 亚洲精品乱久久久久久| 亚洲国产精品国产精品| 国产成人精品久久二区二区免费| 99热国产这里只有精品6| 男女床上黄色一级片免费看| 国产精品久久久久成人av| 婷婷色麻豆天堂久久| 人妻 亚洲 视频| 欧美性长视频在线观看| 在线 av 中文字幕| cao死你这个sao货| 国产免费又黄又爽又色| 女人爽到高潮嗷嗷叫在线视频| 人人妻人人澡人人看| 欧美精品一区二区免费开放| 亚洲熟女精品中文字幕| 一级毛片黄色毛片免费观看视频| 色网站视频免费| 免费在线观看完整版高清| 宅男免费午夜| 久久精品aⅴ一区二区三区四区| 久久国产精品男人的天堂亚洲| 亚洲精品第二区| 黑人欧美特级aaaaaa片| 国产97色在线日韩免费| 一边亲一边摸免费视频| 中文精品一卡2卡3卡4更新| 国产一区二区 视频在线| a级毛片黄视频| 在线观看www视频免费| 18禁观看日本| 新久久久久国产一级毛片| 91麻豆精品激情在线观看国产 | 久久九九热精品免费| 欧美日韩福利视频一区二区| 成年女人毛片免费观看观看9 | 亚洲欧美日韩高清在线视频 | 免费观看人在逋| 80岁老熟妇乱子伦牲交| h视频一区二区三区| 晚上一个人看的免费电影| 亚洲三区欧美一区| 亚洲综合色网址| 日本午夜av视频| 黄色视频不卡| 亚洲中文字幕日韩| 亚洲成人手机| 国产成人欧美在线观看 | 下体分泌物呈黄色| 首页视频小说图片口味搜索 | 五月开心婷婷网| 男人添女人高潮全过程视频| 亚洲国产精品成人久久小说| 国产片内射在线| 日本色播在线视频| 国产一卡二卡三卡精品| 高清欧美精品videossex| 欧美日韩视频高清一区二区三区二| av网站免费在线观看视频| 高清黄色对白视频在线免费看| 99re6热这里在线精品视频| 麻豆乱淫一区二区| 国产成人啪精品午夜网站| 极品人妻少妇av视频| 精品国产乱码久久久久久小说| 色94色欧美一区二区| 在线观看一区二区三区激情| 美女国产高潮福利片在线看| 男女国产视频网站| 日韩av免费高清视频| 中国美女看黄片| av有码第一页| 精品一区二区三卡| 99热全是精品| 成人三级做爰电影| 国产欧美日韩综合在线一区二区| 精品免费久久久久久久清纯 | 性高湖久久久久久久久免费观看| 免费看不卡的av| 国产伦理片在线播放av一区| 看免费成人av毛片| 久久鲁丝午夜福利片| 五月开心婷婷网| 国产91精品成人一区二区三区 | 欧美+亚洲+日韩+国产| 中文乱码字字幕精品一区二区三区| 亚洲国产中文字幕在线视频| 色精品久久人妻99蜜桃| 免费人妻精品一区二区三区视频| 叶爱在线成人免费视频播放| 精品国产一区二区三区久久久樱花| 日本欧美视频一区| 超碰97精品在线观看| 精品国产超薄肉色丝袜足j| 18禁观看日本| 久久久精品区二区三区| 黄片播放在线免费| 天堂8中文在线网| 国产精品国产三级专区第一集| 国产野战对白在线观看| 一区二区三区四区激情视频| 亚洲精品国产色婷婷电影| 国产精品人妻久久久影院| 国产成人一区二区三区免费视频网站 | 女性被躁到高潮视频| 国产精品熟女久久久久浪| 亚洲国产精品成人久久小说| 国产免费视频播放在线视频| 亚洲国产看品久久| 亚洲国产欧美一区二区综合| 精品福利观看| 成人国产一区最新在线观看 | 国产高清不卡午夜福利| 国产精品一国产av| 国产成人影院久久av| 日本色播在线视频| 婷婷丁香在线五月| 热re99久久国产66热| 亚洲国产最新在线播放| 另类精品久久| 天天影视国产精品| 国产av一区二区精品久久| 亚洲国产欧美网| 黄网站色视频无遮挡免费观看| 国产伦理片在线播放av一区| 婷婷色麻豆天堂久久| 国产高清videossex| 免费日韩欧美在线观看| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 日韩一本色道免费dvd| 国产成人一区二区三区免费视频网站 | 国产成人91sexporn| 无限看片的www在线观看| 丰满饥渴人妻一区二区三| 在线观看一区二区三区激情| www.999成人在线观看| 大陆偷拍与自拍| 国产精品一区二区在线观看99| 欧美+亚洲+日韩+国产| 丝袜在线中文字幕| 精品一区二区三卡| 国产男女超爽视频在线观看| 国产极品粉嫩免费观看在线| 人人澡人人妻人| 亚洲欧美精品综合一区二区三区| 久久久国产欧美日韩av| 亚洲精品久久成人aⅴ小说| 天天添夜夜摸| 色精品久久人妻99蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇久久久久久888优播| 秋霞在线观看毛片| 免费女性裸体啪啪无遮挡网站| 在线观看国产h片| 国产在线一区二区三区精| 欧美精品人与动牲交sv欧美| 日日爽夜夜爽网站| 国产又色又爽无遮挡免| 大码成人一级视频| 国产爽快片一区二区三区| 天天操日日干夜夜撸| 国产成人av激情在线播放| 新久久久久国产一级毛片| 丝袜人妻中文字幕| www日本在线高清视频| 午夜福利,免费看| 操美女的视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频| 嫩草影视91久久| 亚洲九九香蕉| 欧美另类一区| 精品亚洲乱码少妇综合久久| 欧美人与性动交α欧美精品济南到| 老司机影院成人| 日韩,欧美,国产一区二区三区| 777米奇影视久久| 侵犯人妻中文字幕一二三四区| 精品久久久久久久毛片微露脸 | 爱豆传媒免费全集在线观看| 自线自在国产av| 老鸭窝网址在线观看| 黄色毛片三级朝国网站| videos熟女内射| 久久性视频一级片| 国产精品免费视频内射| 国产免费福利视频在线观看| 中文字幕高清在线视频| 国产又色又爽无遮挡免| av网站在线播放免费| 天天躁夜夜躁狠狠躁躁| 成年人黄色毛片网站| 欧美精品啪啪一区二区三区 | 亚洲av电影在线进入| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频在线观看免费| 操出白浆在线播放| 97精品久久久久久久久久精品| 色网站视频免费| 50天的宝宝边吃奶边哭怎么回事| 赤兔流量卡办理| 久久久精品国产亚洲av高清涩受| 国产无遮挡羞羞视频在线观看| 欧美日韩综合久久久久久| 欧美久久黑人一区二区| 成年动漫av网址| 国产极品粉嫩免费观看在线| 老汉色∧v一级毛片| 亚洲一码二码三码区别大吗| 中文字幕高清在线视频| 日本黄色日本黄色录像| 久久国产精品人妻蜜桃| 国产午夜精品一二区理论片| 日韩av免费高清视频| 乱人伦中国视频| 欧美亚洲 丝袜 人妻 在线| 一本久久精品| 夫妻性生交免费视频一级片| 免费一级毛片在线播放高清视频 | 亚洲三区欧美一区| 亚洲激情五月婷婷啪啪| 欧美日韩av久久| 国产高清不卡午夜福利| 真人做人爱边吃奶动态| 啦啦啦 在线观看视频| 久久久久精品国产欧美久久久 | 另类亚洲欧美激情| 又粗又硬又长又爽又黄的视频| 老熟女久久久| 在线观看免费午夜福利视频| 美女视频免费永久观看网站| 在线观看免费日韩欧美大片| 国产亚洲av高清不卡| 国产免费福利视频在线观看| 国产免费一区二区三区四区乱码| 啦啦啦 在线观看视频| 国产视频首页在线观看| 一个人免费看片子| 国产成人影院久久av| 亚洲欧美清纯卡通| 女人久久www免费人成看片| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区三 | 国产高清videossex| 国产xxxxx性猛交| 亚洲国产av影院在线观看| 免费在线观看影片大全网站 | 天天躁日日躁夜夜躁夜夜| 免费在线观看完整版高清| 男女边吃奶边做爰视频| 亚洲国产看品久久| 国产成人免费观看mmmm| av在线app专区| 美女主播在线视频| 婷婷成人精品国产| 波多野结衣一区麻豆| 亚洲熟女毛片儿| 国产女主播在线喷水免费视频网站| av电影中文网址| 黄色视频不卡| 青青草视频在线视频观看| 国产av一区二区精品久久| 成人三级做爰电影| 在线观看一区二区三区激情| 久久久久国产一级毛片高清牌| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩福利视频一区二区| 18禁观看日本| 在线观看免费午夜福利视频| 日韩中文字幕欧美一区二区 | 另类精品久久| 如日韩欧美国产精品一区二区三区| 不卡av一区二区三区| 亚洲av电影在线进入| 日日夜夜操网爽| 国产又色又爽无遮挡免| 夫妻午夜视频| 久久久欧美国产精品| av又黄又爽大尺度在线免费看| 亚洲国产精品国产精品| 桃花免费在线播放| 国产高清视频在线播放一区 | 国产男人的电影天堂91| 美女中出高潮动态图| 狂野欧美激情性xxxx| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄| 晚上一个人看的免费电影| 国产精品一国产av| 久久久久久人人人人人| 亚洲欧洲国产日韩| 黑人巨大精品欧美一区二区蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 久久人人97超碰香蕉20202| 欧美日韩福利视频一区二区| 伊人久久大香线蕉亚洲五| 男人操女人黄网站| 三上悠亚av全集在线观看| 日本av免费视频播放| 妹子高潮喷水视频| 婷婷色综合大香蕉| 自线自在国产av| 黄色片一级片一级黄色片| 中文字幕制服av| 欧美日韩福利视频一区二区| 黑人巨大精品欧美一区二区蜜桃| 两人在一起打扑克的视频| 亚洲伊人色综图| 18禁黄网站禁片午夜丰满| 悠悠久久av| 别揉我奶头~嗯~啊~动态视频 | 啦啦啦 在线观看视频| 脱女人内裤的视频| 看十八女毛片水多多多| 丰满少妇做爰视频| 日本a在线网址| www日本在线高清视频| 在线看a的网站| 久久久久网色| 亚洲精品自拍成人| 国产视频一区二区在线看| 亚洲av欧美aⅴ国产| 亚洲午夜精品一区,二区,三区| 永久免费av网站大全| 在线 av 中文字幕| 男女边摸边吃奶| 亚洲五月色婷婷综合| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 99香蕉大伊视频| 欧美日韩亚洲高清精品| 国产极品粉嫩免费观看在线| 极品少妇高潮喷水抽搐| xxx大片免费视频| 国产精品久久久av美女十八| 国产亚洲午夜精品一区二区久久| 另类亚洲欧美激情| 人人妻人人添人人爽欧美一区卜| 久久鲁丝午夜福利片| 久久人人97超碰香蕉20202| 日本wwww免费看| av线在线观看网站| 精品久久蜜臀av无| 久久久精品免费免费高清| 伦理电影免费视频| 欧美人与善性xxx| 一区二区三区四区激情视频| 国产男女超爽视频在线观看| 免费日韩欧美在线观看| 久久天躁狠狠躁夜夜2o2o | 免费在线观看黄色视频的| 日韩制服丝袜自拍偷拍| 狂野欧美激情性xxxx| 国产淫语在线视频| 久久影院123| 99国产精品免费福利视频| 日日夜夜操网爽| 国产成人精品在线电影| 欧美乱码精品一区二区三区| 久久中文字幕一级| a 毛片基地| 久久天躁狠狠躁夜夜2o2o | 亚洲国产av影院在线观看| videos熟女内射| 国产男人的电影天堂91| 国产一卡二卡三卡精品| 国精品久久久久久国模美| 亚洲av电影在线进入| 无限看片的www在线观看| www.精华液| 日韩制服丝袜自拍偷拍| 久久九九热精品免费| 老司机亚洲免费影院| 欧美人与善性xxx| 夫妻午夜视频| 欧美av亚洲av综合av国产av| 操出白浆在线播放| 国产日韩欧美视频二区| 99国产精品一区二区蜜桃av | 下体分泌物呈黄色| www.av在线官网国产| 伦理电影免费视频| 亚洲精品中文字幕在线视频| av有码第一页| 一本—道久久a久久精品蜜桃钙片| 欧美 亚洲 国产 日韩一| 欧美黑人精品巨大| 一区二区三区精品91| 精品少妇久久久久久888优播| 欧美日韩黄片免| 视频在线观看一区二区三区| 不卡av一区二区三区| 国产男女超爽视频在线观看| av国产精品久久久久影院| 国产91精品成人一区二区三区 | av有码第一页| 啦啦啦在线免费观看视频4| 男女床上黄色一级片免费看| 国产高清国产精品国产三级| 免费看不卡的av| 亚洲国产中文字幕在线视频| 国产精品香港三级国产av潘金莲 | 在线观看人妻少妇| 桃花免费在线播放| 国产精品久久久av美女十八| 久久影院123| 黄色视频不卡| 不卡av一区二区三区| 丝袜人妻中文字幕| 老熟女久久久| 男女边吃奶边做爰视频| 在线天堂中文资源库| 午夜福利影视在线免费观看| 这个男人来自地球电影免费观看| 好男人电影高清在线观看| 亚洲国产av影院在线观看| 男女无遮挡免费网站观看| 久久久久久久久免费视频了| 国产成人精品在线电影| 777久久人妻少妇嫩草av网站| 成人黄色视频免费在线看| 成人国产一区最新在线观看 | 国产精品久久久人人做人人爽| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩亚洲综合一区二区三区_| 日韩 亚洲 欧美在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人系列免费观看| 久久久久久久久免费视频了| 国产精品av久久久久免费| a 毛片基地| 国产熟女午夜一区二区三区| 嫩草影视91久久| 国产成人欧美在线观看 | 美女福利国产在线| 精品福利永久在线观看| 久久久久久人人人人人| 又粗又硬又长又爽又黄的视频| 亚洲,欧美,日韩| 午夜福利影视在线免费观看| 嫁个100分男人电影在线观看 | 国产精品三级大全| 国产一区二区激情短视频 | www.自偷自拍.com| 久久久国产一区二区| 一二三四社区在线视频社区8| 夜夜骑夜夜射夜夜干| 汤姆久久久久久久影院中文字幕| 91字幕亚洲| 性少妇av在线| 1024香蕉在线观看| 午夜日韩欧美国产| 免费看十八禁软件| 嫩草影视91久久| 多毛熟女@视频| 五月开心婷婷网| 曰老女人黄片| 国产精品一国产av| 国产又爽黄色视频| 色视频在线一区二区三区| 黄频高清免费视频| 性色av一级| 18禁裸乳无遮挡动漫免费视频| 尾随美女入室| 亚洲精品国产av成人精品| 一区二区三区精品91| 丁香六月天网| 黄片播放在线免费| 日本a在线网址| 黄色 视频免费看| 色综合欧美亚洲国产小说| 老汉色av国产亚洲站长工具| 亚洲精品日本国产第一区| 99香蕉大伊视频| av欧美777| 日日夜夜操网爽| 亚洲一码二码三码区别大吗| 纯流量卡能插随身wifi吗| 国产激情久久老熟女| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区国产| 又大又黄又爽视频免费| av视频免费观看在线观看| 精品卡一卡二卡四卡免费| 丝袜人妻中文字幕| 在线观看人妻少妇| 欧美日韩亚洲国产一区二区在线观看 | 妹子高潮喷水视频| 这个男人来自地球电影免费观看| 亚洲欧美日韩另类电影网站| 国产精品国产三级专区第一集| 九色亚洲精品在线播放| 中国美女看黄片| 婷婷色av中文字幕| 欧美人与性动交α欧美精品济南到| 久久久久久久国产电影| 国产伦理片在线播放av一区| 狂野欧美激情性xxxx| 日韩视频在线欧美| 国产精品 欧美亚洲| 赤兔流量卡办理| 精品一区二区三区av网在线观看 | 国产成人精品久久二区二区91| 天天影视国产精品| 免费久久久久久久精品成人欧美视频| 日韩中文字幕视频在线看片| 男女无遮挡免费网站观看| 伦理电影免费视频| 亚洲成av片中文字幕在线观看| 国产av国产精品国产| 国产亚洲欧美在线一区二区| netflix在线观看网站| 大话2 男鬼变身卡| 一级黄色大片毛片| 国产熟女午夜一区二区三区| 午夜免费成人在线视频| 国产精品人妻久久久影院| 午夜免费观看性视频| 国产一区二区 视频在线| av有码第一页| 一本久久精品| 电影成人av| 蜜桃国产av成人99| 一区二区av电影网| 欧美在线黄色| 中国国产av一级| 日韩,欧美,国产一区二区三区| 丰满少妇做爰视频| 美女大奶头黄色视频| 国产无遮挡羞羞视频在线观看| 亚洲av成人精品一二三区| 亚洲第一av免费看| 久久午夜综合久久蜜桃| 女人久久www免费人成看片| 免费在线观看视频国产中文字幕亚洲 | 两个人免费观看高清视频| 国产日韩一区二区三区精品不卡| 一二三四社区在线视频社区8| 在线 av 中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 国产精品二区激情视频| 欧美精品亚洲一区二区| 一本—道久久a久久精品蜜桃钙片|