• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二維材料用于電催化析氫的研究進展

    2021-02-26 13:43:40史江維孟楠楠郭亞梅于一夫
    高等學?;瘜W學報 2021年2期
    關(guān)鍵詞:理學院化工學院天津大學

    史江維,孟楠楠,郭亞梅,于一夫,張 兵

    (1.天津大學化工學院工業(yè)催化系,理學院,2.天津大學分子+研究院,天津300072)

    1 Introduction

    Energy crisis and environmental pollution have become the serious challenges for the sustainable develop?ment of human society[1—4].Seeking for clean and renewable energy is of great interest to solve these problems[5—9].Molecular hydrogen(H2)emerges as a promising energy source due to its high energy density,small molecular mass,and no pollution,has received more and more attention in recent decades[10,11].Current?ly,there are main three kinds of hydrogen production approaches,including methane reforming,water-gas shift,and water electrolysis[12,13].Among them,water electrolysis,especially driven by clean wind electricity and photo electricity,shows promising potential[14—16].Although precious metals(such as Pt,Ir,and Ru)show the excellent activity towards hydrogen evolution reaction(HER),the scarcity and high price hindered their wide applications[17—20].Thus,exploiting novel and cheap electrocatalysts with high HER performance is of great importance[21,22].During recent years,two-dimensional(2D)nanomaterials have been widely used in the field of electrocatalysis due to their low cost,abundant low-coordination surface atoms and large specific surface area[23—27].Consequently,the development of advanced 2D nanomaterials with excellent electrocataly?sis performance for HER is of great importance[28,29].

    In this review,we provided a summary of recent progress in 2D materials for electrocatalytic HER.A series of synthetic methods was firstly summarized,including top-down and bottom-up strategies.Then,we discussed the recent strategies to enhance HER activity of 2D materials,such as edge engineering,defect engineering and doping engineering.Finally,some challenges and opportunities in this field were provided.

    2 Synthesis Methods

    Enormous efforts have been made by researchers to enrich the synthetic approaches for 2D materials[30].Up to now,they could be classified into top-down and bottom-up strategies[31].Top-down strategy referred to a process in which bulk crystals were physically broken into 2D pieces.Mechanical cleavage and liquid exfolia?tion were typical top-down synthesis strategies.In comparison,bottom-up synthesis adopted chemical reac?tions to produce 2D materials,including chemical vapor deposition(CVD),solvothermal synthesis,and tem?plate-assisted synthesis[32].

    2.1 Top-down Synthesis

    In layer-structured materials,chemical bonds existed in each layer,while adjacent layers combined to?getherviavan der Waals force.Compared to bonding energy,the van der Waals force was much weaker.The external force could break the van der Waals force and drive the exfoliation of bulk layer-structured material into 2D nanosheets.Based on the type of external force,the top-down synthesis strategies could be divided in?to mechanical cleavage and liquid exfoliation.

    2.1.1 Mechanical Cleavage

    2D materials prepared by mechanical cleavage were often used for research on their physical,electronic,and optical properties owing to their clean surface,excellent crystal quality,and minimum defects[33].In 2004,Novoselov and coworkers[34]firstly used the Scotch-tape method to synthesize single-layer graphene nanosheets.Since then,this synthesis method has been widely used to obtain ultrathin 2D nanomaterials,in?cluding CuInP2S6[35],BP[36],h-BN[37],transition metal dichalcogenides(TMDs),metal oxides,etc.The typi?cal mechanical cleavage process for producing graphene was intuitively shown in Fig.1[38].The fresh surface of the bulk crystals was pasted on the Scotch tape,and then another Scotch tape peeled it into a thin sheet.A suitable thin slice could be obtained after repeating this process[33].But,the low production and non-uniformi?ty of the produced 2D nanosheets severely retarded the wide application of this method.In addition,the me?chanical exfoliation is an important method to prepare individual nanosheet-based electrocatalytic device[39].In 2016,Wanget al.[40]produced a field-tuned HER device with a single MoS2nanosheet by mechanical peeling.The influence of field effect on catalysis was explored through this electrocatalytic device.When an electric field was employed,the catalytic performance of MoS2nanosheets was significantly improved.Subsequently,they developed an individual MoS2nanosheet-based device to conduct a systematic study to understand the relationship between HER performance and electrode conductivity[41].The experiment found that as the electrode conductivity increased,the initial overpotential continued to decrease.

    2.1.2 Liquid Exfoliation

    Fig.1 An intuitive review of mechanical cleavage for the production of graphene[38]

    Ultrasonic treatment was widely used to break the van der Waals force between adjacent nanosheets in a proper solvent,as shown in Fig.2(A)[42].In 2008,graphene was synthesized with a liquid-phase exfoliation method by using the ultrasonic treatment inN-methyl-pyrrolidone[43].Subsequently,various solvents were studied.Kimet al.[44]used ultrasound to synthesize 2D MoS2,WS2,TaS2,and TiS2nanosheets withN-vinyl?pyrrolidone as a solvent.Recently,Wang and coworkers[45]developed a facile liquid-phase exfoliation strategy to produce few-layer BiI3nanosheets in green solvents such as methyl salicylate,triacetin,ethyl benzoate,and diethyl phthalate as well as their binary mixtures.This method could produce well-dispersed 2D materials with about 30% yield and a concentration of 1.56 mg/mL.Ions intercalation could further extend the liquid phase exfoliation method to synthesize various kinds of 2D nanosheets with high quality.For example,Zhanget al.[46]utilized the charging process of lithium battery to intercalate lithium ions into the interspacing of layered bulk crystals[Fig.2(B)].The distance between adjacent layers was widened,and the van der Waals force becomes weak.During ultrasonic treatment,lithium ions reacted with water solvent to produce hydrogen gas.As a result,the pressure in the interspacing increased,and bulk crystals could be easily exfoliated into 2D ultrathin nanosheets in a high yield.Using this ions-intercalation assisted liquid exfoliation method,they successfully prepared high-yield and high-quality single-layer TiS2and TaS2nanosheets[47].Then,Pt and Au nanoparticles(NP)were deposited on the obtained nanosheets with high surface coverage.The Pt-TiS2composite showed excellent electrocatalytic activity in HER.

    Fig.2 Scheme for the liquid exfoliation of bulk materials into 2D nanosheets by ultrasonic treatment(A)[42]and electrochemical lithium ions intercalation process for the fabrication of 2D nanosheets from the layered bulk materials(B)[46]

    2.2 Bottom-up Synthesis

    The top-down synthesis method was usually suitable for layer-structured materials,while bottom-up synthesis could be used to prepare layered and non-layered materials.In a typical bottom-up synthesis proce?dure,proper precursors proceeded chemical reaction under given conditions to grow in 2D orientation.As a result,2D nanosheets were obtained.For non-layered structured materials,the key for the formation of 2D materials lied in the limitation of axial growth.Based on the type of chemical reaction,the bottom-up synthesis strategies could be divided into solvothermal synthesis,chemical vapor deposition(CVD),and template-assisted synthesis.2.2.1 Solvothermal Synthesis

    During the solvothermal process,the precursors were mixed in a reactor containing water and/or organic solvents.The reaction temperature was generally higher than the boiling point of the solvent,resulting in a high-pressure environment in the reactor.The formation of 2D materials contained two processes of nucleation and growth[48].The key lied in the adjustment in the growth process to form 2D materials.Xieet al.[49—52]syn?thesized a variety of 2D materials by directly using solvothermal method,including Co3O4,ZnS,CeO2and Co9Se8nanosheets.Moreover,the solvothermal process could also produce 2D precursors for chemical conver?sion synthesis of novel 2D materials[53].For example,we synthesized Sub-1.1 nm ultrathin porous CoP nanosheets[Fig.3(A)]by the combination of solvothermal and chemical conversion[54].The CoP nanosheets were endowed with a unique porous structure,ultrathin morphology,and a high proportion of reactive{200}planes,which greatly improved the catalytic activity for HER.The required overpotential was only 131 mV for a current density of 100 mA/cm2.The high mass activity achieved 151 A/g at an overpotential of 100 mV and maintained well over 20 h[Fig.3(B)and(C)].Recently,metal-based 2D materials have also shown excellent performance for electrocatalytic HER.Sunet al.[55]synthesized CoFe alloy nanosheets on the Ni foam substrate by the combination of hydrothermal method andin situchemical reduction.After loading a small amount of Pt,the as-obtained novel 2D materials exhibited high catalytic activity for HER.Yinet al.[56]proposed a novel hydrothermal synthesis strategy to achieve simultaneous adjustment of crystalline phase and disorder in 1TMoSe2nanosheets,thereby significantly enhancing its HER catalytic activity.Luet al.[57]reported a simple and cost-effective hydrothermal strategy using polypyrrole(PPy)as a template to synthesize MoS2nanosheets,which had sufficient active edge sites and advanced HER performance.Besides,Zhenget al.[58]reported a solvothermal method to synthesize RuPd metal hydride through the chemical release of H from the formalde?hyde solution during the synthesis process[(Fig.3(D)].Hydrogen atom stabilized the RuPd bimetallic materi?al and improved its activity for HER.2.2.2 Chemical Vapor Deposition

    Fig.3 TEM image of CoP nanosheeets(A),the corresponding Tafel plots of CoP ultrathin porous nanosheets(UPNSs),CoP nanoparticles(NPs)and 20% Pt/C in 0.5 mol/L H2SO4 at a scan rate of 2 mV/s(B),mass activity as a function of the overpotential for CoP UPNSs and NPs(C)[54]and scheme for the growth process of RhPd?H(D)[58]

    CVD could be used to prepare 2D nanomaterials and thin films on solid substrates.In a typical CVD pro?cess,the precursor was placed on high-temperature zone and vacuum chamber,and the substrate was placed on the low-temperature zone.Under the condition of high temperature and high vacuum,the reactants vapor?ized and the product of the desired 2D material or film deposited on the substrate[59].In 2009,Betonet al.[60]synthesized single-layer grapheneviathe CVD method.Subsequently,researchers synthesized a series of 2D nanosheets with different sizes and morphologies by controlling the CVD parameters,including temperature,pressure,time,substrate,and precursors.Zhanget al.[61]synthesized uniform single-layer ReSe2nanosheets with variable morphology(sunflower shape and frustotriangular shape)on SiO2/Si substrate under different en?vironmental pressures by CVD.The as-prepared polycrystalline ReSe2sheets were completely transferred to the Au foil electrode for HER test.The results showed that the sunflower-shaped slices exhibited superior elec?trocatalytic HER activity compared to the frusto-triangular ReSe2nanosheets due to their edge-abundant sites.Gaoet al.[62]synthesized MoS2vertical nanosheets with the CVD method[Fig.4(A)].Matsueet al.[63]synthe?sized MoS2and WS2hetero-nanosheets using the CVD method.They used high-resolution scanning electro?chemical cell microscopy(SECCM)to image and quantify the HER catalytic active sites,and provided local cyclic voltammograms with nanoscale spatial resolution[Fig.4(B)].These results revealed the difference in HER activity at the edges,steps,and heterojunctions of MoS2and WS2as shown in Fig.4(C)and(D).2.2.3 Template?assisted Synthesis

    Fig.4 Schematic diagram for dual temperature zone CVD synthesis of vertical MoS2 nanosheets on glassy carbon(A)[62],the current image of MoS2 nanosheets on highly oriented pyrolytic graphite(HOPG)substrate with 15μm×15μm of scan sizes and 130 V/s of scan rate at-1.3 V vs.RHE sweep voltage(B),overpotential(C)and Tafel slope(D)on the MoS2 edge(red),terrace(green),and HOPG edge(grey)regions[63]

    The flat substrate could serve as a template to guide the 2D growth of materials[64].It was reported the growth of hexagonal close-packed(hcp)gold nanosheets on graphene oxide(GO)nanosheet template in 2011[65].As shown in Fig.5(A),the Au nanosheet showed an edge length of 200—500 nm and a thickness ofca.2.4 nm(ca.16 Au atomic layer).Subsequently,F(xiàn)anet al.[66]reported a method of synthesizing 4H/fcc trimetallic Au@PdAg core-shell nanoribbons(NRBs)by adopting 4H/fcc Au@Ag NRBs as template.The asobtained 4H/fcc Au@PdAg NRBs exhibited excellent electrocatalytic activity for hydrogen evolution,even close to commercial Pt black[Fig.5(B)and(C)].The bulk salts were promising template candidates owing to their high thermal stability and solubility in water.Huanet al.[67]used sodium chloride crystal powder as a tem?plate to prepare TMDs nanosheets,including TaS2,NbS2,and V5S8.The synthesis process of TaS2was shown in Fig.5(D).Cubic NaCl crystals were prepared through recrystallization[67].Nanosheets grew on NaCl cubic crystals,and then they were obtained by dissolution of salt in water.The as-produced TaS2nanosheets with the uniform thickness could serve as HER catalysts[Fig.5(E)].

    Fig.5 Typical TEM image of Au nanosheets on graphene oxide(GO)with a scale bar of 500 nm(A)[65],onset po?tentials and overpotentials(at the current density of 10.0 mA/cm2)of 4H/fcc Au@PdAg NRBs,Pd black,and Pt black(B)and the corresponding Tafel plots(C)[66],schematic illustration for the growth of 2D TaS2 nanosheets on micron?sized NaCl crystals(D)and schematic illustration of TaS2 for the HER process(E)[67]

    3 Strategy for Improving HER Activity

    Generally,an ideal HER catalyst possessed abundant active sites,and the active sites exhibited high in?trinsic activity.2D materials,especially ultrathin 2D nanosheets,were furnished with abundant low-coordina?tion surface atoms and large specific surface areas[68].The optimization of the atomic structure of 2D materials could further improve their HER activity.Moreover,2D materials could serve as an excellent platform for HER mechanism investigation because they could be easily and clearly characterized.Coupling with oxidative reaction was also a way to promote HER activity.For example,the anodic oxidation of hydrazine and tetrahy?droisoquinoline was developed to raplace the oxygen evolution reaction[69,70].In the following part,we will mainly discuss the effect of edge engineering,defect engineering,and heteroatom doping on HER activity by adopting 2D materials as model electrocatalysts.

    3.1 Edge Engineering

    As we all know,HER active site located at the edge of TMDs[12].Edge engineering aimed to expose as many as edge sites.Cui group[71]successfully grew MoS2and MoSe2thin films with vertically aligned layers,thereby maximally exposing the edges on the film surface.At the same time,they further confirmed the catalytic activity sites of the exposed edge.Subsequently,they realized the vertical layer orientation growth of MoS2and MoSe2films on curved and rough surfaces[Fig.6(A)][72].Compared with flat substrates,MoSe2and WSe2nano-films on carbon fiber paper exhibited more efficient electrocatalysis activity for HER,and both showed extremely high stability in acidic solutions.Zhanget al.[73]reported the controllable synthesis of single-layer MoS2flakes with dendritic fractal shapes on specific insulator SrTiO3[Fig.6(B)and(C)].The dendritic mono?layer MoS2with a large number of edges could show a relatively low Tafel slope of 73 mV/decade in 0.5 mol/L H2SO4.Xuet al.[74]reported a new strategy for the production of a strongly coupled MoS2nanosheet-carbon macroporous hybrid catalyst(S-MoS2@C)as shown in Fig.6(D).The engineered unsaturated sulfur edge en?hanced HER activity.

    Fig.6 Scheme of MoSe2 nanofilm with molecular layers perpendicular to a curved surface(A)[72],schematic view illustrating the edges of fractal monolayer MoS2 flakes as active catalytic sites for HER(B),polarization curves of bare Au foil and MoS2/Au foils(a,b and c represent the coverage of 12%,40%,and 60% for MoS2,respectively)(C)[73]and schematic illustration of the preparation process and microstructure of un?saturated sulfur edge MoS2nanosheet?carbon macroporous(D)[74]

    3.2 Defect Engineering

    Defect could adjust the electronic structure of materials and thus affect their HER activity.Theoretical calculations showed that with the increase of S vacancy concentration,theΔGH*on the defective MoS2kept de?creasing.The optimal value reached when the S vacancy concentration was between 12%and 16%[Fig.7(A)and(B)][75].When the S vacancy was introduced,a new band appeared in the gap near the Fermi level.More vacancies induced the band closer to the Fermi level,resulting in the generation of dangling bond states[75].Jinet al.[76]synthesized a new type of porous metallic-phase 1T-MoS2nanosheets by liquid ammonia assisted route.The porous sheets had larger edges and S vacancies than conventional 1T-phase MoS2,so there was ex?cellent HER catalytic activity in porous 1T-phase MoS2nanosheets,as shown in Fig.7(C).Recently,plasma emerged as a powerful tool to create defects in the materials.We proposed a plasma-induced dry exfoliation method to prepare Co3S4ultrathin porous nanosheets with a large number of sulfur vacancies(Co3S4PNSvac)[Fig.7(D)][77].The nanosheet had an initial overpotential of only 18 mV and a superior mass activity of 1056.6 A/g under an overpotential of 200 mV.Liet al.[78]manufactured S vacancies on the 2H-MoS2basal surface through plasma treatment.The optimized MoS2nanosheets showed excellent HER activity,with an overpotential of 128 mV at 10 mA/cm2and a Tafel slope of 50 mV/dec.

    Fig.7 Scheme for the top(upper panel)and side(lower panel)views of MoS2 with strained S?vacancies on the basal plane(A)and free energy vs.the reaction coordinate of HER for the S?vacancy range of 0—25%(B)[75],scheme for mesoporous 1T?MoS2 nanosheets for catalyzing HER(C)[76]and scheme for the preparation of Co3S4 PNSvac(D)[77]

    3.3 Heteroatoms Doping

    The doping of heteroatoms could change thed-band electronic structure and reduce the free energy of hydrogen adsorption.The basal plane of pure graphene was generally considered to be inert for the HER due to its relatively largeΔGH*(1.85 eV).Experiments proved that doping with non-metal atoms could activate graphene for HER[79].Thus,graphene doped with nitrogen and phosphorus was successfully preparedviaa one-step solid-state reaction of urea,glucose,and phosphoric acid[80].The as-prepared material showed excel?lent electrocatalytic HER activity with an onset overpotential of 0.12 V and a low Tafel slope of 79 mV/dec.Xie and coworkers[81]succeeded in construct disordered structure and oxygen doping into MoS2.The disor?dered structure provided sufficient unsaturated sulfur atoms as active sites for HER,and the introduction of ox?ygen effectively changed the electronic structure,as shown in Fig.8(A)and(B).The optimized catalyst showed excellent activity for HER with an initial overpotential as low as 120 mV,extremely high cathode cur?rent density,and excellent stability[Fig.8(C)].Moreover,the doping of metal heteroatoms into 2D materials was efficient to improve catalytic performance for HER.Chenet al.[82]successfully synthesized graphene nanosheets doped with nickel single atoms[Fig.8(D)].Thesp-dorbital charge transfers between the Ni dop?ant and the surrounding carbon atoms produced a local structure with empty C-Ni hybrid orbitals[Fig.8(E)].It exhibited excellent HER catalytic performance in a 0.5 mol/L H2SO4solution,including a low overpotential of about 50 mV,a Tafel slope of 45 mV/dec,and excellent cycle stability.Yanget al.[83]reported a two-step method to obtain 2H-MoS2doped with different metals[Fig.8(F)].This method prevented the doped metal atoms from aggregation,phase separation,and edge enrichment.Doping of cobalt and palladium on MoS2greatly enhanced the catalytic activity of HER with an overpotential of 49 mV at 10 mA/cm2and a Tafel slope of 43.2 mV/dec.

    Fig.8 Schematic representation of the disordered structure in oxygen?incorporated MoS2 ultrathin nanosheets(A),constructed model of an individual oxygen?incorporated MoS2 nanodomain and the illustration of the HER process at the active sites(B),polarization curves of the oxygen?incor?porated MoS2 ultrathin nanosheets(C)[81],TEM image of Ni?doped nanoporous graphene(G)(D),hydrogen adsorption sites and configuration of the interstitial atoms in the hollow centers of the benzene rings(Nisub))/G model withΔGH*=-0.10 eV(left)and calculated Gibbs free energy dia?gram(right)of the HER at equilibrium potential for a Pt catalyst and Ni?doped graphene(substi?tutional dopants occupying C sites in the graphene lattice(Niab)/G,Nisub/G,and anchoring atoms on defect sites(Nidef)/G)samples(E)[82]and schematic illustration for the synthesis of multi?hetero?atoms?doped MoS2(M?MoS2)(F)[83]

    4 Conclusions and Perspective

    This review summarized the recent progress in 2D materials for HER.We introduced the synthesis methods of 2D materials,including top-down and bottom-up methods.Among them,exfoliation method,CVD method,hydrothermal method,and template method,which are commonly used for synthesizing 2D materials were elaborated in detail.At the same time,modification strategies to improve HER activity of 2D materials have also been reviewed,such as edge engineering,defect engineering,and doping engineering.Edge engi?neering and defect engineering could create a large number of HER active sites,while the intrinsic activity was significantly improvedviadoping engineering.

    Although there has been great progress in achieving high HER catalytic performance for 2D materials,we still face some challenges and opportunities in this field.First of all,the HER mechanism catalyzed by these 2D nanomaterials was still unclear,and further exploration was required.Exploring advancedin situcharac?terization and developing individual nanosheet-based electrocatalytic device were urgently needed.Then,there was still a lack of work dedicated to systematically studying the contributions of defects,strains,vacan?cies,and phase transitions.Thirdly,the corrosion of the catalyst in the electrolysis process still plagued peo?ple,and the development of a robust catalyst was urgently needed.It is a good choice to develop new synthetic methods and modification strategies.Besides,coupling with oxidative alternative reactions could also boost H2evolution reaction.Finally,it was extremely important to find cheap,efficient,and stable alternatives for HER.We believe that the fascinating structure and electronic properties of 2D nanomaterials,as well as the strategies for controlling their morphology and electronic structure,will open up important technological oppor?tunities for future applications in the hydrogen production industry.

    This work is supported by the National Natural Science Foundation of China(Nos.22071173 and 21701122)and the Natural Science Foundation of Tianjin City,China(No.17JCJQJC44700).

    猜你喜歡
    理學院化工學院天津大學
    使固態(tài)化學反應(yīng)100%完成的方法
    昆明理工大學理學院學科簡介
    昆明理工大學理學院簡介
    《天津大學學報(社會科學版)》簡介
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    西安航空學院專業(yè)介紹
    ———理學院
    學生寫話
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    天津大學學報(社會科學版)2014年總目次
    777米奇影视久久| 欧美日韩亚洲高清精品| 91麻豆精品激情在线观看国产 | 叶爱在线成人免费视频播放| 女警被强在线播放| www.熟女人妻精品国产| 欧美 亚洲 国产 日韩一| 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产 | 成人18禁在线播放| 激情在线观看视频在线高清 | 大码成人一级视频| 午夜日韩欧美国产| 亚洲国产欧美日韩在线播放| a级片在线免费高清观看视频| 亚洲aⅴ乱码一区二区在线播放 | 成年版毛片免费区| 精品视频人人做人人爽| 国产精品久久视频播放| 黄色丝袜av网址大全| 色老头精品视频在线观看| 国产野战对白在线观看| 亚洲七黄色美女视频| 免费不卡黄色视频| 热99国产精品久久久久久7| av线在线观看网站| 99国产综合亚洲精品| 久久这里只有精品19| 窝窝影院91人妻| 建设人人有责人人尽责人人享有的| 日韩欧美一区视频在线观看| 夜夜爽天天搞| 久久ye,这里只有精品| 国产精品1区2区在线观看. | 欧美日韩亚洲国产一区二区在线观看 | 亚洲五月色婷婷综合| 国产淫语在线视频| 亚洲一区二区三区欧美精品| 久久午夜综合久久蜜桃| 在线观看www视频免费| 在线永久观看黄色视频| 欧美亚洲 丝袜 人妻 在线| 夫妻午夜视频| 变态另类成人亚洲欧美熟女 | 黑人巨大精品欧美一区二区蜜桃| 俄罗斯特黄特色一大片| 少妇的丰满在线观看| 午夜福利影视在线免费观看| 日韩 欧美 亚洲 中文字幕| 性色av乱码一区二区三区2| av片东京热男人的天堂| 欧美精品啪啪一区二区三区| 免费看a级黄色片| 久久国产精品大桥未久av| 欧美乱妇无乱码| 国产精品欧美亚洲77777| 欧美国产精品va在线观看不卡| 精品人妻1区二区| 免费在线观看完整版高清| 国产精品 国内视频| 免费久久久久久久精品成人欧美视频| 国产视频一区二区在线看| 久久精品aⅴ一区二区三区四区| 国产午夜精品久久久久久| 夜夜夜夜夜久久久久| xxxhd国产人妻xxx| 免费在线观看影片大全网站| 久久国产精品大桥未久av| 成人手机av| 国产在线精品亚洲第一网站| 日韩免费av在线播放| 日韩三级视频一区二区三区| 操美女的视频在线观看| 激情在线观看视频在线高清 | av一本久久久久| 少妇 在线观看| 亚洲视频免费观看视频| 国产熟女午夜一区二区三区| 一级毛片高清免费大全| 国产一区有黄有色的免费视频| 黄频高清免费视频| 免费av中文字幕在线| 一二三四在线观看免费中文在| 另类亚洲欧美激情| 一区在线观看完整版| 黄片播放在线免费| 亚洲专区中文字幕在线| 精品免费久久久久久久清纯 | 久久人妻熟女aⅴ| 国产欧美日韩一区二区精品| 久久国产亚洲av麻豆专区| 一级a爱视频在线免费观看| 两个人免费观看高清视频| 国产成人精品久久二区二区91| 欧美另类亚洲清纯唯美| 久久久精品区二区三区| 五月开心婷婷网| 国产蜜桃级精品一区二区三区 | 美女国产高潮福利片在线看| 欧美黑人精品巨大| 日韩大码丰满熟妇| 真人做人爱边吃奶动态| 久久久国产欧美日韩av| 亚洲黑人精品在线| av国产精品久久久久影院| 亚洲全国av大片| videosex国产| 国产精品美女特级片免费视频播放器 | a在线观看视频网站| 久久国产精品人妻蜜桃| 午夜视频精品福利| 男女之事视频高清在线观看| 成人18禁在线播放| 日韩制服丝袜自拍偷拍| 亚洲精品中文字幕一二三四区| 自拍欧美九色日韩亚洲蝌蚪91| 老司机深夜福利视频在线观看| 免费黄频网站在线观看国产| 亚洲av日韩精品久久久久久密| 欧美日韩成人在线一区二区| 精品第一国产精品| 又黄又粗又硬又大视频| 另类亚洲欧美激情| 亚洲欧美激情综合另类| 老熟妇乱子伦视频在线观看| 亚洲av美国av| 两人在一起打扑克的视频| 高清欧美精品videossex| 久久精品国产a三级三级三级| 天堂动漫精品| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| tube8黄色片| 交换朋友夫妻互换小说| 黄片播放在线免费| 国产精品久久久av美女十八| 午夜精品在线福利| 国产免费男女视频| 亚洲久久久国产精品| 18禁黄网站禁片午夜丰满| 国产免费男女视频| 人人妻人人爽人人添夜夜欢视频| 久久久久久亚洲精品国产蜜桃av| 久久国产精品影院| av有码第一页| 亚洲精品国产一区二区精华液| 丰满饥渴人妻一区二区三| 黄色视频不卡| 自拍欧美九色日韩亚洲蝌蚪91| 一级黄色大片毛片| 久久久水蜜桃国产精品网| 日韩一卡2卡3卡4卡2021年| 欧美精品啪啪一区二区三区| 国产一区二区激情短视频| 女人被狂操c到高潮| 水蜜桃什么品种好| 91成年电影在线观看| 欧美成人免费av一区二区三区 | 欧美激情高清一区二区三区| 午夜免费鲁丝| 国产亚洲精品第一综合不卡| 国产精品成人在线| 搡老熟女国产l中国老女人| 无遮挡黄片免费观看| 久久亚洲真实| 色播在线永久视频| 久久狼人影院| 久久精品亚洲av国产电影网| av电影中文网址| 黄色女人牲交| av福利片在线| 变态另类成人亚洲欧美熟女 | 一本一本久久a久久精品综合妖精| 国产成人av教育| 久久久久国产精品人妻aⅴ院 | 一区二区三区国产精品乱码| 欧美黑人精品巨大| 操美女的视频在线观看| 身体一侧抽搐| 母亲3免费完整高清在线观看| 国产成人av激情在线播放| 日韩欧美国产一区二区入口| 高清黄色对白视频在线免费看| 黄片播放在线免费| 久久精品熟女亚洲av麻豆精品| 制服诱惑二区| 美国免费a级毛片| 1024香蕉在线观看| 欧美黄色淫秽网站| 美女视频免费永久观看网站| 最近最新免费中文字幕在线| 欧美乱色亚洲激情| 亚洲久久久国产精品| 成人国语在线视频| 亚洲国产欧美日韩在线播放| 亚洲一区二区三区欧美精品| 99国产精品一区二区三区| 精品乱码久久久久久99久播| 校园春色视频在线观看| 久久久久久久国产电影| 最新的欧美精品一区二区| 一级毛片高清免费大全| 日韩欧美三级三区| 大片电影免费在线观看免费| 男女午夜视频在线观看| 久久久国产成人免费| 欧美国产精品va在线观看不卡| 深夜精品福利| 日韩欧美在线二视频 | 欧美一级毛片孕妇| 伊人久久大香线蕉亚洲五| 男女下面插进去视频免费观看| 国产99久久九九免费精品| 极品少妇高潮喷水抽搐| 久久香蕉激情| 国产精品免费视频内射| 午夜亚洲福利在线播放| 国产1区2区3区精品| 日韩 欧美 亚洲 中文字幕| 一级作爱视频免费观看| 在线观看66精品国产| 色94色欧美一区二区| 国内久久婷婷六月综合欲色啪| 好男人电影高清在线观看| 国产精品久久视频播放| 老司机亚洲免费影院| 国产欧美日韩精品亚洲av| 亚洲综合色网址| 丝袜在线中文字幕| 18在线观看网站| 午夜福利影视在线免费观看| 女人久久www免费人成看片| 国内久久婷婷六月综合欲色啪| 99国产极品粉嫩在线观看| 中国美女看黄片| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| 国产精品秋霞免费鲁丝片| 黄色成人免费大全| 黄频高清免费视频| 黑人操中国人逼视频| 80岁老熟妇乱子伦牲交| 午夜免费观看网址| 久久久久久亚洲精品国产蜜桃av| 亚洲专区中文字幕在线| 中国美女看黄片| 美国免费a级毛片| 亚洲av成人av| 9色porny在线观看| 成年动漫av网址| 国产精品秋霞免费鲁丝片| 午夜两性在线视频| 亚洲av欧美aⅴ国产| 色播在线永久视频| 99在线人妻在线中文字幕 | 亚洲中文av在线| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久,| 亚洲人成电影免费在线| 激情视频va一区二区三区| 日韩欧美免费精品| 免费一级毛片在线播放高清视频 | 精品国产一区二区三区四区第35| 黄色片一级片一级黄色片| 亚洲五月色婷婷综合| 中文字幕人妻丝袜制服| 午夜日韩欧美国产| 五月开心婷婷网| 久久影院123| 男人舔女人的私密视频| 久久国产精品大桥未久av| 国产男女内射视频| 免费在线观看亚洲国产| 久久精品亚洲av国产电影网| 国产1区2区3区精品| 久热这里只有精品99| 午夜精品在线福利| 亚洲va日本ⅴa欧美va伊人久久| av视频免费观看在线观看| 久久久精品国产亚洲av高清涩受| 咕卡用的链子| a级片在线免费高清观看视频| 99久久国产精品久久久| 曰老女人黄片| 岛国毛片在线播放| 免费av中文字幕在线| 精品人妻1区二区| 视频在线观看一区二区三区| 黄色毛片三级朝国网站| 日韩欧美一区二区三区在线观看 | 亚洲国产中文字幕在线视频| 国产一区二区三区视频了| 国内毛片毛片毛片毛片毛片| 成人影院久久| 十八禁高潮呻吟视频| 欧美亚洲 丝袜 人妻 在线| 在线国产一区二区在线| 亚洲精品久久成人aⅴ小说| 国产成人av教育| 一二三四在线观看免费中文在| 亚洲av日韩精品久久久久久密| 午夜久久久在线观看| 日本黄色视频三级网站网址 | 不卡av一区二区三区| 高清视频免费观看一区二区| 亚洲精品乱久久久久久| 亚洲成人免费电影在线观看| 丝袜美腿诱惑在线| 夫妻午夜视频| 日韩免费av在线播放| 国产成人精品久久二区二区91| 啦啦啦视频在线资源免费观看| 99热只有精品国产| av一本久久久久| 日韩精品免费视频一区二区三区| 国产区一区二久久| 嫩草影视91久久| 欧美成狂野欧美在线观看| 国产精品免费视频内射| 电影成人av| 高清欧美精品videossex| 成年人免费黄色播放视频| 国产精品永久免费网站| 国产在线观看jvid| 少妇的丰满在线观看| 涩涩av久久男人的天堂| 久久这里只有精品19| 飞空精品影院首页| 99精品久久久久人妻精品| 亚洲精品国产区一区二| 欧美成狂野欧美在线观看| 亚洲熟女毛片儿| 中亚洲国语对白在线视频| 亚洲一区中文字幕在线| 国产成人精品久久二区二区91| 欧美人与性动交α欧美软件| 精品免费久久久久久久清纯 | 久久亚洲真实| 久热爱精品视频在线9| 69av精品久久久久久| 国产精品乱码一区二三区的特点 | 视频区欧美日本亚洲| 高潮久久久久久久久久久不卡| 精品乱码久久久久久99久播| 黄色a级毛片大全视频| 免费在线观看完整版高清| 亚洲欧洲精品一区二区精品久久久| avwww免费| 成人三级做爰电影| 天天躁狠狠躁夜夜躁狠狠躁| 成年女人毛片免费观看观看9 | 一进一出抽搐动态| 嫩草影视91久久| 热99re8久久精品国产| 成人国产一区最新在线观看| 三级毛片av免费| 成人国产一区最新在线观看| 免费不卡黄色视频| 国产在线观看jvid| 国产激情久久老熟女| 久久精品熟女亚洲av麻豆精品| 欧美日韩亚洲国产一区二区在线观看 | 亚洲九九香蕉| 欧美性长视频在线观看| 交换朋友夫妻互换小说| 麻豆成人av在线观看| 一边摸一边抽搐一进一小说 | 一进一出抽搐动态| 精品人妻1区二区| 99热网站在线观看| 亚洲av成人不卡在线观看播放网| 极品人妻少妇av视频| 久久久久久久国产电影| 免费不卡黄色视频| 波多野结衣av一区二区av| 国产亚洲欧美98| 老熟女久久久| 国产单亲对白刺激| 国产又爽黄色视频| 国产精品免费大片| 国产不卡av网站在线观看| 最新美女视频免费是黄的| 他把我摸到了高潮在线观看| 黑人欧美特级aaaaaa片| 亚洲精品国产精品久久久不卡| 欧美最黄视频在线播放免费 | 亚洲精品中文字幕一二三四区| 欧美精品啪啪一区二区三区| 国产精品久久视频播放| 精品国产超薄肉色丝袜足j| 大香蕉久久成人网| 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 国产精品影院久久| 亚洲成国产人片在线观看| 日本欧美视频一区| 日韩欧美在线二视频 | 色综合婷婷激情| 亚洲性夜色夜夜综合| 亚洲专区字幕在线| av网站免费在线观看视频| 国产精品1区2区在线观看. | 一级a爱视频在线免费观看| 久久久久国内视频| 老汉色∧v一级毛片| 精品熟女少妇八av免费久了| 欧美 日韩 精品 国产| 国产国语露脸激情在线看| 大型黄色视频在线免费观看| 18禁裸乳无遮挡动漫免费视频| 男女午夜视频在线观看| 午夜福利一区二区在线看| 国产精品久久电影中文字幕 | 国产精品亚洲av一区麻豆| 精品久久久久久,| 成熟少妇高潮喷水视频| 另类亚洲欧美激情| 91老司机精品| 精品久久久久久久毛片微露脸| 无限看片的www在线观看| 久久99一区二区三区| 黄色成人免费大全| 波多野结衣一区麻豆| 自线自在国产av| 成人国语在线视频| 国产av一区二区精品久久| 久久人妻av系列| 99精品欧美一区二区三区四区| 窝窝影院91人妻| 成人免费观看视频高清| 久久精品亚洲精品国产色婷小说| a级毛片在线看网站| 丰满饥渴人妻一区二区三| 亚洲人成电影免费在线| 久久久国产欧美日韩av| 成人18禁在线播放| 亚洲熟妇熟女久久| 成人永久免费在线观看视频| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区视频在线观看免费 | 亚洲av日韩在线播放| 老熟妇乱子伦视频在线观看| 国产黄色免费在线视频| 亚洲国产欧美日韩在线播放| 热99re8久久精品国产| 色精品久久人妻99蜜桃| 咕卡用的链子| 日韩人妻精品一区2区三区| 丰满饥渴人妻一区二区三| 欧美日韩一级在线毛片| 亚洲国产精品sss在线观看 | 窝窝影院91人妻| 国产一区二区三区在线臀色熟女 | 精品视频人人做人人爽| 精品一区二区三区av网在线观看| 成人免费观看视频高清| 757午夜福利合集在线观看| 99久久国产精品久久久| 99国产极品粉嫩在线观看| 91麻豆av在线| 欧美激情 高清一区二区三区| 亚洲精品av麻豆狂野| 老司机影院毛片| 美女国产高潮福利片在线看| 国产精品偷伦视频观看了| 少妇粗大呻吟视频| 欧美丝袜亚洲另类 | 人妻 亚洲 视频| 伦理电影免费视频| 美女高潮到喷水免费观看| 亚洲av片天天在线观看| 狠狠狠狠99中文字幕| 女同久久另类99精品国产91| 国产精品美女特级片免费视频播放器 | 看免费av毛片| 欧美日韩乱码在线| 老司机在亚洲福利影院| 国产av又大| 国产男靠女视频免费网站| 亚洲精品国产一区二区精华液| 国产精品免费一区二区三区在线 | 80岁老熟妇乱子伦牲交| 窝窝影院91人妻| 天堂中文最新版在线下载| 欧美日韩精品网址| 午夜精品在线福利| 99久久综合精品五月天人人| 黄片小视频在线播放| 啦啦啦视频在线资源免费观看| 男女之事视频高清在线观看| 日本黄色视频三级网站网址 | 国产又色又爽无遮挡免费看| 国产精品一区二区免费欧美| 国产成人精品在线电影| 丝袜美足系列| 男女之事视频高清在线观看| 欧美成人午夜精品| 久久精品成人免费网站| 国产视频一区二区在线看| 99精品久久久久人妻精品| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产99精品国产亚洲性色 | 日本wwww免费看| 精品一区二区三卡| www.熟女人妻精品国产| 久久久水蜜桃国产精品网| 成人永久免费在线观看视频| 男人的好看免费观看在线视频 | 色94色欧美一区二区| 久久久久国产精品人妻aⅴ院 | 精品亚洲成国产av| 伦理电影免费视频| 国产男女超爽视频在线观看| 欧美日韩精品网址| 日韩有码中文字幕| 亚洲国产看品久久| 免费在线观看日本一区| 91av网站免费观看| 午夜两性在线视频| 欧美丝袜亚洲另类 | 久久精品熟女亚洲av麻豆精品| 人人澡人人妻人| 日韩视频一区二区在线观看| 国产亚洲av高清不卡| 很黄的视频免费| 人妻 亚洲 视频| 美女福利国产在线| 满18在线观看网站| 老熟妇仑乱视频hdxx| av网站在线播放免费| 日韩欧美三级三区| 91九色精品人成在线观看| 夜夜爽天天搞| 国产深夜福利视频在线观看| 夫妻午夜视频| 国产精品.久久久| 国产精品1区2区在线观看. | 下体分泌物呈黄色| 别揉我奶头~嗯~啊~动态视频| 欧美在线黄色| 国产99久久九九免费精品| 大型av网站在线播放| 12—13女人毛片做爰片一| 精品久久蜜臀av无| 亚洲精品粉嫩美女一区| 又黄又爽又免费观看的视频| 99热国产这里只有精品6| 午夜福利欧美成人| 看片在线看免费视频| 在线看a的网站| 久久久久久人人人人人| 亚洲avbb在线观看| 国产精品九九99| 岛国在线观看网站| 国产国语露脸激情在线看| 亚洲片人在线观看| 色综合婷婷激情| 中国美女看黄片| videos熟女内射| 高清在线国产一区| 国产有黄有色有爽视频| 一区二区三区激情视频| 国产成人av教育| 国产蜜桃级精品一区二区三区 | 最近最新免费中文字幕在线| www.自偷自拍.com| 国产片内射在线| 国产精品自产拍在线观看55亚洲 | 久99久视频精品免费| 国产精品香港三级国产av潘金莲| 免费一级毛片在线播放高清视频 | 久久人妻熟女aⅴ| 不卡一级毛片| 精品午夜福利视频在线观看一区| 美女高潮到喷水免费观看| 一级黄色大片毛片| av片东京热男人的天堂| 高清视频免费观看一区二区| 女性被躁到高潮视频| 在线观看日韩欧美| 他把我摸到了高潮在线观看| 欧美乱码精品一区二区三区| 国产av又大| 亚洲精品久久成人aⅴ小说| 一区二区三区国产精品乱码| 亚洲人成电影观看| 色在线成人网| 夜夜躁狠狠躁天天躁| 精品福利永久在线观看| 嫩草影视91久久| xxx96com| 久久人妻熟女aⅴ| 999久久久国产精品视频| 色尼玛亚洲综合影院| 亚洲性夜色夜夜综合| 国产精品久久久久久精品古装| 婷婷丁香在线五月| 久久久国产精品麻豆| 精品国产亚洲在线| 可以免费在线观看a视频的电影网站| 岛国毛片在线播放| 在线观看66精品国产| 国产单亲对白刺激| 国产亚洲欧美在线一区二区| 成年版毛片免费区| 十分钟在线观看高清视频www| 啦啦啦 在线观看视频| 黄色成人免费大全| 少妇的丰满在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 一级作爱视频免费观看| 一级a爱片免费观看的视频| 日日爽夜夜爽网站| 老鸭窝网址在线观看| 午夜福利视频在线观看免费|