楊月, 謝海輝*
楊桃葉的化學(xué)成分研究
楊月1,2, 謝海輝1,2*
(1. 中國科學(xué)院華南植物園, 中國科學(xué)院華南農(nóng)業(yè)植物分子分析與遺傳改良重點(diǎn)實(shí)驗(yàn)室, 廣東省應(yīng)用植物學(xué)重點(diǎn)實(shí)驗(yàn)室, 廣州 510650; 2. 中國科學(xué)院大學(xué), 北京 100049)
為闡明酢漿草科植物楊桃()的化學(xué)成分,運(yùn)用有機(jī)溶劑提取、萃取及多種色譜分離技術(shù),從其葉中分離得到11個(gè)化合物。經(jīng)光波譜分析,分別鑒定為苯基-d-葡萄糖苷(1)、3,4,5-三甲氧基苯基-d-葡萄糖苷(2)、芐基-d-葡萄糖苷(3)、2-苯乙基蕓香糖苷(4)、1--(3,5-二甲氧基-4-羥基苯甲酰)--d-葡萄糖(5)、5-羥基麥芽酚(6)、麥芽酚苷(7)、麥芽酚3--[6--(3-羥基-3-甲基-5-丁基戊二酰)]--d-葡萄糖苷(8)、乙基-d-呋喃果糖苷(9)、丁基-d-呋喃果糖苷(10)和鯊烯 (11)?;衔?是1個(gè)新的人工產(chǎn)物,除化合物2和3外均為首次從楊桃屬植物中得到。部分化合物與楊桃葉的抗炎、抗氧化和抗腫瘤作用相關(guān)。
楊桃;化學(xué)成分;芳基糖苷;麥芽酚糖苷;烷基糖苷
楊桃()為酢漿草科(Oxali- daceae)楊桃屬植物,原產(chǎn)馬來西亞和印度尼西亞,我國廣東、海南、廣西、福建、臺灣、云南有栽培,其果實(shí)是一種常見水果[1]。據(jù)《中華本草》記載, 楊桃果實(shí)、花、葉和根均可入藥,其中葉味澀、苦,性寒;有祛風(fēng)利濕,清熱解毒,止痛功效,主治風(fēng)熱感冒,小便不利,產(chǎn)后浮腫,癰疽腫毒,漆瘡,跌打腫痛[2]。研究表明,楊桃葉有體內(nèi)抗高血脂[3]、抗氧化[3]、降血糖[4]、降血壓[5]和抗炎[6]等藥理作用,從中分離得到的芹菜素6---d-巖藻糖苷和芹菜素6--(2---l-鼠李糖基)--d-巖藻糖苷能顯著降低高血糖大鼠的血糖水平和提高大鼠比目魚肌和肝糖原含量,表現(xiàn)出降血糖活性[7]。此外,從楊桃葉中還報(bào)道了異牡荊素、2??--l-鼠李糖基異牡荊素和-谷甾醇[8–9]。楊桃葉具有多種藥理作用,且化學(xué)成分的報(bào)道少,故我們對其成分進(jìn)行了研究。前期報(bào)道了12個(gè)二氫查耳酮巖藻糖碳苷類、5個(gè)黃烷-3-醇類和2個(gè)鄰羥基苯甲酸酯類化合物的結(jié)構(gòu)及其抗氧化、-葡萄糖苷酶和胰脂肪酶抑制活性[10–11]。本文報(bào)道5個(gè)芳基糖苷類、3個(gè)麥芽酚類、2個(gè)烷基糖苷類和1個(gè)三萜類化合物。
試驗(yàn)材料于2018年8月采自廣州市海珠區(qū)小洲村某果園(23°37?55?? N, 113°33?7?? E),經(jīng)中國科學(xué)院華南植物園葉華谷研究員鑒定為酢漿草科植物楊桃()的葉,樣品憑證(AcL1808)存放于植物化學(xué)實(shí)驗(yàn)室。
青島譜科分離材料公司柱層析硅膠(100~200目);瑞典Amersham Biosciences公司葡聚糖凝膠Sephadex LH-20;煙臺江友硅膠開發(fā)試驗(yàn)廠薄層硅膠層析板(HSGF254)。
日本島津公司LC-20A高效液相色譜儀和SPD- M20A PDA檢測器;北京創(chuàng)新通恒科技有限公司LC3000中壓液相色譜和UV3000 UV-VIS檢測器;日本東京理化公司N-1100旋轉(zhuǎn)蒸發(fā)儀;美國應(yīng)用生物系統(tǒng)公司MDS SCIEX API 2000 LC-MS/MS質(zhì)譜儀測電噴霧質(zhì)譜(ESI-MS);瑞士布魯克公司Bruker DRX-500 MHz超導(dǎo)核磁共振譜儀;青島騰龍微波科技有限公司氘代甲醇(CD3OD)和氘代氯仿(CDCl3),化學(xué)位移值(, ppm)以溶劑峰為參照。
廣州東巨化工公司食品級乙醇(提取用);天津富宇精細(xì)化工公司分析純氯仿、甲醇、石油醚、正丁醇和丙酮;上海安譜公司色譜純甲醇。
楊桃鮮葉晾干后粉碎。取粉末15.45 kg,分別用60和45 L的90%乙醇浸提2次,再用50%乙醇(45 L)浸提1次,每次2 d。合并提取液,減壓濃縮至15.6 L,倒入分液漏斗,用氯仿萃取3次,每次10.4 L,合并萃取液,減壓濃縮至干,得氯仿萃取物820 g。水液用正丁醇萃取4次,每次10.4 L, 合并萃取液,減壓濃縮至干,得正丁醇萃取物1 050 g。
取氯仿萃取物815 g,用適量氯仿-甲醇溶解,加790 g硅膠拌勻,減壓濃縮至干,研磨,過40目篩。將3 250 g硅膠用石油醚攪拌,裝入層析柱(內(nèi)徑11.8 cm)中,敲實(shí),加入樣品,硅膠層(含樣品)高101 cm,體積11.0 L。以石油醚-丙酮(10∶0~2∶8,/, 下同)洗脫,收集流份,每份1 L,經(jīng)薄層色譜分析,合并為組分C1~C13。C1 (8.0 g)經(jīng)硅膠柱層析,以石油醚-丙酮(1∶0~7∶3)洗脫,得化合物11 (9.0 mg)。取正丁醇萃取物1 045 g,用適量甲醇溶解,加1 340 g硅膠拌勻,減壓濃縮至干,研磨, 過40目篩。將2 800 g硅膠用氯仿攪拌,裝入層析柱(內(nèi)徑11.8 cm)中,加入樣品,硅膠層高105 cm,體積11.5 L。以氯仿-甲醇(98∶2~50∶50)洗脫,收集流份,每份1 L,經(jīng)薄層色譜分析,合并為組分F1~ F10。F3 (6.0 g)經(jīng)硅膠柱層析,以氯仿-甲醇(1∶0~ 0∶1)洗脫,合并為亞組分F3-1~F3-7。F3-6經(jīng)葡聚糖凝膠柱色譜分離,甲醇洗脫,合并為F3-6-1~F3- 6-5。F3-6-4經(jīng)HPLC純化,以甲醇-水(15∶85)為流動(dòng)相,流速7 mL/min, 得化合物6 (保留時(shí)間R= 30 min, 1.6 mg)。F4 (18.0 g)經(jīng)中壓液相色譜分離, 以甲醇-水(2∶8~10∶0)洗脫,合并為亞組分F4-1~F4- 15。F4-5經(jīng)葡聚糖凝膠柱色譜分離,甲醇洗脫,合并為F4-5-1~F4-5-4。F4-5-1經(jīng)HPLC純化,以甲醇-水(43∶57)為流動(dòng)相, 流速7 mL/min,得化合物8 (R= 104 min, 4.0 mg)。F6 (20.7 g)經(jīng)中壓液相色譜分離,以甲醇-水(2∶8~10∶0)洗脫,合并為亞組分F6-1~ F6-21。F6-1經(jīng)葡聚糖凝膠柱色譜分離,甲醇洗脫,合并為F6-1-1~F6-1-5。F6-1-1經(jīng)HPLC純化,以甲醇-水(5∶95)為流動(dòng)相,流速7 mL/min, 得化合物7 (R=32 min, 9.0 mg)和9 (R=13 min, 20.2 mg)。F6-4經(jīng)葡聚糖凝膠柱色譜分離,甲醇洗脫,合并為F6-4-1~F6-4-4。F6-4-1經(jīng)HPLC純化,以甲醇-水(1∶9)為流動(dòng)相,流速7 mL/min,得化合物10 (R= 51 min, 7.0 mg)。F6-4-2經(jīng)HPLC純化,以甲醇-水(1∶9)為流動(dòng)相,流速7 mL/min,得化合物5 (R= 24 min, 5.2 mg)。F6-5經(jīng)葡聚糖凝膠柱色譜分離,甲醇洗脫, 合并為F6-5-1~F6-5-5。F6-5-2經(jīng)HPLC純化,以甲醇-水(15∶85)為流動(dòng)相,流速7 mL/min,得化合物2 (R=27 min, 11.7 mg)。F6-5-3經(jīng)HPLC純化,以甲醇-水(2∶8)為流動(dòng)相,流速7 mL/min, 得化合物1 (R=32 min, 1.2 mg)。F6-6經(jīng)葡聚糖凝膠柱色譜分離, 以甲醇洗脫,合并為F6-6-1~F6-6- 4。F6-6-3經(jīng)HPLC純化,以甲醇-水(2∶8)為流動(dòng)相,流速7 mL/min, 得化合物3 (R=51 min, 20.0 mg)。F8 (115.5 g)經(jīng)硅膠柱層析,以氯仿-甲醇(1∶0~0∶1)洗脫, 合并為亞組分F8-1~F8-8。F8-7經(jīng)中壓液相色譜分離,甲醇-水(2∶8~10∶0)洗脫,合并為F8-7-1~F8- 7-13。F8-7-5經(jīng)葡聚糖凝膠柱色譜分離,甲醇洗脫, 主流份經(jīng)HPLC純化,以甲醇-水(27∶73)為流動(dòng)相, 流速7 mL/min, 得化合物4(R=95 min, 42.0 mg)(圖1)。
圖1 化合物1~11的結(jié)構(gòu)
化合物1 白色粉末;ESI-MS: 279 [M + Na]+, 255 [M ? H]?, 分子式C12H16O6;1H NMR (500 MHz, CD3OD):7.28 (2H, tt,= 7.4, 1.1 Hz, H-3,5), 7.09 (2H, dt,= 7.4, 1.1 Hz, H-2,6), 7.00 (1H, tt,= 7.4, 1.1 Hz, H-4), 4.90 (1H, d,= 7.7 Hz, H-1?), 3.89 (1H, dd,= 12.0, 2.2 Hz, H-6?), 3.70 (1H, dd,= 12.0, 5.4 Hz, H-6?);13C NMR (125 MHz, CD3OD):159.2 (C-1), 117.7 (C-2, 6), 130.4 (C-3, 5), 123.3 (C-4), 102.3 (C-1?), 74.9 (C-2?), 78.0 (C-3?), 71.4 (C-4?), 78.1 (C-5?), 62.5 (C-6?)。上述數(shù)據(jù)與文獻(xiàn)[12]報(bào)道的一致,故鑒定為苯基-d-葡萄糖苷。
化合物2 白色粉末;ESI-MS: 345 [M ? H]?, 381 [M + Cl]?, 分子式C15H22O9;1H NMR (500 MHz, CD3OD):6.49 (2H, s, H-2,6), 4.81 (1H, d,= 7.4 Hz, H-1?), 3.92 (1H, dd,= 12.2, 2.1 Hz, H-6?), 3.81 (6H, s, 3,5-OCH3), 3.70 (3H, s, 4-OCH3), 3.66 (1H, dd,= 12.2, 6.5 Hz, H-6?);13C NMR (125 MHz, CD3OD):156.0 (C-1), 96.1 (C-2,6), 154.8 (C-3,5), 134.4 (C-4), 56.5 (3,5-OCH3), 61.2 (4-OCH3), 103.2 (C-1?), 74.9 (C-2?), 78.1 (C-3?), 71.7 (C-4?), 78.4 (C-5?), 62.7 (C-6?)。上述數(shù)據(jù)與文獻(xiàn)[13]報(bào)道的一致,故鑒定為3,4,5-三甲氧基苯基-d-葡萄糖苷。
化合物3 白色粉末;ESI-MS: 293 [M + Na]+, 269 [M ? H]?, 305 [M + Cl]?, 分子式C13H18O6;1H NMR (500 MHz, CD3OD):7.42 (2H, br d,= 7.1 Hz, H-2,6), 7.32 (2H, br t,= 7.1 Hz, H-3,5), 7.27 (1H, br t,= 7.1 Hz, H-4), 4.93 (1H, d,= 11.8 Hz, H-7), 4.67 (1H, d,= 11.8 Hz, H-7), 4.36 (1H, d,= 7.8 Hz, H-1?), 3.90 (1H, dd,= 12.0, 2.1 Hz, H-6?), 3.69 (1H, d,= 12.0, 5.6 Hz, H-6?);13C NMR (125 MHz,CD3OD):139.1 (C-1), 129.3 (C-2, 6), 129.2 (C-3, 5), 128.7 (C-4), 71.7 (C-7), 103.3 (C-1?), 75.1 (C-2?), 78.0 (C-3?), 71.7 (C-4?), 78.1 (C-5?), 62.8 (C-6?)。上述數(shù)據(jù)與文獻(xiàn)[14]報(bào)道的一致,故鑒定為芐基-d-葡萄糖苷。
化合物4 白色粉末;ESI-MS: 453 [M + Na]+, 429 [M ? H]?, 465 [M + Cl]?, 分子式C20H30O10;1H NMR (500 MHz, CD3OD):7.26 (4H, m, H-2,3,5,6), 7.17 (1H, m, H-4), 4.76 (1H, d,= 1.6 Hz, H-1??), 4.29 (1H, d,= 7.8 Hz, H-1?), 4.03 (1H, ddd,= 9.8, 7.9, 6.7 Hz, H-8), 3.98 (1H, dd,= 11.2, 1.9 Hz, H-6?), 3.76 (1H, ddd,= 9.8, 7.9, 6.7 Hz, H-8), 3.62 (1H, d,= 11.2, 6.1 Hz, H-6?), 2.94 (2H, ddd,= 7.9, 6.7, 3.2 Hz, H2-7), 1.26 (3H, d,= 6.3 Hz, H3-6??);13C NMR (125 MHz, CD3OD):139.9 (C-1), 130.0 (C-2,6), 129.3 (C-3,5), 127.2 (C-4), 37.2 (C-7), 71.8 (C-8), 104.4 (C-1?), 75.0 (C-2?), 78.0 (C-3?), 71.6 (C-4?), 76.8 (C-5?), 68.1 (C-6?), 102.2 (C-1??), 72.1 (C-2??), 72.3 (C-3??), 74.0 (C-4??), 69.8 (C-5??), 18.0 (C-6??)。上述數(shù)據(jù)與文獻(xiàn)[15]報(bào)道的一致,故鑒定為2-苯乙基蕓香糖苷。
化合物5 白色粉末;ESI-MS: 383 [M + Na]+, 359 [M ? H]?, 分子式C15H20O10;1H NMR (500 MHz, CD3OD):7.40 (2H, s, H-2, 6), 5.70 (1H, d,= 7.8 Hz, H-1?), 3.90 (6H, s, 3,5-OCH3), 3.86 (1H, dd,= 12.2, 2.0 Hz, H-6?), 3.71 (1H, dd,= 12.2, 4.8 Hz, H-6?);13C NMR (125 MHz, CD3OD):120.6 (C-1), 108.6 (C-2,6), 148.9 (C-3,5), 142.5 (C-4), 166.7 (C-7), 96.2 (C-1?), 74.0 (C-2?), 78.1 (C-3?), 71.1 (C-4?), 78.9 (C-5?), 62.3 (C-6?)。上述數(shù)據(jù)與文獻(xiàn)[16]報(bào)道的一致,故鑒定為1--(3,5-二甲氧基-4-羥基苯甲?;?--d-葡萄糖。
化合物6 白色粉末;ESI-MS: 143 [M + H]+, 165 [M + Na]+, 分子式C6H6O4;1H NMR (500 MHz, CD3OD):7.85 (1H, s, H-6), 2.32 (3H, s, H3-7);13C NMR (125 MHz, CD3OD):140.4 (C-2), 151.8 (C-3), 170.3 (C-4), 142.9 (C-5), 145.8 (C-6), 14.5 (C-7)。上述數(shù)據(jù)與文獻(xiàn)[17]報(bào)道的一致,故鑒定為5-羥基麥芽酚。
化合物7 白色粉末;ESI-MS: 287 [M ? H]?, 323 [M + Cl]?, 分子式C12H16O8;1H NMR (500 MHz, CD3OD):8.01 (1H, d,= 5.6 Hz, H-6), 6.45 (1H, d,= 5.6 Hz, H-5), 4.81 (1H, d,= 7.4 Hz, H-1?), 3.83 (1H, dd,= 12.0, 2.3 Hz, H-6?), 3.67 (1H, dd,= 12.0, 5.4 Hz, H-6?), 2.47 (3H, s, H3-7);13C NMR (125 MHz, CD3OD):164.6 (C-2), 143.6 (C-3), 177.2 (C-4), 117.3 (C-5), 157.1 (C-6), 15.8 (C-7), 105.4 (C-1?), 75.4 (C-2?), 78.0 (C-3?), 71.1 (C-4?), 78.5 (C-5?), 62.5 (C-6?)。上述數(shù)據(jù)與文獻(xiàn)[18]報(bào)道的一致,故鑒定為麥芽酚苷。
化合物8 白色粉末;ESI-MS: 511 [M + Na]+, 527 [M + K]+, 523 [M + Cl]?,分子式C22H32O12;核磁共振氫譜和碳譜顯示出1個(gè)麥芽酚苷(7)、1個(gè)3-羥基-3-甲基谷氨?;?C-1??, 3??, 5??和CH2-2??, 4??)[19]和1個(gè)正丁醇基(CH2-1???~3???和CH3-4???)[20]的信號(表1)。與麥芽酚苷(7)的碳譜數(shù)據(jù)比較,葡萄糖基6位碳(C-6?)的值向低場位移了1.8 ppm,表明3-羥基-3-甲基谷氨酰基連接在C-6?,形成化合物licoa- groside B[19]。此外,比較化合物8與licoagroside B[20]的碳譜數(shù)據(jù)發(fā)現(xiàn),兩者的明顯差別在C-5??和C-4??, 分別為?2.0和+0.3 ppm,其它碳值的差別不超過0.1 ppm, 故推斷正丁醇基連接在C-5??,即麥芽酚3--[6--(3-羥基-3-甲基-5-丁基戊二酰基)]--d-葡萄糖苷,是licoagroside B與正丁醇在加熱濃縮時(shí)脫水形成的酯化物。
化合物9 白色粉末;ESI-MS: 231 [M + Na]+, 207 [M ? H]?, 分子式C8H16O6;1H NMR (500 MHz, CD3OD):4.10 (1H, d,= 8.1 Hz, H-3?), 3.95 (1H, t,= 7.7 Hz, H-4?), 3.66 (1H, d,= 11.8 Hz, H-6?), 3.56 (1H, d,= 11.8 Hz, H-6?), 1.15 (3H, t,= 7.1 Hz, H3-2);13C NMR (125 MHz, CD3OD):57.8 (C-1), 16.0 (C-2), 64.9 (C-1?), 105.3 (C-2?), 78.4 (C-3?), 77.3 (C-4?), 83.4 (C-5?), 61.9 (C-6?)。上述數(shù)據(jù)與文獻(xiàn)[21]報(bào)道的一致,故鑒定為乙基-d-呋喃果糖苷。
化合物10 白色粉末;ESI-MS: 259 [M + Na]+, 235 [M ? H]?, 分子式C10H20O6;1H NMR (125 MHz, CD3OD):4.11 (1H, d,= 8.1 Hz, H-3?), 3.92 (1H, t,= 7.8 Hz, H-4?), 3.66 (1H, d,= 11.8 Hz,H-6?), 3.53 (1H, d,= 11.8 Hz, H-6?), 1.53 (2H, m, H2- 2), 1.38 (2H, m, H2-3), 0.93 (3H, t,= 7.4 Hz, H3- 4);13C NMR (125 MHz, CD3OD):62.2 (C-1), 33.5 (C-2),20.4 (C-3), 14.3 (C-4), 65.0 (C-1?), 105.2 (C-2?), 78.4 (C- 3?), 77.3 (C-4?), 83.4 (C-5?), 61.9 (C-6?)。上述數(shù)據(jù)與文獻(xiàn)[22]報(bào)道的一致,故鑒定為丁基-d-呋喃果糖苷。
表1 化合物8的核磁共振氫譜和碳譜數(shù)據(jù)(CD3OD)
化合物11 黃色粉末;ESI-MS: 409 [M ? H]?, 分子式C30H50;1H NMR (500 MHz, CDCl3):5.12 (6H, m, H-3, 7, 11, 14, 18, 22), 2.10~1.96 (16H, m, H2-4, 5, 8, 9, 16, 17, 20, 21), 1.68 (6H, s, H3-1, 24), 1.61 (18H, s, H3-25~30);13C NMR (125 MHz, CDCl3):25.8 (C-1, 24), 131.2 (C-2, 23), 124.4 (C-3, 22), 26.8 (C-4, 21), 39.7 (C-5, 9, 16, 20), 134.9 (C-6, 19), 124.3 (C-7, 11, 14, 18), 26.7 (C-8, 17), 135.1 (C-10, 15), 28.3 (C-12, 13), 16.1 (C-26~29), 17.8 (C-25, 30)。上述數(shù)據(jù)與文獻(xiàn)[23]報(bào)道的一致,故鑒定為鯊烯。
從楊桃葉的乙醇提取物中分離鑒定了苯基-d-葡萄糖苷(1)、3,4,5-三甲氧基苯基-d-葡萄糖苷(2)、芐基-d-葡萄糖苷(3)、2-苯乙基蕓香糖苷(4)、1--(3,5-二甲氧基-4-羥基苯甲酰基)--d-葡萄糖(5)、5-羥基麥芽酚(6)、麥芽酚苷(7)、麥芽酚3-- [6--(3-羥基-3-甲基-5-丁基戊二?;?]--d-葡萄糖苷(8)、乙基-d-呋喃果糖苷(9)和丁基-d-呋喃果糖苷(10),其中化合物8為新的人工產(chǎn)物,除化合物2和3外,其余化合物均為首次從楊桃屬植物中分離得到。
據(jù)報(bào)道,苯基-d-葡萄糖苷(1)可抑制小鼠腹膜巨噬細(xì)胞中NO的產(chǎn)生(IC50=37.9mol/L),顯示抗炎活性[24]。在細(xì)胞轉(zhuǎn)錄的表觀遺傳調(diào)控中,組蛋白的乙?;腿ヒ阴;哂兄匾饔?,其中去乙?;芙M蛋白脫乙酰酶(HDAC)的控制。3,4,5-三甲氧基苯基--d-葡萄糖苷(2)在100mol/L濃度下對HDAC的抑制率為(59.4±0.6)%,表現(xiàn)出中等抑制活性[25]。2-苯乙基蕓香糖苷(4)對2,2?-偶氮二異丁基脒二鹽酸鹽誘導(dǎo)產(chǎn)生的過氧自由基具有清除活性,并能抑制酒石酸酸性磷酸酶,顯示抗氧化和抗骨質(zhì)疏松活性[26]。5-羥基麥芽酚(6)對小鼠肺腺癌細(xì)胞LA795的增殖顯示出弱抑制活性[27]。麥芽酚苷(7)可降低細(xì)胞間黏附分子-1、血管細(xì)胞黏附分子-1和E-選擇素基因的轉(zhuǎn)錄水平,阻斷腫瘤壞死因子誘導(dǎo)的移位和核轉(zhuǎn)錄因子的激活,從而抑制細(xì)胞黏附分子的表達(dá),阻斷嗜中性粒細(xì)胞黏附在人內(nèi)皮細(xì)胞單層上,起到抗炎作用[28]。由此可見,上述化合物參與楊桃葉的抗炎、抗氧化、抗腫瘤等藥理作用。
[1] LIU Q R. Florae Republicae Popularis Sinicae, Tomus 43(1) [M]. Beijing: Science Press, 1998: 4–6. 劉全儒. 中國植物志, 第43卷第1分冊 [M]. 北京: 科學(xué)出版社, 1998: 4–6.
[2] State Administration of Traditional Chinese Medicine. Chinese Materia Medica, Tomus 12 [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1999: 713–715.國家中醫(yī)藥管理局.中華本草, 第12卷 [M]. 上海: 上??茖W(xué)技術(shù)出版社, 1999: 713–715.
[3] ALADAILEH S H, SAGHIR S A M, MURUGESU K, et al. Antihyper- lipidemic and antioxidant effects ofextract in high-fat diet-fed rats [J]. Biomedicines, 2019, 7(3): 72. doi: 10.3390/biomedicines7030072.
[4] LIU F Z, SONG X M, WANG X L, et al. Hypoglycemic effect of total flavones from carambola leaf [J]. Chin J Exp Tradit Med Form, 2013, 19(11): 279–281. doi: 10.11653/syfj2013110279.劉方洲, 宋獻(xiàn)美, 王曉麗, 等. 楊桃葉總黃酮的降血糖作用[J]. 中國實(shí)驗(yàn)方劑學(xué)雜志, 2013, 19 (11): 279–281. doi: 10.11653/syfj2013 110279.
[5] SONCINI R, SANTIAGO M B, ORLAND L, et al. Hypotensive effect of aqueous extract ofL. (Oxalidaceae) in rats: Anandapproach [J]. J Ethnopharmacol, 2011, 133(2): 353–357. doi: 10.1016/j.jep.2010.10.001.
[6] CABRINI D A, MORESCO H H, IMAZU P, et al. Analysis of the potential topical anti-inflammatory activity ofL. in mice [J]. Evid Based Complement Alternat Med, 2011, 2011: 908059. doi: 10.1093/ecam/neq026.
[7] CAZAROLL L H, KAPPEL V D, PEREIRA D F, et al. Anti-hyper- glycemic action of apigenin-6---fucopyranoside from[J]. Fitoterapia, 2012, 83(7): 1176–1183. doi: 10.1016/j. fitote.2012.07.003.
[8] MORESCO H H, QUEIROZ G S, PIZZOLATTI M G, et al. Chemical constituents and evaluation of the toxic and antioxidant activities ofleaves [J]. Rev Bras Farmacogn, 2012, 22(2): 319–324. doi: 10.1590/S0102-695X2011005000217.
[9] ARAHO D, MIYAKOSHI M, CHOU W H, et al. A new flavone- glycoside from the leaves of[J]. Nat Med, 2005, 59(3): 113–116. doi: 10.1016/j.apsusc.2004.03.089.
[10] YANG Y, XIE H H, JIANG Y M, et al. Flavan-3-ols and 2- diglycosyloxybenzoates from the leaves of[J]. Fitoterapia, 2020, 140: 104442. doi: 10.1016/j.fitote.2019.104442.
[11] YANG Y, JIA X C, XIE H H, et al. Dihydrochalcone-glycosides fromleaves [J]. Phytochemistry, 2020, 174: 112364. doi: 10.1016/j.phytochem.2020.112364.
[12] PU X Y, GAO L B, WANG W, et al. Chemical constituents fromand their-glucosidase inhibitory activities [J]. J Yunnan Minzu Univ (Nat Sci), 2019, 28(5): 423–427.普曉云, 高利斌, 王韋, 等. 鞭打繡球的化學(xué)成分及其α-葡萄糖苷酶抑制活性的研究[J]. 云南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 28(5): 423–427.
[13] ACHENBACH H, BENIRSCHKE G. Joannesialactone and other compounds from[J]. Phytochemistry, 1997, 45(1): 149–157. doi: 10.1016/s0031-9422(96)00777-7.
[14] YANG D, XIE H H. Aromatics and flavonoids from strawberry cv. Falandi [J]. J Trop Subtrop Bot, 2017, 25(6): 617–624. doi: 10.11926/ jtsb.3758.楊丹, 謝海輝. 法蘭地草莓的芳香類和黃酮類成分[J]. 熱帶亞熱帶植物學(xué)報(bào), 2017, 25(6): 617–624. doi: 10.11926/jtsb.3758.
[15] JIA X C, YANG D, XIE H H. Chemical constituents from fresh sweet star fruit [J]. J Trop Subtrop Bot, 2017, 25(3): 309–314. doi: 10.11926/ jtsb.3709.賈栩超, 楊丹, 謝海輝. 甜楊桃鮮果的化學(xué)成分研究[J]. 熱帶亞熱帶植物學(xué)報(bào), 2017, 25(3): 309–314. doi: 10.11926/jtsb.3709.
[16] ZHANG W D, CHEN W S, KONG D Y, et al. Studies on the chemical constituents of[J]. Chin Pharm J, 2000, 35(8): 10–12.張衛(wèi)東, 陳萬生, 孔德云, 等. 燈盞細(xì)辛化學(xué)成分的研究 [J]. 中國藥學(xué)雜志, 2000, 35(8): 10–12.
[17] PU S C, GUO Y Q, GAO W Y. Studies on the chemical constituents of[J]. Chin Trad Herb Drugs, 2010, 41(9): 1440–1442. 蒲首丞, 郭遠(yuǎn)強(qiáng), 高文元. 天胡荽化學(xué)成分的研究 [J]. 中草藥, 2010, 41(9): 1440–1442.
[18] CHU H B, HE W J, ZHANG Y M, et al. Flavonoids and nor- sesquiterpenes of[J]. China J Chin Mat Med, 2011, 36(19): 2672–2675. doi: 10.4268/cjcmm20111914.褚洪標(biāo), 賀文軍, 張玉梅, 等. 密穗馬先蒿中黃酮和降倍半萜成分[J]. 中國中藥雜志, 2011, 36(19): 2672–2675.doi: 10.4268/cjcmm20111914.
[19] LI W, ASADA Y, YOSHIKAWA T. Flavonoid constituents fromhairy root cultures [J]. Phytochemistry, 2000, 55(5): 447–456. doi: 10.1016/S0031-9422(00)00337-X.
[20] XIANG M X, HE Y J, HE F, et al. Chemical composition of-butanol fraction fromvar.[J]. J Chin Med Mat, 2015, 38(9): 1872–1874. doi: 10.13863/j.issn1001-4454.2015.09.018.向梅先, 胡亞京, 何峰, 等. 血三七正丁醇部位化學(xué)成分研究 [J]. 中藥材, 2015, 38(9): 1872–1874. doi: 10.13863/j.issn1001-4454.2015. 09.018.
[21] SUN G T, HU X J. Chemical constituents inLévl Kernels [J]. J Kunming Univ Sci Technol (Nat Sci), 2017, 42(5): 85–89. doi: 10.16112/j.cnki.53-1223/n.2017.05.013.孫國太, 胡旭佳. 馬檳榔種仁的化學(xué)成分研究[J]. 昆明理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 42(5): 85–89. doi: 10.16112/j.cnki.53-1223/ n.2017.05.013.
[22] YANG M H, YANG X Q, ZHANG F M, et al. Chemical constituents from[J]. Chin Trad Herb Drugs, 2009, 40 (10): 1546–1549. 楊明慧, 楊雪瓊, 張鳳梅, 等. 單芽狗脊蕨的化學(xué)成分[J]. 中草藥, 2009, 40(10): 1546–1549.
[23] ZHOU X L, QIN C H, MEI Y, et al. Chemical constituents in leaf of[J]. Chin Trad Herb Drugs, 2010, 41(2): 206–208. 周先禮, 秦長紅, 梅瑩, 等. 髯花杜鵑葉的化學(xué)成分研究[J]. 中草藥, 2010, 41(2): 206–208.
[24] NI L, HUANG W, SHI Y, et al. Chemical constituents from the bark ofand their NO inhibitory activities [J]. Nat Prod Res, 2018, 23: 1–6. doi: 10.1080/14786419.2018.1543672.
[25] KUMBOONMA P, SAENGLEE S, SENAWONG T, et al. Histone deacetylase inhibitors and antioxidants from the root of[J]. Nat Prod Commun, 2019, 14(12): 1–7. doi: 10.1177/1934578X198 95370.
[26] van THANH N, THAO N P, DAT L D, et al. Two new naphthalene glucosides and other bioactive compounds from the carnivorous plant[J]. Arch Pharm Res, 2015, 38(10): 1774–1782. doi: 10.1007/s12272-015-0576-9.
[27] PU S C. Study on anti-tumor constituents from[J]. J Anhui Agric Sci, 2014, 42(11): 3238–3239. doi: 10.13989/ j.cnki.0517-6611.2014.11.098.蒲首丞. 天胡荽抗腫瘤活性成分研究[J]. 安徽農(nóng)業(yè)科學(xué), 2014, 42(11): 3238–3239. doi: 10.13989/j.cnki.0517-6611.2014.11.098.
[28] BALWANI S, NANDI D, JAISANKAR P, et al. 2-Methyl-pyran-4- one-3---d-glucopyranoside isolated from leaves ofinhibits the TNF-induced cell adhesion molecules expression by blocking nuclear transcription factor-B (NF-B) [J]. Biochimie, 2011, 93(5): 921–930. doi: 10.1016/j.biochi.2011.01.010.
Chemical Constituents from the Leaves of
YANG Yue1,2, XIE Hai-hui1,2*
(1. Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences,Guangzhou 510650, China; 2. University of Chinese Academy of Sciences,Beijing 100049, China)
To clarify the chemical constituents in the leaves of(Oxalidaceae), eleven compounds were isolated by means of organic solvent extraction and fractionation as well as diverse chromato- graphic separation techniques. On the basis of spectroscopic data, their structures were identified as phenyl-d- glucoside (1), 3,4,5-trimethoxyphenyl-d-glucoside (2), benzyl-d-glucoside (3), 2-phenethyl rutinoside (4), 1--(3,5-dimethoxy-4-hydroxybenzoyl)--d-glucose (5), 5-hydroxymaltol (6), maltol-d-glucoside (7), maltol 3--[6--(3-hydroxy-3-methyl-5-butylglutaroyl)]--d-glucoside (8), ethyl-d-fructofuranoside (9), butyl-d- fructofuranoside (10), and squalene (11), respectively. Compound 8 was a new artifact, and the others excluding 2 and 3 were obtained from the genusfor the first time. Some compounds were related to the anti-inflammatory, antioxidant, and anti-tumor effects of the leaves.
; Chemical constituent; Aryl glycoside; Maltol glucoside; Alkyl glycoside
10.11926/jtsb.4246
2020–05–13
2020–06–11
國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃) (2013CB127106); 廣東省應(yīng)用型科技研發(fā)專項(xiàng)(2016B020239004)資助
This work was supported by the National Program on Key Basic Research (973 Program) (Grant No. 2013CB127106), and the Special Project for Applied Science and Technology Research and Development in Guangdong (Grant No. 2016B020239004).
楊月,女,博士研究生,研究方向?yàn)樘烊划a(chǎn)物化學(xué)。E-mail: 1048191092@qq.com
E-mail: xiehaih@scbg.ac.cn