• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬相1T′MoS2增強(qiáng)類(lèi)石墨相C3N4的可見(jiàn)光催化性能

    2021-02-26 13:44:14賈并泉許鈁鈁黃富強(qiáng)
    關(guān)鍵詞:超微結(jié)構(gòu)材料科學(xué)中國(guó)科學(xué)院

    賈并泉,葉 斌,趙 偉,許鈁鈁,黃富強(qiáng),2,3

    (1.中國(guó)科學(xué)院上海硅酸鹽研究所,高性能陶瓷和超微結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200050;2.中國(guó)科學(xué)院大學(xué),材料科學(xué)與光電子工程中心,北京100049;3.北京大學(xué)化學(xué)與分子工程學(xué)院,稀土材料化學(xué)與應(yīng)用國(guó)家重點(diǎn)實(shí)驗(yàn)室和北京分子國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871)

    1 Introduction

    Group-Ⅵtransition metal dichalcogenides(TMDs)such as MoS2are promising for applications in diverse fields like secondary battery[1,2],electrocatalysis[3,4],photocatalysis[5,6]and solar cell[7].It exists several poly?morphs including 2H,1T phases and so on,depending on the coordination modes between the transition metal and chalcogen atoms[8—10].These modes are thought to highly correlate with their performance in applications.Among them,the octahedral coordinated one(1T phase)is metallic compound,showing superior performance for electrocatalysis[11,12]and energy storage[13,14]than trigonal coordinated 2H phase,because the charge trans?fer resistance is dramatically reduced in the metallic phase.However,the 1T phase of MoS2is metastable and suffers from easily converting to the stable 2H phase[15],which restricts its further development.

    1T′MoS2with disordered octahedral coordination has relatively high stability and good conductivity compared with 1T MoS2[9,16].As is reported[15],1T′MoS2is highly efficient for the hydrogen evolution reaction with a small overpotential,which not only serves in electrocatalysis but also makes sense in photocatalysis.Among traditional strategies to improve photocatalytic activity,noble metal loading including Pt,Pd,RuO2and IrO2plays a important role in the efficient carriers′separation and reaction overpotential reduction[17—20].However,it still remains a challenge to take non-noble-metal materials as cocatalysts for photocatalytic activity enhancement.Hence,1T′MoS2may be an ideal choice to replace noble-metal compounds to obtain good photocatalysts.

    Herein,we provide a facile route to prepare graphitic carbon nitride(g-C3N4)/1T′MoS22D nanocomposites.g-C3N4as a traditionally well studied photocatalyst has response to visible light and should be a good model to hybridize with 1T′MoS2to promote photocatalytic reactions.The activity of the hybrids was evaluated by organic contaminant decomposition and hydrogen evolution under visible light.The as-prepared 2D nanocomposites exhibit enhanced photocataytic activity,owing to effective carriers’separation between g-C3N4and 1T′MoS2.The stability,kinetics model and possible photocatalytic mechanism were also investi?gated for the photocatalysts to illustrate their prospect of applications.

    2 Experimental

    2.1 Reagents and Instruments

    Urea(CH4N2O,98%),molybdenum powder(Mo,200 mesh,99.99%),sulfur(S,99%),and lithium sulfide(Li2S,99%)were purchased from Aladdin.Hydrochloric acid(HCl,36%)were purchased from Sinopharm Chemical Reagent Company.

    The phase and crystallinity analysis of CNH/MoS2nanocomposites were performed by X-ray diffraction(XRD)on a Bruker D8 Advanced diffractometer(Bruker,Germany)with CuKαirradiation(λ=0.15406 nm),and the scanning angle ranged from 10° to 80° of 2θ.Sample morphology was examined using a JEM2100F transmission electron microscope(TEM,JEM,Japan)under an acceleration voltage of 200 kV.The height of nanosheets was examined using a Horiba SmartSPM-1000 atomic force microscope(AFM,Horiba,F(xiàn)rance).The chemical composition of the samples was analyzed by X-ray photo-electron spectroscopy(XPS,Thermofisher Scientific,America)on a RBD upgraded PHI-5000CESCA system(Perkin Elmer)with MgKradiation(hν=1253.6 eV).UV-Vis diffuse reflectance spectra were measured at room temperature on a Hitachi U3010 spectrophotometer in the 300—800 nm range.Raman spectra were recorded in a Thermal Dis?persive Spectrometer(Horiba,F(xiàn)rance)using a 7 mW laser with an excitation wavelength of 633 nm.The pho?toluminescence(PL)spectra were measured with a JobinYvon Fluoromax-4 spectrofluorometer(Horiba,F(xiàn)rance).

    2.2 Synthesis of 1T′MoS2 Nanosheets

    First,the LiMoS2crystals were obtained by solid state reaction from a mixture of Mo,Li2S and S with a molar ratio of 1∶1∶1.05 at 850℃for 16 h.Then,5 mg LiMoS2was placed into 200 mL of H2O with 100μL of 1 mol/L HCl.Finally,the solution was shaked under ultrasonic for 30 min to get 1T′MoS2nanosheets.The cleaning procedure was applied by centrifugment at 15000 r/min for 5 min and ultrasonic dispersion for 3 times.After washing,the 1T′MoS2nanosheets were redispersed in 10 mL of H2O for further use.

    2.3 Synthesis of g-C3N4 Nanosheets

    The g-C3N4nanosheets was fabricated by thermal condensation of urea.18 g of urea was placed in a 60 mL crucible with a cover in a muffle furnace at 550℃for 4 h.After cooling down to room temperature,the obtained yellow solid was grounded into powder in a mortar and calcinated at 550℃for another 4 h to get g-C3N4nanosheets.

    2.4 Synthesis of g-C3N4/1T′MoS2 2D Nanocomposites

    200 mg of g-C3N4nanosheets were added into 30 mL of 1 mol/L HCl for ultrasonic to get a dispersed solu?tion.After washing with H2O until the pH of solution reaching 7,the protonated g-C3N4was freeze-dried and denoted as CNH.100 mg of CNH were redispersed in 200 mL of H2O with stirring to get a stable sol,followed by dropping of the solution containing 0.5 mg 1T′MoS2nanosheets.After stirring for another 30 min,the products were collected by centrifugment and freeze-dried,which were denoted as CNH/MoS2-0.5%.And the other composites:CNH/MoS2-0.1%,CNH/MoS2-0.2%,CNH/MoS2-1% and CNH/MoS2-2% were also pre?pared by adding different mass ratios of 0.1%,0.2%,1%and 2%of MoS2,respectively.

    2.5 Photocatalysis Experiments

    Methyl orange(MO)were chosen to evaluate the photocatalytic activity of the CNH/MoS2nanocomposites under visible light irradiation(λ>400 nm).Irradiation was carried out using a 300 W Xe lamp with a UV cutoあfilter to completely remove any radiation below 400 nm.A typical experiment was conducted as follows:50 mg of catalyst was dispersed in 50 mL of MO(10 mg/L)aqueous solution.Visible-light irradiation was conducted after the suspension was magnetically stirred for 30 min in the dark to get equilibrium of adsorptiondesorption between dye and catalyst.During irradiation,4 mL aliquots was taken from the mixture at an aptotic interval and centrifuged.The temperature of the reaction solution was maintained at room temperature by a flow of water.The remnant liquid was spectrophotometrically monitored for MO concentration analysis by a UV-Vis spectrometer.

    H2production experiment was performed using a top-irradiation Pyrex reaction cell.Photocatalyst powder(100 mg)was dispersed by ultrasonication for 2 min into an aqueous solution(200 mL)that contained trietha?nolamine(20 mL)as the sacrificial reagent.Then the suspension was degassed thoroughly with pure N2.The solar light irradiation was from a 300 W Xe lamp using a light reflector to remove UV light.The temperature of the reaction solution was maintained at room temperature by a flow of water.The amount of H2evolved was de?termined by an Agilent 7820A GC equipped with a TDX-01 column connected to a TCD.The photocatalytic activities were compared on the basis of the average H2evolution rate in the first 5 h.

    3 Results and Discussion

    The synthetic procedure for CNH/MoS22D nanocompsites is shown in Scheme 1.The lone-pair electrons of the nitrogen in g-C3N4complex with H+in the solution and lead to the further exfoliation of oxygen etched g-C3N4.After adding 1T′MoS2,the electrostatic interaction between CNH and MoS2help to obtain CNH/MoS22D nanocomposites.The thickness of 1T′MoS2detected by AFM(Fig.S1,see the Supporting Information of this paper)is about 3.3 nm,showing the ultrathin morphology and large lateral area to reunite with g-C3N4.The interaction between MoS2and g-C3N4is shown in Scheme 1,H+cations localized on the sites of N after etching by HCl promote to get positive charged g-C3N4,which lead to electrostatic interaction with negative MoS2sheets.

    Scheme 1 Fabrication process of CNH/MoS2 2D nanocomposites

    The XRD patterns of the nanocomposites are presented in Fig.1(A).Two remarkable diffraction peaks located at about 13.5° and 27.5° can be assigned to(100)and(002)planes of g-C3N4(JCPDS No.87-1526)[21].The diffraction peaks of 1T′MoS2are not obvious because of little ratio and good dispersity in the composites.However,the Raman results of 1T′MoS2are shown Fig.S2(see the Supporting Information of this paper).The distinctJ1,J2,J3andA1gpeaks appeared while the symbolic peaks for 1T-MoS2and 2H-MoS2are nearly absent,illustrating a relatively pure phase of 1T′MoS2inthe 2D nanocomposites[16].

    Fig.1 XRD patterns of CNH and CNH/MoS2 2D nanocomposites(A),TEM images of 1T′MoS2(B)and CNH/MoS2?0.5%(C),HADDF image(D)and EDS mapping of CNH/MoS2?0.5%(E—H)

    The morphology of CNH,1T′MoS2and CNH/MoS2are shown in Figs.S3(see the Supporting Information of this paper),1(B)and 1(C).The CNH shows the morphology of nanosheets at about 100 nm at lateral.1T′MoS2exhibits a morphology of ultrathin nanosheets larger than that of CNH while the composites shows the stacked nanosheets.The EDS mapping illustrates that the CNH and MoS2are uniformly distributed in the composites.The detailed content of MoS2in different catalysts are shown in Table S2(see the Supporting Information of this paper).These results not only prove the success of the fabrication for CNH/MoS2,but also become the foundation for the fast electron transportation.

    Further structure charactrizations are performed by XPS and shown in Fig.2.The C1sspectra[Fig.2(B)]shows two peaks at 288.1 and 284.6 eV.The former is identified as sp2-bonded carbon(N—C=N),while the other is corresponding to graphitic carbon[22].High-resolution spectrum of N1s[Fig.2(C)]is fitted into four peaks:the main peak at 398.6 eV can be considered as hybridized aromatic N bonded to carbon atoms(C=N—C),which is attributed to 3-s-triazine rings of CNH.Two peaks at 399.6 eV and 400.9 eV are corresponding to the N in the form of N—(C)3and H—N—C,respectively.The final weak peak at 404.5 eV may originate from the—NH2or=NH groups[21,23].Apart from these,three peaks located at 230.7,227.5 and 224.6 eV are ascribed to Mo3d3/2,Mo3d5/2in 1T′MoS2and S2s[Fig.2(D)],respectively[16].The other two peaks with higher binding energy are corresponding to 2H MoS2,whose ratio is lower than 20% in the 1T′MoS2.However,a bit red shift happens for the peaks of Mo3din 1T′MoS2[16],which comes from electron shar?ing between MoS2planes and CNH because of abundant electrons in N.Hence,a conclusion can be drawn that electron transportation exists between these two kinds of nanosheets.

    Fig.2 XPS survey spectrum(A)and high resolution XPS spectra of C1s(B),N1s(C)and Mo3d(D)of CNH/MoS2?0.5%

    According to the above characterization results,CNH/MoS2composites are successfully prepared.Then,the UV-Vis DRS spectra of the composites are shown in Fig.3(A).After hybridization,the catalysts exhibit the improved sunlight harvest compared with that for CNH,owing to heavy absorption of visible light for MoS2[9].The PL emission spectra of the CNH and its composites in Fig.3(B)claim that the intensity of the PL peak for CNH is decreased after hybrid with 1T′MoS2,which illustrates the effective photogenerated carriers’separation.These results claim that the composites take use of sunlight more efficiency than the CNH.Thus,the photocataytic activities of these composites are evaluated by the degradation of MO and H2evolution under visible light.As shown in Fig.4(A)and 4(B),the CNH/MoS22D nanocomposites show better photocatalytic activity in H2evolution under visible light than that of CNH.In addition,CNH/MoS2-0.5% exhibits the best activity with 6.24μmol?g—1?h—1while 4.64μmol?g—1?h—1for CNH-Pt-0.5%.It claims that 1T′MoS2can work as the candidate replacing Pt to boost photocatalytic activity.

    Fig.3 UV?Vis DRS(A)and PL emmision(B)spectra of CNH and CNH/MoS2 catalysts

    Fig.4 H2 evolution with different catalysts under visible light(A)and Bar plot showing the H2 evolution rates of different catalysts(B)

    Apart from the H2evolution reactions,degradation reactions were also studied.As shown in Fig.5(A)and 5(B),the photocatalytic activity of the CNH/MoS2composites are higher than that of the CNH alone in MO degradation.Among the catalysts,CNH/MoS2-0.5%exhibits the best photocatalytic activity,which reached a degradation level of 90.7% in 12 min under visible light.Fig.5(B)shows the reaction process of MO under visible light over CNH/MoS2nanocomposites fitted with the Pseudo-first-order kinetics model.The rate con?stants of all these catalysts for the degradation of MO are exhibited on Table S1(see the Supporting Information of this paper).From the table,the photocatalyst CNH/MoS2-0.5% shows more superior activity than others.Its rate constants is 0.19 min—1for MO degradation,which is nearly four times of that for CNH.A remarkable improvement is achieved after hybridization.Afterwards,it is high electron conductivity of 1T′MoS2that help to hinder recombination of carriers in CNH planes.The improved visible light absorption and carriers’separa?tion efficiency boost photocatalytic activity of the catalysts.However,the excessive 1T′MoS2in the compos?ites may lead to carriers’recombination in MoS2planes,bringing decrease in activity for CNH/MoS2-2%.Hence,CNH/MoS2-0.5% exhibits the best photocatalytic activity among the composites under visible light.Then,the stability of the catalysts is also another important factor to evaluate photocatalytic performance.In Fig.5(C),CNH/MoS2-0.5% is applied for 5-time MO degradation reactions and few decays can be seen after photocatalytic cycling.Raman spectra are also used to detect the phase of MoS2.As shown in Fig.S3(see the Supporting Information of this paper),the MoS2in the CNH/MoS2-0.5%nanocomposites still keep 1T′phase without changing into 2H phase,which illustrates the stability of 1T′MoS2in the degradation reactions.

    Fig.5 Photocatalytic degradation rates of MO with different catalysts under visible light(A),plots of ln(c/c0)against reaction time(B),bar plot showing the photodegradation rate of MO for 5 cycles using the CNH/MoS2?0.5% catalyst under visible light(C)and the MO degradation curves of the hybrid catalyst(D)

    It is known to all that the active species,such as˙OH,O2˙-and the photogenerated holes(h+),play an important role in the degradation reactions.Nevertheless,not all of them take part or dominate in the photocat?alytic reactions.In order to figure out the mechanism of the photocatalytic degradation reactions,contrast tests were performed to study the active species for CNH/MoS2nanocomposites.Isopropanol(IPA,5 mmol/L),ben?zoquinone(BQ,1 mmol/L)and disodium ethyl-enediamine tetraacetate(EDTA-2Na,1 mmol/L)were used as scavengers for˙OH,O2˙-and h+,respectively[24].From Fig.5(D),after adding BQ,the degradation rate of MO decreased from 90.7%in 12 min to 45%under visible light.Besides,11.5%and 10%occurred in the re?action with EDTA-2Na and IPA,respectively.Therefore,it is demonstrated that O2˙-radicals dominate in the process of photocatalytic MO degradation as oxidants while˙OH and h+count a little in the reactions.

    Hence,the degradation mechanism can be described in Fig.6.According to the scheme,the predomi?nant reaction occurred as the following equations:

    According to the band edge position of ultrathin g-C3N4reported before,the VB position is around 1.6 eV with its CB position atca.?1.3 eV(vs.NHE)[21,25,26],exhibiting stability[27]under sunlight and appropriate conduction/valance band potentials for hydrogen/oxygen evolution[21,28].The Femi level of MoS2is located at about—1 eV[29],which leads to the injecting of photogenerated electrons from CNH into the MoS2.Thus,it is able to realize O2evolution or water decomposition without sacrificial agent.However,the low crystallinity of intraplate g-C3N4suffers from low carriers’mobility and always leads to low activity in H2/O2evolution.After?wards,it still remains a challenge to obtain ultrathin nanosheets of g-C3N4with good crystallinity.

    Fig.6 Scheme illustration and energy band of the charge transfer behaviors of CNH/MoS2 2D nanocomposites under visible light

    3 Conclusions

    In summary,CNH/MoS2nanocomposites were prepared through the facile electrostatic self-assemble strategy,which exhibited a remarkable improvement in visible-light-driven photocatalysis compared with pure g-C3N4.The synergistic effects between ultrathin 1T′MoS2and g-C3N4nanosheets realize fast electrons transportation,which includes better light absorption and superior charge separation,resulting in improved photocatalytic performance.During the photocatalytic degradation reactions,1T′MoS2in thenanocomposites exhibits good stability andthe degradation curve of the CNH/MoS2catalysts fit with the pseudo-first-order kinetics model.The mechanism study indicates that the O2˙-radicals play the key role in photocatalysis.The H2evolution experiment illustrates that 1T′MoS2has the potential to replace noble metal in the photocataly?sis.Although the photocatalytic activity of H2evolution still needs to be improved,the achievements in this work may shed light on the application of 1T′MoS2for solar energy conversion.

    This work is supported by the National Natural Science Foundation of China(Nos.21871008,21801247,21905292),the Science and Technology Commission of Shanghai,China(No.18YF1427200),the Key Research Program of Chinese Academy of Sciences(No.QYZDJ-SSW-JSC013)and the Shanhai Science and Technology Innovation Action Plan,China(No.20DZ1204400).

    猜你喜歡
    超微結(jié)構(gòu)材料科學(xué)中國(guó)科學(xué)院
    中海油化工與新材料科學(xué)研究院
    《中國(guó)科學(xué)院院刊》新媒體
    中國(guó)科學(xué)院院士
    ——李振聲
    材料科學(xué)與工程學(xué)科
    祝賀戴永久編委當(dāng)選中國(guó)科學(xué)院院
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專(zhuān)家
    白藜蘆醇對(duì)金黃色葡萄球菌標(biāo)準(zhǔn)株抑菌作用及超微結(jié)構(gòu)的影響
    《中國(guó)科學(xué)院院刊》創(chuàng)刊30周年
    電擊死大鼠心臟超微結(jié)構(gòu)及HSP70、HIF-1α表達(dá)變化
    男女那种视频在线观看| 国产色爽女视频免费观看| 精品午夜福利在线看| 搞女人的毛片| 亚洲欧美日韩另类电影网站 | 免费电影在线观看免费观看| 一个人看视频在线观看www免费| 啦啦啦啦在线视频资源| 国产视频首页在线观看| 一级毛片黄色毛片免费观看视频| 欧美成人午夜免费资源| 91精品伊人久久大香线蕉| 亚洲怡红院男人天堂| 国产男女超爽视频在线观看| 97在线人人人人妻| 国产免费一区二区三区四区乱码| 亚洲欧美日韩无卡精品| 久久精品国产亚洲av天美| 日韩亚洲欧美综合| 男女下面进入的视频免费午夜| 国产成人精品一,二区| 国产黄片视频在线免费观看| 身体一侧抽搐| 久久精品夜色国产| 一边亲一边摸免费视频| 神马国产精品三级电影在线观看| 人人妻人人爽人人添夜夜欢视频 | 全区人妻精品视频| 免费少妇av软件| 国产精品99久久99久久久不卡 | 一级黄片播放器| 91精品伊人久久大香线蕉| 欧美成人a在线观看| 亚洲激情五月婷婷啪啪| 日本一二三区视频观看| 午夜亚洲福利在线播放| 成年版毛片免费区| 久久精品国产亚洲av涩爱| 亚洲久久久久久中文字幕| av在线天堂中文字幕| 3wmmmm亚洲av在线观看| 国产黄色视频一区二区在线观看| 插逼视频在线观看| 人妻 亚洲 视频| 美女视频免费永久观看网站| 亚洲va在线va天堂va国产| 狂野欧美激情性xxxx在线观看| 亚洲一级一片aⅴ在线观看| 91久久精品电影网| 国模一区二区三区四区视频| 国产高清有码在线观看视频| 国国产精品蜜臀av免费| 国产 一区 欧美 日韩| av女优亚洲男人天堂| 嫩草影院新地址| 大码成人一级视频| 2021天堂中文幕一二区在线观| 人人妻人人澡人人爽人人夜夜| 日韩电影二区| 内地一区二区视频在线| 日韩亚洲欧美综合| 噜噜噜噜噜久久久久久91| 黑人高潮一二区| 各种免费的搞黄视频| 2018国产大陆天天弄谢| 在线观看国产h片| 午夜亚洲福利在线播放| 一级二级三级毛片免费看| 成人黄色视频免费在线看| 黄色日韩在线| 可以在线观看毛片的网站| 狠狠精品人妻久久久久久综合| 黄色视频在线播放观看不卡| 一级av片app| 国产精品99久久99久久久不卡 | 欧美成人精品欧美一级黄| 欧美性感艳星| 亚洲国产欧美在线一区| av国产免费在线观看| 亚洲av日韩在线播放| 九草在线视频观看| 久久精品熟女亚洲av麻豆精品| 成人二区视频| 美女cb高潮喷水在线观看| 色视频在线一区二区三区| 一级片'在线观看视频| 亚洲国产精品专区欧美| 午夜日本视频在线| 99视频精品全部免费 在线| 久久久久久久久久成人| 建设人人有责人人尽责人人享有的 | 精华霜和精华液先用哪个| 三级经典国产精品| 成人二区视频| 亚洲综合精品二区| 国产精品精品国产色婷婷| 天堂中文最新版在线下载 | 成年女人在线观看亚洲视频 | 天堂中文最新版在线下载 | 男女啪啪激烈高潮av片| 3wmmmm亚洲av在线观看| 搡女人真爽免费视频火全软件| www.色视频.com| 国产精品.久久久| 搞女人的毛片| 国产黄片美女视频| 午夜免费男女啪啪视频观看| 另类亚洲欧美激情| 午夜视频国产福利| 人人妻人人看人人澡| 丝瓜视频免费看黄片| 亚洲va在线va天堂va国产| av在线天堂中文字幕| www.色视频.com| 中文欧美无线码| 高清视频免费观看一区二区| 涩涩av久久男人的天堂| 性色av一级| 麻豆乱淫一区二区| 久久久国产一区二区| 午夜福利在线在线| 国产免费一级a男人的天堂| 亚洲天堂av无毛| 99视频精品全部免费 在线| 伦精品一区二区三区| 黄色欧美视频在线观看| 欧美成人午夜免费资源| 亚洲成人一二三区av| 少妇 在线观看| 国产淫片久久久久久久久| 在线观看国产h片| 国产国拍精品亚洲av在线观看| 亚洲国产av新网站| 日韩欧美精品v在线| 国产精品无大码| 九九久久精品国产亚洲av麻豆| 爱豆传媒免费全集在线观看| 久久影院123| 亚洲怡红院男人天堂| 美女主播在线视频| 国产黄色免费在线视频| 国产永久视频网站| 日韩一本色道免费dvd| 交换朋友夫妻互换小说| 国产成人精品久久久久久| 亚洲欧美一区二区三区黑人 | 狂野欧美白嫩少妇大欣赏| 国产在视频线精品| 午夜免费男女啪啪视频观看| 日韩一区二区三区影片| 狂野欧美激情性bbbbbb| 麻豆乱淫一区二区| 免费黄色在线免费观看| 18禁裸乳无遮挡免费网站照片| 欧美激情在线99| 一区二区三区乱码不卡18| 成年人午夜在线观看视频| 久久午夜福利片| 欧美性猛交╳xxx乱大交人| 天美传媒精品一区二区| 欧美日韩视频高清一区二区三区二| 国产亚洲午夜精品一区二区久久 | 日本欧美国产在线视频| 一区二区三区乱码不卡18| 最近最新中文字幕免费大全7| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久午夜电影| 欧美激情在线99| 在线 av 中文字幕| 亚洲高清免费不卡视频| 免费观看性生交大片5| 九九久久精品国产亚洲av麻豆| 国产成人91sexporn| 美女国产视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 免费av毛片视频| 国产黄频视频在线观看| 免费人成在线观看视频色| 看黄色毛片网站| 高清在线视频一区二区三区| 大片免费播放器 马上看| 中国三级夫妇交换| 欧美bdsm另类| 国产精品无大码| 97人妻精品一区二区三区麻豆| 日韩精品有码人妻一区| 亚洲怡红院男人天堂| 精品久久久久久久久av| 啦啦啦中文免费视频观看日本| 视频区图区小说| 神马国产精品三级电影在线观看| 制服丝袜香蕉在线| 大话2 男鬼变身卡| 1000部很黄的大片| 午夜福利在线在线| av免费观看日本| 亚洲欧洲国产日韩| 日本wwww免费看| 国产精品久久久久久精品电影| 精品国产三级普通话版| 亚洲精品亚洲一区二区| 国产精品偷伦视频观看了| 久久99热这里只有精品18| 五月玫瑰六月丁香| 少妇人妻久久综合中文| 欧美bdsm另类| 26uuu在线亚洲综合色| 神马国产精品三级电影在线观看| 人妻制服诱惑在线中文字幕| 免费看光身美女| 人人妻人人澡人人爽人人夜夜| 中文天堂在线官网| 久久精品国产自在天天线| 高清av免费在线| 久久久国产一区二区| 男女国产视频网站| 超碰av人人做人人爽久久| 日本av手机在线免费观看| 一区二区三区四区激情视频| 18禁在线无遮挡免费观看视频| 插阴视频在线观看视频| 在现免费观看毛片| 99热6这里只有精品| 国产亚洲一区二区精品| 国产精品蜜桃在线观看| 高清毛片免费看| 亚洲av成人精品一区久久| 成人欧美大片| 伦精品一区二区三区| 国产精品一区二区在线观看99| 大话2 男鬼变身卡| 夫妻性生交免费视频一级片| 国产永久视频网站| 97超视频在线观看视频| 听说在线观看完整版免费高清| 老司机影院成人| 少妇熟女欧美另类| 欧美3d第一页| 久久精品国产亚洲av天美| 亚洲av成人精品一区久久| 日韩在线高清观看一区二区三区| 国产毛片a区久久久久| 欧美三级亚洲精品| 男女边摸边吃奶| 久久精品国产自在天天线| av天堂中文字幕网| 日本-黄色视频高清免费观看| 日本wwww免费看| 啦啦啦在线观看免费高清www| 久久久久久伊人网av| 18禁裸乳无遮挡动漫免费视频 | 水蜜桃什么品种好| 中文字幕免费在线视频6| 狂野欧美白嫩少妇大欣赏| 蜜桃久久精品国产亚洲av| 男女无遮挡免费网站观看| 网址你懂的国产日韩在线| 精品国产露脸久久av麻豆| 免费av毛片视频| 久久综合国产亚洲精品| 欧美国产精品一级二级三级 | 91精品一卡2卡3卡4卡| 国产精品一区二区在线观看99| 女人久久www免费人成看片| 制服丝袜香蕉在线| 自拍偷自拍亚洲精品老妇| 一区二区av电影网| 国产一区二区亚洲精品在线观看| 亚洲av一区综合| 国产免费一区二区三区四区乱码| av女优亚洲男人天堂| 美女视频免费永久观看网站| 中文在线观看免费www的网站| 久久久精品免费免费高清| 少妇高潮的动态图| 在线看a的网站| 国产午夜精品久久久久久一区二区三区| 少妇人妻一区二区三区视频| 成人国产av品久久久| 人妻 亚洲 视频| 亚洲国产高清在线一区二区三| 精品国产三级普通话版| 女人十人毛片免费观看3o分钟| 青青草视频在线视频观看| 好男人视频免费观看在线| 国产成人aa在线观看| 亚洲av不卡在线观看| 亚洲精品中文字幕在线视频 | 99re6热这里在线精品视频| 国内精品美女久久久久久| 亚洲成人精品中文字幕电影| 久久99蜜桃精品久久| 亚洲欧洲国产日韩| 性插视频无遮挡在线免费观看| 国产久久久一区二区三区| 网址你懂的国产日韩在线| av天堂中文字幕网| 国产极品天堂在线| 亚洲av.av天堂| av一本久久久久| 国模一区二区三区四区视频| 久久精品国产亚洲网站| 中文字幕免费在线视频6| 国产精品人妻久久久久久| 国产一区二区三区av在线| 免费不卡的大黄色大毛片视频在线观看| 18禁裸乳无遮挡免费网站照片| 国产免费视频播放在线视频| 51国产日韩欧美| 久久97久久精品| 搡老乐熟女国产| 国语对白做爰xxxⅹ性视频网站| 韩国高清视频一区二区三区| 国产日韩欧美亚洲二区| 特级一级黄色大片| 国产精品一区二区性色av| 久久精品国产自在天天线| 激情五月婷婷亚洲| 国产精品久久久久久av不卡| 插阴视频在线观看视频| 久热久热在线精品观看| 秋霞伦理黄片| 色网站视频免费| av免费观看日本| 综合色av麻豆| 国产在视频线精品| 欧美 日韩 精品 国产| 精品人妻熟女av久视频| 精品一区二区三区视频在线| 一本久久精品| 好男人在线观看高清免费视频| 亚洲精品第二区| 亚洲久久久久久中文字幕| 国产美女午夜福利| 国产人妻一区二区三区在| 国产淫片久久久久久久久| 国产亚洲av嫩草精品影院| 毛片一级片免费看久久久久| 亚洲最大成人av| 欧美性感艳星| 观看美女的网站| 亚洲aⅴ乱码一区二区在线播放| 欧美zozozo另类| 男男h啪啪无遮挡| av卡一久久| 婷婷色综合www| 久久国内精品自在自线图片| 亚洲欧美日韩卡通动漫| 欧美xxxx黑人xx丫x性爽| 国产片特级美女逼逼视频| 天堂俺去俺来也www色官网| 免费人成在线观看视频色| 中文资源天堂在线| 免费看不卡的av| 大陆偷拍与自拍| xxx大片免费视频| 51国产日韩欧美| 麻豆成人av视频| 中文字幕av成人在线电影| 亚洲自偷自拍三级| 色婷婷久久久亚洲欧美| av专区在线播放| 男女边摸边吃奶| 欧美日韩视频高清一区二区三区二| 嘟嘟电影网在线观看| 国产又色又爽无遮挡免| 熟女电影av网| 精品一区二区免费观看| 一二三四中文在线观看免费高清| 麻豆精品久久久久久蜜桃| 久久精品熟女亚洲av麻豆精品| 欧美日韩一区二区视频在线观看视频在线 | videos熟女内射| .国产精品久久| 少妇丰满av| 国精品久久久久久国模美| 干丝袜人妻中文字幕| 成人欧美大片| 国产女主播在线喷水免费视频网站| 一级毛片 在线播放| 一区二区三区免费毛片| 国产91av在线免费观看| 欧美激情国产日韩精品一区| 自拍偷自拍亚洲精品老妇| 亚洲最大成人av| 51国产日韩欧美| 午夜视频国产福利| 在线观看av片永久免费下载| 高清av免费在线| 男人爽女人下面视频在线观看| 国产亚洲av片在线观看秒播厂| 色网站视频免费| 久久久久久久久大av| av国产久精品久网站免费入址| 久久久久久久大尺度免费视频| 国产在线男女| 国产精品成人在线| 亚洲熟女精品中文字幕| 国产免费一区二区三区四区乱码| 免费人成在线观看视频色| 久久99蜜桃精品久久| 国产一区二区亚洲精品在线观看| 2021少妇久久久久久久久久久| 亚洲国产精品国产精品| 九九在线视频观看精品| 久久久久久九九精品二区国产| av免费观看日本| 亚洲国产欧美在线一区| 成人漫画全彩无遮挡| 国产免费一区二区三区四区乱码| 男人爽女人下面视频在线观看| 精品人妻熟女av久视频| 能在线免费看毛片的网站| 成人二区视频| 亚洲欧美成人精品一区二区| 网址你懂的国产日韩在线| 寂寞人妻少妇视频99o| 久久这里有精品视频免费| 人妻一区二区av| 寂寞人妻少妇视频99o| 亚洲欧美日韩无卡精品| 中文精品一卡2卡3卡4更新| 视频区图区小说| 你懂的网址亚洲精品在线观看| 日韩中字成人| 视频中文字幕在线观看| 欧美日韩亚洲高清精品| 欧美激情国产日韩精品一区| 国产一区二区三区av在线| 国产亚洲av嫩草精品影院| 成人欧美大片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 熟女人妻精品中文字幕| 三级男女做爰猛烈吃奶摸视频| 中文资源天堂在线| 哪个播放器可以免费观看大片| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 国产高潮美女av| 成人亚洲精品一区在线观看 | 99视频精品全部免费 在线| 久久人人爽av亚洲精品天堂 | 日韩一区二区视频免费看| 日韩中字成人| 51国产日韩欧美| 国产高清不卡午夜福利| 欧美性感艳星| 国产色婷婷99| 亚洲av成人精品一二三区| 日韩一区二区三区影片| 免费观看在线日韩| 国产av国产精品国产| 熟女av电影| 国产一区亚洲一区在线观看| 日本三级黄在线观看| 久久国产乱子免费精品| 亚洲国产色片| 国产高清不卡午夜福利| 麻豆成人午夜福利视频| 国模一区二区三区四区视频| 中文资源天堂在线| 啦啦啦在线观看免费高清www| 亚洲最大成人手机在线| 亚洲国产日韩一区二区| 九色成人免费人妻av| 国产乱人偷精品视频| av网站免费在线观看视频| 丰满乱子伦码专区| 日韩一区二区三区影片| 久久鲁丝午夜福利片| 久久精品国产自在天天线| 卡戴珊不雅视频在线播放| 内地一区二区视频在线| 三级经典国产精品| 免费av毛片视频| 久久久色成人| 成人午夜精彩视频在线观看| 久久99精品国语久久久| 免费观看性生交大片5| 国产久久久一区二区三区| 在线a可以看的网站| 777米奇影视久久| 亚洲人与动物交配视频| 成人午夜精彩视频在线观看| 2021天堂中文幕一二区在线观| 亚洲欧美日韩卡通动漫| 亚洲av在线观看美女高潮| 大香蕉久久网| 亚洲av男天堂| 精品人妻熟女av久视频| 亚洲性久久影院| 视频区图区小说| 2021少妇久久久久久久久久久| 人妻 亚洲 视频| 久久精品国产自在天天线| 国产精品一二三区在线看| 亚洲激情五月婷婷啪啪| 亚洲国产色片| 寂寞人妻少妇视频99o| 一级毛片我不卡| 成人免费观看视频高清| 黄色怎么调成土黄色| 久久久精品免费免费高清| 欧美精品国产亚洲| 成年av动漫网址| 26uuu在线亚洲综合色| 晚上一个人看的免费电影| 只有这里有精品99| 国产美女午夜福利| 纵有疾风起免费观看全集完整版| 久久久久九九精品影院| 人体艺术视频欧美日本| 亚洲国产精品成人综合色| 亚洲在久久综合| 成人漫画全彩无遮挡| 小蜜桃在线观看免费完整版高清| 国产男女内射视频| av在线老鸭窝| 各种免费的搞黄视频| 又黄又爽又刺激的免费视频.| 久久久久久伊人网av| 久久精品国产亚洲av天美| 黄片wwwwww| 啦啦啦啦在线视频资源| 日韩人妻高清精品专区| 狂野欧美白嫩少妇大欣赏| 精品人妻偷拍中文字幕| 简卡轻食公司| 99精国产麻豆久久婷婷| 国模一区二区三区四区视频| 黄色日韩在线| 最近中文字幕高清免费大全6| 在线精品无人区一区二区三 | 亚洲精品,欧美精品| 亚洲国产精品成人久久小说| 我的老师免费观看完整版| 久久久久网色| 1000部很黄的大片| 高清午夜精品一区二区三区| 久久影院123| 麻豆成人av视频| 青青草视频在线视频观看| 色5月婷婷丁香| 青青草视频在线视频观看| 亚洲,欧美,日韩| 天美传媒精品一区二区| 亚洲在久久综合| 久久久久久久精品精品| 十八禁网站网址无遮挡 | 99视频精品全部免费 在线| 男插女下体视频免费在线播放| 一级毛片黄色毛片免费观看视频| 性色avwww在线观看| 成人二区视频| 色网站视频免费| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 禁无遮挡网站| 国产免费一级a男人的天堂| 国产 精品1| 亚洲精品亚洲一区二区| 国产精品国产三级国产专区5o| 国产真实伦视频高清在线观看| 久久精品夜色国产| 国产精品国产三级专区第一集| 青春草国产在线视频| 97人妻精品一区二区三区麻豆| 美女视频免费永久观看网站| 日韩伦理黄色片| 日日啪夜夜爽| 777米奇影视久久| 国产淫语在线视频| 激情 狠狠 欧美| 国产免费又黄又爽又色| 亚洲内射少妇av| 91精品一卡2卡3卡4卡| 久久人人爽av亚洲精品天堂 | 日本熟妇午夜| 久久99热这里只频精品6学生| 女人久久www免费人成看片| 午夜老司机福利剧场| 肉色欧美久久久久久久蜜桃 | 日本免费在线观看一区| 男人爽女人下面视频在线观看| 免费观看av网站的网址| 一级毛片我不卡| 大话2 男鬼变身卡| 亚洲精品第二区| 午夜精品一区二区三区免费看| 久久精品综合一区二区三区| 亚洲精华国产精华液的使用体验| 2018国产大陆天天弄谢| 午夜视频国产福利| 欧美日韩视频高清一区二区三区二| 99久久九九国产精品国产免费| 一本色道久久久久久精品综合| videos熟女内射| 大片电影免费在线观看免费| 在线观看人妻少妇| 久久久成人免费电影| 丝瓜视频免费看黄片| 亚洲美女视频黄频| 极品教师在线视频| 免费av毛片视频| 亚洲三级黄色毛片| 亚洲av.av天堂| 久久这里有精品视频免费| 深爱激情五月婷婷| 国产白丝娇喘喷水9色精品| 欧美zozozo另类| 成年版毛片免费区| 精品久久久精品久久久| 中文字幕av成人在线电影| 亚洲精品国产av成人精品| 男人舔奶头视频|