• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative Study of 10-MW High-Temperature Superconductor Wind Generator with Overlapped Field Coil Arrangement

    2021-01-23 02:35:26ZaiQiangJiangJiangPingHu

    Zai-Qiang Jiang | Jiang-Ping Hu

    Abstract—The electromagnetic characteristics and iron loss of a high-temperature superconductor wind generator(HWG) equipped with an overlapped field coil arrangement (OFCA) are studied by comparing with the one equipped with the conventional field coil arrangement (CFCA).Through a quantitative analysis, it was found that HWG with OFCA exhibits better electromagnetic characteristics than HWG with CFCA and can reduce the iron loss by eliminating the magnetic flux sag caused by the adjacent field coil sides with the same current flow direction.In addition, the OFCA topology can further reduce the volume of the wind generator.

    1.lntroduction

    In the past decade, the threat imposed by the climate change has driven the rapid development of the wind energy technology.The Global Wind Energy Council predicted an increase in the global wind capacity from 237.7 GW at the end of 2011 to 493.3 GW at the end of 2016[1].The Integrated Wind Turbine Design Upwind project in Europe found that 20-MW wind turbines are feasible and is planning a 20-MW offshore wind-turbine design[2].In 2011, China reached the highest installed wind power capacity in the world (62.4 GW)[1]and is currently undertaking a project for 10-MW-class offshore wind turbines[3],[4].

    Modern research has focused on lightweight, small-volume, and high-efficiency superconducting wind generators that efficiently utilize wind energy[4],[5].A 10-MW superconducting direct-drive generator weighing approximately 160 tons has been designed by American Superconductor (AMSC).The AMSC design is approximately 50% lighter than the 10-MW permanent direct-drive wind (PMDD) generator[6], whose weight is more than 300 tons and diameter is 10 m.The large weight and diameter of the PMDD generator increase the cost and limit the practical application of the generator from laboratories to factories.The advantage of a high-temperature superconductor (HTS) wind generator (HWG) becomes obvious at the capacities above 8 MW[7].

    To realize the practical application of HWGs, many companies, including Siemens[8],[9], General Electric Company[10], Converteam[11], American Superconductor Corporation[6], and Dongfang Electric Corporation[12], have developed superconducting prototype generators to prove the technical viability of applying HTS to large electric machines.However, the high cost of superconducting wires hinders the production of large-capacity HWGs[4],[12].Reducing the cost of HTS wires would render HWGs a very competitive option for large-capacity wind-turbine applications.

    The communication loss remains a crucial issue in superconducting armatures.Accordingly, most HWGs are configured with a rotary superconducting field coil and a static copper armature winding[12].The HTS field coil is the key component of a superconducting wind generator because the structure and arrangement of the field coil affect the electromagnetic characteristics of the generator.In general, the HTS field coils in prototype superconducting generators are sequentially arranged outside the support structure, with intervals between adjacent field coil sides with the same current direction[6],[8]-[12].However, in this configuration, magnetic flux sag is generated above each interval, introducing high-order harmonics and iron losses[13].

    This study proposes an overlapped field coil arrangement (OFCA) that optimizes the electromagnetic characteristics.The design process of OFCA is described in detail, and the characteristics of HWG with OFCA are compared with those of HWG with the conventional field coil arrangement (CFCA).

    2.Configuration and Design Process

    Fig.1.Schematic of 10-MW HWG: 1) coil former, 2) HTS field coil, 3) torque tube, 4) refrigerator, 5) coil support, 6)coolant pipe, 7) junction, 8) rotor support, 9) thermal shield, 10) first cold head, 11) second cold head, 12)compressor, 13) aftercooler, 14) oil separator, 15) buffer tank, 16) shaft, 17) rotating joint, and 18) vacuum shield.

    2.1.Main Topology of HWG

    The 10-MW wind generator is schematized in Fig.1.The system is fixed on a shaft 16) and rotates synchronously with the HTS rotor.The cryogenic system includes an oil scroll compressor 12) with a coolant tank, aftercoolers 13), an oil separator 14), a buffer tank 15) for oil adsorption, and cold heads 10)and 11).The oil scroll compressor reduces the friction between the two scroll sheets, thereby increasing the service life.The compressor is cooled by the oil and is power-supplied by a slip ring that includes a fixed end,an electric brush, and a sliding end.The electric brush and sliding end are fixed on the shaft and rotate synchronously with the rotor.An aftercooler installed adjacently to the compressor precools the coolant vented from the compressor and reduces the refrigeration load of the cold head.The aftercooler can be cooled using the air-cooling method.Because the compressor is oiled, an oil separator is required to separate the oil admixture from the coolant.For easy separation of the oil admixture from the coolant at lower temperatures, the oil separator is installed adjacently to the aftercooler.The separated oil is recycled to the compressor through oilreturn passages in the oil separator.The oil scroll compressor operates in the continuous mode, with the periodic intake and exhaust of the cold head.The high pressure at the exhaust end of the scroll compressor (approximately 1.6 MPa) can harm the cold head if entering directly.To prevent such damage, a buffer tank is required.The buffer tank contains activated carbon that further absorbs the oil admixture.This design does not require cryogenic rotary joints[14].

    The internal structure of the cryogenic system is shown in Fig.2.The copper thermal shield is surrounded by a vacuum shield and coil former to reduce the thermal radiation from the stator and torque tube.As shown in Fig.2, one side of the thermal shield is connected to the first stage of the cryocooler, which has an expected temperature of approximate 50 K.The torque tube (red part in Fig.2) transmits the torque from the coil former to the shaft.One end of the torque tube is fixed on the coil former, and the other end is fixed on the rotor support[14]-[18].

    Fig.2.Configuration of the cryogenic system of the 10-MW HTS wind generator.

    2.2.Arrangement of Field Coils

    Fig.3 shows CFCA.Two HTS field coils are arranged outside the rotor support and separated by an interval.As the current flows along the same direction in the adjacent sides of the field coils, the norm value of the magnetic field is much smaller along the symmetry axes than in other space[19]-[23].Therefore, the magnetic flux sag is produced at each wave crest.Fig.4 shows the configuration of OFCA.The two field coil sides with the same current direction are arranged in a stepwise configuration to form a north or south pole.

    Fig.3.Schematic of the magnetic flux sag produced between the adjacent field coil sides with the same current direction.

    Fig.4.Configuration of OFCA.

    2.3.Design Process

    Fig.5 shows the design process of the field coil.Fig.5 (a) is an expanded view of CFCA.Here, the pole number is 2p, the inner diameter of the stator isD, the air-gap length isg, the width of the coil support iswb,the height ish, the width of the tape turns iswc, and the interval between the field coils isd.The equivalent length of the expanded field coils can be approximately expressed as

    Fig.5 (b) is an expanded view of OFCA.The basic parameters of the field coil are the same as those of CFCA.The expanded length of OFCA can be approximately expressed as

    Fig.5.Design process for the field coil: (a) CFCA and (b)OFCA.

    When the inner stator diameterDis constant, the lengths of CFCA and OFCA approximately differ by

    Fig.6.10-MW wind generator with (a) CFCA and (b) OFCA; the geometry of (c) conventional HTS field coil and (d)proposed HTS field coil.

    Figs.6 (a) and (b) show 10-MW HWGs with CFCA and OFCA, respectively.The primary parameters of both topologies are listed in Table 1.Fig.6 (c) shows the geometry of the HTS field coil, and Table 2 compares the HTS tape consumption of the two configurations.

    Table 1:Tape consumption of two field coils

    3.Characteristic Analysis

    3.1.Electromagnetic-Characteristic Analysis

    The simulated magnetic field distributions of HWGs with CFCA and OFCA are compared in Fig.7.In HWG with CFCA, the magnetic field was minimal at the inner side of the adjacent field coil sides with the same current flow current direction, in which the flux sag appeared.In contrast, the magnetic field in HWG with OFCA was uniformly distributed in both sides of the field coil.

    Fig.8 shows the norm values of the magnetic field in the air gap (BN) of both topologies.Clearly, the magnetic flux sag appeared in HWG with CFCA but was eliminated in HWG with OFCA.Moreover, the magnetic field fluctuation was larger in HWG with CFCA than in HWG with OFCA.The difference (ΔB) between the maximum and minimum fluxes (BmaxandBmin, respectively)was approximately 1.6 T for HWG with CFCA and was 0.45 T in HWG with OFCA.

    Table 2:Primary parameters of HWGs with CFCA and OFCA

    Fig.7.Magnetic field distributions in two HWGs: (a) HWG with CFCA and (b) HWG with OFCA.

    The magnetic field (BN) in the air gap of both topologies is decomposed into a radial component (By)and a circumferential component (Bx).TheBydistributions of the two topologies are compared in Fig.9.TheByspectra are analyzed via the fast Fourier transform, and the results are compared in Fig.10.

    The waveform (Fig.9) is smoother in HWG with OFCA than in HWG with CFCA.Fig.10 reveals more high-order harmonics in HWG with CFCA than in the proposed configuration.In the conventional configuration, the amplitudes of the fourth, seventh, and ninth harmonic components ofBywere approximately 1.20 T, 0.45 T, and 0.38 T, respectively.In HWG with OFCA, the main harmonic component ofBywas the third harmonic with the approximate amplitude of 1.5 T.

    Fig.8.Magnetic field distributions (norm values) in the air gap of OFCA and CFCA topologies.

    Fig.9.Distributions of By in (a) HWG with CFCA and (b) HWG with OFCA.

    3.2.Size Reduction

    The diameter (volume) of a large-capacity wind generator can be decreased using the OFCA topology.

    A flat race-track structure of the field coil is favored for practical applications of a large-capacity superconducting motor[6].The length difference (Ld)between the two topologies can be calculated using (3).The diameter difference (ΔD) can then be expressed as

    As shown in Fig.11, ΔDis a linear function of the tape-turn width (wc).

    Fig.10.Comparison of harmonic orders in OFCA and CFCA topologies.

    4.lron Loss Comparison

    4.1.lron Loss Calculation Model

    Theoretically, the iron loss is separated by the quasistatic hysteresis loss (Ph) and the dynamic modified eddy-current loss

    Considering harmonic effects, the modified eddycurrent loss (in watts per kilogram) is calculated as follows[4]:

    Fig.11.Relationship between ΔD and wc.

    Table 3:Parameters of the stator iron core

    whereKc=π2d2/6mρis the modified eddy-current loss coefficient,iis the order of the time harmonics included in the flux density waveform,fis the fundamental frequency, andBiis the amplitude of theith harmonic flux density.The parameters of the stator iron core are listed in Table 3[16].

    The hysteresis loss mainly depends on the fundamental frequency, the peak value (Bm) of the flux density waveform, and the number of minor hysteresis loops (N).The hysteresis loss (Ph) (in watts per kilogram) is expressed as follows[15]:

    whereKhis the hysteresis loss coefficient (approximately equal to 1.79×10?2), ΔBiis the flux density change during the excursion around a minor loop, and the coefficientkis set to 0.6 (a suitable value forBmvalues between 1.0 T and 2.0 T).

    Considering the radial component (By) and circumferential component (Bx) of the flux variation, the iron loss (in watts per kilogram) is ultimately determined as follows[15]:

    whereBy,iandBx,i(By,mandBx,m) are the amplitudes (peak values) of theith harmonic flux density of the radial and circumferential components, respectively.

    4.2.lron Loss at Different Field Currents

    As shown in Fig.12, the iron losses in both topologies increase with increasing the field current.At field currents of 95 A and 130 A, the iron losses were approximately 2.5% and 1.8% lower per kilogram,respectively, in HWG with OFCA than in HWG with CFCA.When the current exceeded 105 A, the magnetic saturation became severe and the iron loss gradually increased with increasing the field current.

    4.3.lron Loss at Different Air-Gap Lengths

    As shown in Fig.13, the iron loss is reduced by lengthening the air gap.As the air gap increased, its reluctance increased and the flux density decreased;however, the output power also decreased.For any air gap, the iron loss was approximately 2% per kilogram lower in HWG with OFCA than in HWG with CFCA.The rapid iron loss with the increase in the air gap can be explained by the desaturation in the stator iron core.

    Fig.12.Comparison of iron loss versus field current in the two topologies.

    Fig.13.Comparison of iron loss versus air gap length in the two topologies.

    4.4.lron Loss at Different Revolution Speeds

    As shown in Fig.14, the iron losses in both topologies increase with increasing the revolution speed.At any revolution speed, the iron loss was approximately 1.8% lower per kilogram in HWG with OFCA than in HWG with CFCA.

    4.5.Efficiency Comparison

    The efficiency (η) under a rated condition can be simply expressed as

    Fig.14.Comparison of iron loss versus revolution speed in the two topologies.

    At a revolution speed of 9 rpm, the iron losses in HWG with CFCA and that with OFCA were approximately 24353 W and 22722 W, respectively.The proposed configuration reduced the iron loss by 1631 W, thus improving the efficiency by 0.016%.

    5.Conclusions

    The electromagnetic characteristics of 10-MW HWG with OFCA were compared with those of HWG with CFCA.The main conclusions of the comparative analysis are summarized here:

    1) The overlapped topology improved the electromagnetic characteristics over that of the sequential topology.

    2) Under various conditions, the iron loss was lower in HWG with OFCA than in HWG with CFCA.

    3) The efficiency can be increased by reducing the iron loss.

    4) OFCA allows a smaller diameter than CFCA, enabling easier transportation and installation at lower manufacturing cost.

    Disclosures

    The authors declare no conflicts of interest.

    www.自偷自拍.com| 午夜av观看不卡| 日本wwww免费看| 国产日韩一区二区三区精品不卡| 热99国产精品久久久久久7| 麻豆精品久久久久久蜜桃| 日韩视频在线欧美| 你懂的网址亚洲精品在线观看| 亚洲欧洲国产日韩| av卡一久久| 如何舔出高潮| 久久久久精品人妻al黑| 如日韩欧美国产精品一区二区三区| 亚洲欧洲日产国产| 亚洲国产精品成人久久小说| 国产又爽黄色视频| 老鸭窝网址在线观看| 国产一区亚洲一区在线观看| 性色avwww在线观看| 欧美亚洲日本最大视频资源| 热99久久久久精品小说推荐| 日韩人妻精品一区2区三区| 啦啦啦在线观看免费高清www| 久久精品国产综合久久久| 天天躁夜夜躁狠狠躁躁| 最近中文字幕2019免费版| 午夜av观看不卡| 香蕉国产在线看| 一个人免费看片子| 日本91视频免费播放| 18禁动态无遮挡网站| 亚洲av在线观看美女高潮| 天天躁夜夜躁狠狠躁躁| 欧美精品高潮呻吟av久久| 另类亚洲欧美激情| 国产成人精品福利久久| 免费观看在线日韩| 日产精品乱码卡一卡2卡三| 免费在线观看黄色视频的| 一本色道久久久久久精品综合| 亚洲欧洲日产国产| 啦啦啦中文免费视频观看日本| 午夜福利影视在线免费观看| 久久精品夜色国产| av线在线观看网站| kizo精华| 叶爱在线成人免费视频播放| 汤姆久久久久久久影院中文字幕| 欧美另类一区| 亚洲三区欧美一区| 欧美激情极品国产一区二区三区| 亚洲熟女精品中文字幕| 久久97久久精品| 欧美 日韩 精品 国产| 国产探花极品一区二区| 搡女人真爽免费视频火全软件| 免费观看无遮挡的男女| 精品99又大又爽又粗少妇毛片| 亚洲中文av在线| 99热国产这里只有精品6| 久久青草综合色| 婷婷色av中文字幕| 美女高潮到喷水免费观看| 免费在线观看黄色视频的| 一二三四中文在线观看免费高清| 伊人久久大香线蕉亚洲五| 性高湖久久久久久久久免费观看| 久久久精品国产亚洲av高清涩受| 9191精品国产免费久久| 免费少妇av软件| 高清黄色对白视频在线免费看| 又粗又硬又长又爽又黄的视频| 99久国产av精品国产电影| 一级爰片在线观看| 亚洲av国产av综合av卡| 久久久久久久久免费视频了| 欧美成人精品欧美一级黄| 看免费成人av毛片| 色吧在线观看| 免费黄色在线免费观看| 99国产精品免费福利视频| 午夜av观看不卡| 啦啦啦在线免费观看视频4| 精品99又大又爽又粗少妇毛片| 亚洲成色77777| 精品国产超薄肉色丝袜足j| 1024香蕉在线观看| 午夜av观看不卡| 免费观看性生交大片5| 18禁动态无遮挡网站| 成人亚洲精品一区在线观看| 桃花免费在线播放| 免费人妻精品一区二区三区视频| 国产av国产精品国产| 美女国产高潮福利片在线看| 欧美在线黄色| 精品酒店卫生间| 日本午夜av视频| 免费观看无遮挡的男女| 久热久热在线精品观看| 亚洲国产日韩一区二区| 街头女战士在线观看网站| 青春草亚洲视频在线观看| 曰老女人黄片| 精品一区二区三卡| 在线看a的网站| 人人妻人人澡人人看| 国产精品女同一区二区软件| 久久久久国产精品人妻一区二区| 精品亚洲成国产av| 久久久久久久久久人人人人人人| 国产一区二区在线观看av| 久久午夜福利片| 乱人伦中国视频| 国产一区二区激情短视频 | 精品国产一区二区三区四区第35| 亚洲成人av在线免费| 欧美人与性动交α欧美精品济南到 | 午夜日本视频在线| av在线观看视频网站免费| 少妇人妻久久综合中文| 久久人人爽av亚洲精品天堂| 下体分泌物呈黄色| 韩国精品一区二区三区| 黄片小视频在线播放| 成人毛片a级毛片在线播放| 久久久精品国产亚洲av高清涩受| av天堂久久9| 美国免费a级毛片| 中文字幕亚洲精品专区| 国产高清国产精品国产三级| 久久影院123| 丰满饥渴人妻一区二区三| 国产一区二区三区综合在线观看| 日韩制服骚丝袜av| 日韩 亚洲 欧美在线| a级片在线免费高清观看视频| 亚洲天堂av无毛| 王馨瑶露胸无遮挡在线观看| 美女午夜性视频免费| 亚洲精品视频女| 亚洲精品久久午夜乱码| 精品人妻一区二区三区麻豆| 老鸭窝网址在线观看| 人人妻人人添人人爽欧美一区卜| 日日啪夜夜爽| 一级,二级,三级黄色视频| 国产精品女同一区二区软件| 十八禁高潮呻吟视频| 中文天堂在线官网| 久久综合国产亚洲精品| 免费黄色在线免费观看| 91在线精品国自产拍蜜月| 精品一区二区免费观看| 国产精品亚洲av一区麻豆 | 精品久久久久久电影网| 一级毛片电影观看| 不卡av一区二区三区| 亚洲av在线观看美女高潮| 免费大片黄手机在线观看| 纵有疾风起免费观看全集完整版| 日韩一卡2卡3卡4卡2021年| 最近中文字幕高清免费大全6| 侵犯人妻中文字幕一二三四区| 久久国产精品男人的天堂亚洲| 国产高清不卡午夜福利| 26uuu在线亚洲综合色| 亚洲情色 制服丝袜| 最近的中文字幕免费完整| 亚洲三级黄色毛片| 男女下面插进去视频免费观看| 久久久久人妻精品一区果冻| 国产在线一区二区三区精| 国产成人精品久久二区二区91 | 男男h啪啪无遮挡| 欧美av亚洲av综合av国产av | 天堂8中文在线网| 日日啪夜夜爽| 波多野结衣一区麻豆| 99久久精品国产国产毛片| kizo精华| 性少妇av在线| 热re99久久精品国产66热6| 亚洲av电影在线进入| 一边亲一边摸免费视频| 国产爽快片一区二区三区| 亚洲欧美一区二区三区黑人 | 美女中出高潮动态图| 免费人妻精品一区二区三区视频| 午夜福利影视在线免费观看| 亚洲男人天堂网一区| 日韩一卡2卡3卡4卡2021年| 国产成人aa在线观看| 国产一区二区三区综合在线观看| 又粗又硬又长又爽又黄的视频| 97精品久久久久久久久久精品| 黄色一级大片看看| 精品一区在线观看国产| 97在线人人人人妻| 亚洲美女黄色视频免费看| 精品久久久精品久久久| 捣出白浆h1v1| 日韩三级伦理在线观看| 在线亚洲精品国产二区图片欧美| 一级片免费观看大全| 国产av国产精品国产| 青春草视频在线免费观看| 观看av在线不卡| 久久久久网色| 久久精品人人爽人人爽视色| www.熟女人妻精品国产| 午夜精品国产一区二区电影| 在线看a的网站| 亚洲色图综合在线观看| 少妇的逼水好多| 人人妻人人澡人人看| 国产精品免费视频内射| 久久久久久久久久人人人人人人| 国产一区二区 视频在线| 男女午夜视频在线观看| 观看av在线不卡| av女优亚洲男人天堂| 成人免费观看视频高清| 黄片播放在线免费| 80岁老熟妇乱子伦牲交| 女人精品久久久久毛片| 成年av动漫网址| 男女啪啪激烈高潮av片| 欧美日韩国产mv在线观看视频| 久久毛片免费看一区二区三区| 亚洲伊人久久精品综合| 亚洲五月色婷婷综合| 亚洲成人av在线免费| 9色porny在线观看| 午夜福利视频在线观看免费| 国产熟女午夜一区二区三区| 狂野欧美激情性bbbbbb| 久久精品国产亚洲av高清一级| 久久99热这里只频精品6学生| 国产淫语在线视频| 18禁裸乳无遮挡动漫免费视频| 精品国产超薄肉色丝袜足j| 男女免费视频国产| 在线观看免费高清a一片| 一区二区日韩欧美中文字幕| 性少妇av在线| 欧美成人午夜免费资源| 国产精品偷伦视频观看了| 不卡av一区二区三区| 精品酒店卫生间| 国产亚洲最大av| 涩涩av久久男人的天堂| 国产精品秋霞免费鲁丝片| 亚洲三区欧美一区| 1024视频免费在线观看| a 毛片基地| 99国产综合亚洲精品| 久久久久久久精品精品| 亚洲精品一二三| av又黄又爽大尺度在线免费看| 久久久久久久大尺度免费视频| 91午夜精品亚洲一区二区三区| 咕卡用的链子| 女人久久www免费人成看片| 一级毛片电影观看| 久久婷婷青草| 亚洲av福利一区| 18禁观看日本| 一区在线观看完整版| 一级a爱视频在线免费观看| 欧美激情高清一区二区三区 | 纯流量卡能插随身wifi吗| 婷婷色麻豆天堂久久| 春色校园在线视频观看| 99国产综合亚洲精品| av在线播放精品| 美女中出高潮动态图| 国产成人91sexporn| 飞空精品影院首页| 国产精品无大码| 欧美日韩av久久| 中文字幕另类日韩欧美亚洲嫩草| 国产成人免费无遮挡视频| 蜜桃在线观看..| 精品午夜福利在线看| 久久精品国产亚洲av天美| 日本av免费视频播放| 久久久久国产精品人妻一区二区| 纵有疾风起免费观看全集完整版| 我要看黄色一级片免费的| 90打野战视频偷拍视频| 久久99热这里只频精品6学生| 国产又色又爽无遮挡免| 国产片内射在线| 免费少妇av软件| 亚洲av.av天堂| 欧美日韩亚洲高清精品| 最新的欧美精品一区二区| 男人爽女人下面视频在线观看| 人体艺术视频欧美日本| 毛片一级片免费看久久久久| 亚洲精品美女久久久久99蜜臀 | 日本vs欧美在线观看视频| 欧美亚洲日本最大视频资源| 超色免费av| 久久久久精品性色| av网站免费在线观看视频| 欧美人与性动交α欧美软件| 人体艺术视频欧美日本| av电影中文网址| 久久女婷五月综合色啪小说| 久久 成人 亚洲| 精品少妇黑人巨大在线播放| 亚洲国产精品一区三区| 人人妻人人爽人人添夜夜欢视频| 精品第一国产精品| 欧美人与善性xxx| 国产高清国产精品国产三级| 国产成人午夜福利电影在线观看| 一级毛片电影观看| 亚洲视频免费观看视频| 国产视频首页在线观看| 18禁国产床啪视频网站| 成人漫画全彩无遮挡| 午夜福利乱码中文字幕| 少妇的丰满在线观看| 日韩一区二区三区影片| 国产探花极品一区二区| 又大又黄又爽视频免费| 精品少妇久久久久久888优播| 男女午夜视频在线观看| 久久久亚洲精品成人影院| 啦啦啦在线免费观看视频4| 少妇的逼水好多| 制服诱惑二区| 一区二区三区四区激情视频| 丁香六月天网| 亚洲精品视频女| 卡戴珊不雅视频在线播放| 欧美av亚洲av综合av国产av | 日本av免费视频播放| 久久精品国产综合久久久| 国产精品国产av在线观看| 看非洲黑人一级黄片| 老司机影院成人| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 激情视频va一区二区三区| 免费女性裸体啪啪无遮挡网站| 美女xxoo啪啪120秒动态图| 国产亚洲精品第一综合不卡| 这个男人来自地球电影免费观看 | 亚洲欧美中文字幕日韩二区| 国产成人免费无遮挡视频| 久久av网站| 国产高清国产精品国产三级| 亚洲,欧美精品.| 伦理电影免费视频| 国产又色又爽无遮挡免| 亚洲情色 制服丝袜| 黄片小视频在线播放| 国产精品一区二区在线不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品99又大又爽又粗少妇毛片| 中文字幕人妻熟女乱码| 久久精品国产亚洲av天美| 搡女人真爽免费视频火全软件| 九九爱精品视频在线观看| 精品国产乱码久久久久久小说| 久久久久久人人人人人| 日韩制服骚丝袜av| 一个人免费看片子| 熟女少妇亚洲综合色aaa.| 国产xxxxx性猛交| 亚洲av福利一区| 亚洲国产看品久久| 国产精品 欧美亚洲| 国产午夜精品一二区理论片| 精品第一国产精品| 久久久久国产网址| 99九九在线精品视频| 黑丝袜美女国产一区| 一级毛片我不卡| 精品国产一区二区三区久久久樱花| 色播在线永久视频| 肉色欧美久久久久久久蜜桃| 亚洲精品国产av成人精品| 黄频高清免费视频| a 毛片基地| 麻豆av在线久日| 人妻系列 视频| 欧美日韩成人在线一区二区| 久热久热在线精品观看| 免费播放大片免费观看视频在线观看| 国产乱人偷精品视频| 亚洲一级一片aⅴ在线观看| 欧美精品高潮呻吟av久久| 欧美精品国产亚洲| 18+在线观看网站| 久久热在线av| 伦理电影大哥的女人| 好男人视频免费观看在线| 在线天堂最新版资源| 春色校园在线视频观看| 天天躁夜夜躁狠狠久久av| 在线免费观看不下载黄p国产| 最新的欧美精品一区二区| 啦啦啦啦在线视频资源| 欧美日韩一级在线毛片| 女人高潮潮喷娇喘18禁视频| 午夜激情久久久久久久| kizo精华| 黄色毛片三级朝国网站| 肉色欧美久久久久久久蜜桃| 国产黄色视频一区二区在线观看| 91aial.com中文字幕在线观看| 欧美 日韩 精品 国产| 少妇人妻 视频| 极品少妇高潮喷水抽搐| 国产亚洲欧美精品永久| 国产不卡av网站在线观看| 国产一区二区 视频在线| 十八禁网站网址无遮挡| av国产久精品久网站免费入址| www.av在线官网国产| 男女国产视频网站| 91久久精品国产一区二区三区| 国产精品免费视频内射| 国产成人精品在线电影| 一级毛片电影观看| 青春草国产在线视频| 寂寞人妻少妇视频99o| 啦啦啦中文免费视频观看日本| 国产淫语在线视频| 哪个播放器可以免费观看大片| 精品卡一卡二卡四卡免费| 国产午夜精品一二区理论片| 亚洲精品乱久久久久久| 日韩制服丝袜自拍偷拍| 午夜av观看不卡| 97精品久久久久久久久久精品| 大话2 男鬼变身卡| 好男人视频免费观看在线| 老汉色av国产亚洲站长工具| www.熟女人妻精品国产| 精品视频人人做人人爽| 美女福利国产在线| 久久女婷五月综合色啪小说| 在现免费观看毛片| 免费人妻精品一区二区三区视频| 自线自在国产av| 免费不卡的大黄色大毛片视频在线观看| 男的添女的下面高潮视频| 国产精品免费视频内射| 看非洲黑人一级黄片| 91成人精品电影| 午夜激情久久久久久久| 久久毛片免费看一区二区三区| 久久久久久久精品精品| 叶爱在线成人免费视频播放| 狂野欧美激情性bbbbbb| 欧美bdsm另类| 午夜福利视频在线观看免费| 国产视频首页在线观看| 看十八女毛片水多多多| 亚洲一区中文字幕在线| 欧美日韩视频精品一区| 97在线人人人人妻| www.熟女人妻精品国产| 伦理电影大哥的女人| 2021少妇久久久久久久久久久| 老鸭窝网址在线观看| 亚洲精品中文字幕在线视频| 日韩大片免费观看网站| 免费看不卡的av| 一区二区三区四区激情视频| 欧美xxⅹ黑人| 人妻系列 视频| 亚洲美女视频黄频| 日韩一区二区视频免费看| 国产综合精华液| 夫妻性生交免费视频一级片| 国产成人aa在线观看| 五月伊人婷婷丁香| 国产xxxxx性猛交| 久久热在线av| 人体艺术视频欧美日本| 亚洲精品成人av观看孕妇| 五月伊人婷婷丁香| 国产日韩欧美在线精品| 人人澡人人妻人| 大陆偷拍与自拍| 最近的中文字幕免费完整| 日韩伦理黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区 视频在线| 免费高清在线观看日韩| 久久久久国产精品人妻一区二区| 人人妻人人澡人人看| 青春草视频在线免费观看| 人人妻人人添人人爽欧美一区卜| 肉色欧美久久久久久久蜜桃| 久久久精品区二区三区| 99久久中文字幕三级久久日本| 两个人免费观看高清视频| 久久99热这里只频精品6学生| 中文字幕另类日韩欧美亚洲嫩草| 建设人人有责人人尽责人人享有的| 成人国产麻豆网| 成年动漫av网址| 一区二区三区四区激情视频| 男女下面插进去视频免费观看| 婷婷色av中文字幕| 精品久久蜜臀av无| 亚洲成av片中文字幕在线观看 | 久久久久久久亚洲中文字幕| 青青草视频在线视频观看| 欧美日韩综合久久久久久| 亚洲五月色婷婷综合| 日韩不卡一区二区三区视频在线| 久久久精品免费免费高清| 国产av国产精品国产| 亚洲人成77777在线视频| 精品国产国语对白av| 99精国产麻豆久久婷婷| 国产成人精品在线电影| av国产精品久久久久影院| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 1024香蕉在线观看| 免费久久久久久久精品成人欧美视频| 国产亚洲精品第一综合不卡| 日韩中文字幕视频在线看片| av视频免费观看在线观看| 欧美精品av麻豆av| 国产成人午夜福利电影在线观看| 成人漫画全彩无遮挡| 在线天堂中文资源库| 啦啦啦中文免费视频观看日本| 欧美人与善性xxx| 啦啦啦在线免费观看视频4| 黄色配什么色好看| 国产免费视频播放在线视频| 成人亚洲精品一区在线观看| 午夜91福利影院| 肉色欧美久久久久久久蜜桃| www日本在线高清视频| 一二三四在线观看免费中文在| 纵有疾风起免费观看全集完整版| 午夜激情av网站| 久久99精品国语久久久| 香蕉精品网在线| 精品国产一区二区久久| 91成人精品电影| 亚洲内射少妇av| 人妻 亚洲 视频| 久久综合国产亚洲精品| 欧美日本中文国产一区发布| 国产免费视频播放在线视频| 人体艺术视频欧美日本| 老司机影院成人| 婷婷色麻豆天堂久久| 久热久热在线精品观看| 亚洲国产av影院在线观看| 天天影视国产精品| 亚洲av福利一区| 成人午夜精彩视频在线观看| 久久午夜综合久久蜜桃| 国产av码专区亚洲av| 婷婷成人精品国产| 亚洲成国产人片在线观看| 中文字幕人妻丝袜一区二区 | 久久精品久久久久久久性| 日韩中文字幕视频在线看片| 九草在线视频观看| 国产成人aa在线观看| 亚洲综合色惰| 伦精品一区二区三区| 亚洲国产精品成人久久小说| 日韩制服骚丝袜av| 亚洲,欧美,日韩| 成年人午夜在线观看视频| 精品国产一区二区久久| 欧美黄色片欧美黄色片| 国产片特级美女逼逼视频| 精品国产一区二区久久| 午夜福利,免费看| 国产精品熟女久久久久浪| 日韩精品有码人妻一区| 亚洲,欧美精品.| 国产老妇伦熟女老妇高清| 人人妻人人澡人人看| 亚洲第一青青草原| 2021少妇久久久久久久久久久| 26uuu在线亚洲综合色| 蜜桃在线观看..| 免费日韩欧美在线观看| 精品国产一区二区久久| 伦精品一区二区三区| 黄色视频在线播放观看不卡| 亚洲伊人久久精品综合| 亚洲精品美女久久久久99蜜臀 | 老司机亚洲免费影院| 亚洲欧美成人综合另类久久久| 午夜福利,免费看| a 毛片基地| 日韩成人av中文字幕在线观看| 国产成人精品久久久久久| 日韩制服丝袜自拍偷拍| 亚洲情色 制服丝袜| 男的添女的下面高潮视频| 国产亚洲精品第一综合不卡| 亚洲精品av麻豆狂野| 18在线观看网站| 美女中出高潮动态图|