• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational lntelligence Prediction Model lntegrating Empirical Mode Decomposition,Principal Component Analysis, and Weighted k-Nearest Neighbor

    2021-01-23 02:35:22LiTangHePingPanYiYongYao

    Li Tang | He-Ping Pan | Yi-Yong Yao

    Abstract—On the basis of machine leaning, suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor (KNN) model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition (EMD) for financial time series signal analysis and principal component analysis (PCA) for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally, prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index, an individual stock, and the EUR/USD exchange rate.

    1.lntroduction

    Time series analysis, especially financial time series analysis, has attracted serious attention of financial and cross-disciplinary researchers.By analyzing and predicting financial time series, the essential information and features of market can be found for supporting the financial activities and decision-making, which has very important practical significance.There are a lot of literature research on the methods of economic prediction,including typical ones: Autoregressive integrated moving average (ARIMA) models[1],[2], autoregressive conditional heteroscedasticity (ARCH) models[3],[4], generalized autoregressive conditional heteroscedasticity (GARCH)models[5]-[7], chaos-theoretical models[8],[9], neural network models[10],[11], support vector machine (SVM) models[12],[13],andk-nearest neighbor (KNN) models[14],[15].

    Although these computational intelligence models are equivalent, it has turned out that the feature extraction for generating essential information from original data as input is a foremost key challenge to prediction.Actually, the feature extraction problem is equivalent to signal processing.Therefore, the techniques in signal representation can be applied for the feature extraction of financial time series.The empirical mode decomposition (EMD)[16]is widely used for signal decomposition, even in financial prediction[15],[17],[18].It has been demonstrated that EMD is an effective algorithm for dealing with nonlinear and non-stationary time series.But most of the researches have not considered the stability of decomposition near the end.The forward rolling EMD[19]extracts the most recent data using a sliding window can tackle this problem.It should be noted that the high-dimension output of EMD as the input of prediction can make the model unstable usually.Thus, there should be a dimensionality reduction.The principal component analysis (PCA)[20]maps the original high-dimensional data set to low-dimensional space and transforms it to a set of principal components, which can reduce data dimensionality effectively[21].For prediction modeling, KNN[22]is a classical nonparametric algorithm.Generally, a simple mean ofk-nearest neighbors are used[23].However, the simple mean can not reflect the amount of information from KNN synthetically.In order to tackle this problem, we propose a new weighted KNN classifier with more comprehensive information as input and more reasonable classify algorithms for modeling the prediction of financial time series.

    Along the direction of signal decomposition, feature extraction, and prediction modeling, this paper proposes a computational intelligence prediction model for financial time series.This model applies a complex feature extraction process integrating the forward rolling EMD for financial time series signal decomposition and PCA for the dimension reduction.The information-rich features extracted by this process are input to a weighted KNN classifier with PCA loading as weights and transformed into prediction via regression on the selectedk-nearest neighbors.Therefore, this model can be called as a financial time series EMD-PCA-weighted KNN (FEPK) model.

    2.FEPK Prediction Model

    2.1.Framework of FEPK Prediction Model

    As a computational intelligence prediction model, FEPK needs to learn from a historical data set.Generally, we should define a time frame of the historical series first.This paper only focus on daily time frame, thus assume that the historical daily time series long enough exists.The financial price time seriesX(t) of time periodtconsists of the open priceO(t), high priceH(t), low priceL(t), close priceC(t), and volumeV(t).In this paper,X(t) meansC(t)which is the only consideration, and others will be considered in future work.

    In general, we apply a sliding window to intercept the historical financial time series DX(t,N) long enough

    wheretis the most recent time,Nis the total number of days, andw<<Nis the width of a sliding window,thus DX(t,N) also can be expressed as DX(t,w).For anyX(t), define a relative return as

    whereλis the prediction step length with a basic value ofλ=1, thus useR(t) forR(t,λ) without any other specification in this paper.Correspondingly, a relative return data set can be expressed as

    Therefore, we can define a general FEPK prediction model as

    wherekis the number of KNN and PCA*denotes the feature extraction process with PCA.

    2.2.Nonlinear Feature Extraction Procedure Using EMD and PCA

    An FEPK prediction model contains a complex nonlinear feature extraction process, integrating the forward rolling EMD and PCA.The forward rolling EMD, which uses a sliding window with EMD, is applied specially for financial time series signal analysis because it can satisfy the real-time requirement and tackle the end effect of EMD[19], which is called FtsEMD.

    For training an FEPK model, the historical relative return data set DR(i?1,N), wherei=t,t?1,…,t?(N?w)+1 as the input should be decomposed by FtsEMD with a sliding window, andR(i),wherei=t,t?1,…,t?(N?w)+1 is the output.Thus an input-output data set as

    It should note that multilevel intrinsic mode functions (IMFs) are obtained by EMD.According to the definition of IMF[16], IMF should satisfy two criteria: 1) In whole time series, the number of zero-crossing points and that of extrema are equal or differ at most one; 2) for any time period, the mean of the upper envelope formed by local maxima and the lower envelope formed by local minima is zero.

    A process of EMD for details can be described as follows (e.g.EMD of DR(t?1)):

    1) Find all the local extrema of DR(t?1), including the minima and maxima.

    2) Use cubic spline to form a lower envelope le(t?1) with the minima and an upper envelope ue(t?1) with the maxima, while calculating their mean value

    3) Calculate the details of decomposition

    wherei=1,2,… denotes theidecomposition.Wheni=1,dr(t?1)=DR(t?1).

    The steps 1) to 3) constitute one sifting process.

    4) Check whetherhi(t?1) is IMF:

    i) If it is true,hi(t?1) is IMF andr(t?1) is the residual, then

    Then, let dr(t?1)=r(t?1) and go through the next sifting process.

    ii) If it is not true, let dr(t?1)=hi(t?1) and go through the next sifting process.

    The main meaning of IMF is to define an instantaneous frequency.In order to ensure a sufficient physical significance of the instantaneous frequency, [16] defines a metric called SD for stopping sifting:

    When the value of SD is between 0.2 and 0.3, stop the sifting process.Meanwhile, if the extrema ofr(t?1) is less than 2, stop sifting and return all the results of iterations as

    It also can be expressed as

    The original data set has been decomposed intonmultilevel IMFs (usually, letn≤5) and one residualr, thus rewrite (5) as

    Note each row of matrix D is composed of IMF time series, and it is a high-dimensional vector with redundancy information.Thus, we can apply PCA for the dimension reduction and feature extraction with rich-information.

    PCA transforms the high-dimension data to a set of principal components which are arranged according to their variance contribution rates from large to small.The first principal component is the most able to reflect the original data information and the others decline in turn.From the view of mathematical representation, PCA is a kind of orthogonal linear transformation to generate principal components which are usually expressed as the linear combination of the original variables.Actually, PCA means the singular value decomposition.

    First, matrix D should be normalized to matrix Z and then do the singular value decomposition of matrix Z

    where U and W are eigenvector matrices of ZZTand ZTZ, respectively, and both of them are orthogonal matrices; Σ is a nonnegative rectangular diagonal matrix with a diagonal matrix comprising the eigenvaluesσi(i=1,2,…,r) of ZZTin the left part.Therefore, we can obtain a transformed matrix by

    where each column of matrix Y consists of each principal component in turn.

    Practically, the information of matrix Z is mainly concentrated on the firstp<<rprincipal components.However, how to find the value ofp? An effective way is to apply the cumulative contribution rate (CCR).In general, CCR is required to be more than a threshold (such as 85%)

    whereσi(i=1,2,…,p) is also the variance contribution rate (VCR) corresponding to each principal component

    Correspondingly, a low-dimensional matrix Upof U and matrix Ypare obtained

    where Ypis a low-dimensional matrix.

    The information-rich features comprise matrix Ypand VCRi(i=1,2,…,p) should be then input to a weighted KNN classifier.

    2.3.New KNN Classifier with PCA Loading as Weights

    As a classical nonparametric algorithm, KNN can match the most similark-nearest neighbors by the historical data set itself for prediction.In this paper, we propose a new KNN classifier with PCA loading as weights to generate the prediction via regression on the selected nearest neighbors.

    We assumex(t+λ)=DR(t+λ,N) is the point that should be predicted.Letx(t)=DR(tλ,N), matrix Ypand VCRi(i=1,2,…,p) are the input of KNN, thus we can generate a prediction model as

    Calculate the similarity betweenx(t) and any samplexi(i=1,2,…,p) in matrix Yp

    In this paper, the Euclidian measure is used as a similarity metric and anyone special for financial time series may be used in our future work.Sort all values ofSto find the firstk-largest values and the most similar KNNxj(j=1,2,…,k(k<p)).

    Note that the new KNN classifier generates the prediction with PCA loading as weights, thus the VCRj(j=1,2,…,k(k<p)) corresponding tok-nearest principal components should be selected to be the weight coefficients.Then we can generate the prediction via regression on the selectedk-nearest neighbors as

    wherex(t+λ)=DR(t+λ,N).According to (3), the predictionR(t+λ) can be obtained.

    2.4.Key Parameters of FEPK Prediction Model

    According to (4), a specific FEPK prediction model is determined by three key parameters: 1)λis the step length of prediction, 2)wis the width of a sliding window in FtsEMD, and 3)kis thek-nearest neighbors for prediction.

    3.Empirical Test of FEPK Models

    3.1.Performance Metrics of Specific FEPK Prediction Models

    The direction of market trend implies the key information, thus it is the most important for market risk management and investment trading strategies.We should first predict the direction of the market trend and then the range of rise and fall which is affected by the information that appears during the day.Therefore, we use a metric called hit rate (HR)[24]which just measures the accuracy of the prediction direction in this paper.Naturally, in our future research with comprehensive information as input, we will focus on predicting the range of rise and fall which should be also evaluated by other indicators (such as the mean absolute percentage error (MAPE), root mean square error (RMSE), mean absolute difference (MAD), and the sharp ratio).whereRiis the real value of the relative return,R?is the predicted value, andnis the total number of samples.

    3.2.Three Specific FEPK Models and Test

    In order to test the FEPK prediction models on real financial time series, three specific FEPK prediction models are constructed:

    1) FEPK_HS300_D1 for thet+1 daily return of the HS300 index prediction

    2) FEPK_yonyou_D1 for thet+1 daily return of the individual stock-yonyou (600588.SH) prediction

    3) FEPK_EURUSD_D1 for thet+1 daily return of the EUR/USD exchange rate prediction

    The historical date sets on HS300 and yonyou(600588.SH), which span over the period of 4 January 2007 to 28 July 2017 consisting of 2571 trading days,are used for FEPK_HS300_D1 and FEPK_yonyou_D1 model training and testing.And the historical date sets on the EUR/USD exchange rate, which spans over the period of 2 January 2007 to 24 November 2017 consisting of 2830 trading days, are used for FEPK_EURUSD_D1 model training and testing.The data sets are all divided into two parts, the earlier 80%data for in-sample training and later 20% data for outof-sample testing.In terms HR, Table 1 shows the testing result of FEPK_HS300_D1.Its best HR is 0.754(75.4%) withw=100 andk=7.Table 2 shows the testing result of FEPK_yonyou_D1.Its best HR is 0.741(74.1%) withw=150 andk=2.Table 3 shows the testing result of FEPK_EURUSD_D1.This model achieves the best HR of 0.742 (74.2%) withw=300 andk=6.Thus it can be said that the FEPK models are effective prediction models for predicting thet+1 daily return of HS300, an individual stock, and EUR/USD exchange rate.

    3.3.Comparison with EMD-KNN and KNN Prediction Models

    FEPK models are compared with other six EMDKNN and KNN models, including:

    1) EMD-KNN_HS300_D1

    Table 1:Performance of FEPK_HS300_D1 with different w and k

    Table 2:Performance of FEPK_yonyou_D1 with different w and k

    Table 3:Performance of FEPK_EURUSD_D1 with different w and k

    2) EMD-KNN_yonyou_D1

    3) EMD-KNN_EURUSD_D1

    4) KNN_HS300_D1

    5) KNN_yonyou_D1

    6) KNN_EURUSD_D1

    These six models are trained and tested in the same data sets and ways as the FEPK models.The best HR of each model is chosen for comparison as shown in Table 4.In terms of HR, the FEPK models perform the best, and the EMD-KNN models perform better than the KNN models.The comparison result implies IMFs generated by FtsEMD can reflect the data features effectively, the principal components obtained by PCA are information-rich, and they can improve the performance of the KNN prediction.

    Table 4:Hit rate comparison of FEPK models with EMDKNN models and KNN models

    4.Conclusions

    In this paper, we have proposed a computational intelligence prediction model, integrating the forward rolling EMD with a sliding window for the financial time series decomposition, PCA for the dimension reduction, and a weighted KNN for the prediction.In general, the structure of this model is original, with more comprehensive information as input and more reasonable classify algorithms than the original KNN.The feature extraction process integrating FtsEMD and PCA is an advanced special extraction method for financial time series signal analysis,which has the adaptability, comprehensiveness, and orthogonality of feature extraction.Moreover, a weighted KNN with PCA loading as weights is more reasonable and has a better effect on classifying than the simple KNN, thus it has better prediction performance.

    The specific FEPK models are implemented and tested for predicting thet+1 daily return of the HS300 index,yonyou stock, and EUR/USD exchange rate, resulting the best HR of 0.754 (75.4%) on HS300.A comparison of FEPK models with the EMD-KNN and KNN models shows the FEPK models are the superior ones.

    For further work, we will focus on more comprehensive information as input, and a more suitable similarity metric for financial time series.Moreover, other effective nonlinear dimensionality reduction methods or prediction algorithms will be applied, such as the auto encoder and random forest.

    Disclosures

    The authors declare no conflicts of interest.

    乱系列少妇在线播放| 在线免费十八禁| 精品99又大又爽又粗少妇毛片| 天堂网av新在线| 不卡视频在线观看欧美| 日韩一本色道免费dvd| 亚洲一级一片aⅴ在线观看| 日本av手机在线免费观看| 午夜激情福利司机影院| 国产在线男女| 日本与韩国留学比较| 97超视频在线观看视频| 久久6这里有精品| 热99re8久久精品国产| 国产淫语在线视频| 国产极品精品免费视频能看的| 日本wwww免费看| 久久6这里有精品| 超碰97精品在线观看| 中文字幕av在线有码专区| 天堂中文最新版在线下载 | 国产成人freesex在线| 国产亚洲5aaaaa淫片| 床上黄色一级片| 久久国内精品自在自线图片| 成人综合一区亚洲| 日韩一本色道免费dvd| 日本猛色少妇xxxxx猛交久久| 亚洲va在线va天堂va国产| 欧美成人午夜免费资源| 精品国产露脸久久av麻豆 | 亚洲av男天堂| 亚洲欧美精品专区久久| 国产在视频线精品| 日本一二三区视频观看| 亚洲一区高清亚洲精品| 青春草国产在线视频| 18禁动态无遮挡网站| 蜜桃亚洲精品一区二区三区| 亚洲不卡免费看| 亚洲美女搞黄在线观看| 国产一级毛片在线| 丝袜喷水一区| 久久久a久久爽久久v久久| 99久久精品一区二区三区| 99热这里只有是精品50| 青春草视频在线免费观看| 国产 一区 欧美 日韩| 直男gayav资源| 99久国产av精品| 蜜桃久久精品国产亚洲av| 欧美成人精品欧美一级黄| 亚洲国产精品国产精品| 老师上课跳d突然被开到最大视频| 欧美97在线视频| 国产精品不卡视频一区二区| 国产伦在线观看视频一区| 国产精品.久久久| 日本-黄色视频高清免费观看| 午夜福利在线观看免费完整高清在| 一区二区三区高清视频在线| 欧美日韩在线观看h| 99热网站在线观看| 亚洲精品国产成人久久av| 91在线精品国自产拍蜜月| 女人十人毛片免费观看3o分钟| 最近手机中文字幕大全| 国产精品嫩草影院av在线观看| 精品无人区乱码1区二区| 国产精品人妻久久久久久| 蜜臀久久99精品久久宅男| 国产视频首页在线观看| 免费看日本二区| 精品少妇黑人巨大在线播放 | 青春草国产在线视频| 国产伦在线观看视频一区| 欧美日韩在线观看h| 一夜夜www| 久久久久久久国产电影| 中文亚洲av片在线观看爽| 日韩大片免费观看网站 | 国产白丝娇喘喷水9色精品| 少妇丰满av| 少妇猛男粗大的猛烈进出视频 | 久久精品国产99精品国产亚洲性色| 国产精品99久久久久久久久| 久久99精品国语久久久| 色综合亚洲欧美另类图片| 国产白丝娇喘喷水9色精品| 日韩在线高清观看一区二区三区| 亚洲国产精品合色在线| 欧美精品一区二区大全| 久久婷婷人人爽人人干人人爱| 免费电影在线观看免费观看| 久久精品综合一区二区三区| 美女内射精品一级片tv| 色综合亚洲欧美另类图片| www.av在线官网国产| 丝袜喷水一区| 亚洲高清免费不卡视频| 看非洲黑人一级黄片| 亚洲av福利一区| 国产成人精品婷婷| 亚洲欧美日韩卡通动漫| 国产精品熟女久久久久浪| 在线免费观看不下载黄p国产| 欧美3d第一页| 尤物成人国产欧美一区二区三区| 免费在线观看成人毛片| 尤物成人国产欧美一区二区三区| 欧美变态另类bdsm刘玥| 欧美变态另类bdsm刘玥| 赤兔流量卡办理| 午夜精品一区二区三区免费看| 国产伦理片在线播放av一区| 日本免费在线观看一区| 三级国产精品欧美在线观看| 2022亚洲国产成人精品| 亚洲精品色激情综合| 亚洲国产欧美人成| 永久免费av网站大全| 午夜福利在线在线| 亚洲内射少妇av| 性插视频无遮挡在线免费观看| 麻豆av噜噜一区二区三区| 真实男女啪啪啪动态图| 亚洲性久久影院| av天堂中文字幕网| 日韩av不卡免费在线播放| 91av网一区二区| 精品国产三级普通话版| 国产亚洲午夜精品一区二区久久 | 小蜜桃在线观看免费完整版高清| 国产精品一区二区在线观看99 | 国内精品一区二区在线观看| 国产白丝娇喘喷水9色精品| 男的添女的下面高潮视频| 亚洲精品日韩av片在线观看| 国国产精品蜜臀av免费| 春色校园在线视频观看| 国产伦理片在线播放av一区| av免费在线看不卡| 午夜福利视频1000在线观看| kizo精华| 26uuu在线亚洲综合色| 69av精品久久久久久| 天堂影院成人在线观看| 男人舔奶头视频| 日本爱情动作片www.在线观看| 久久草成人影院| 欧美区成人在线视频| 长腿黑丝高跟| 中文字幕免费在线视频6| 99视频精品全部免费 在线| 精品久久久久久久久av| 啦啦啦啦在线视频资源| 日本黄大片高清| 九色成人免费人妻av| 欧美xxxx性猛交bbbb| 久久久久国产网址| 少妇的逼好多水| 韩国高清视频一区二区三区| 国产精品1区2区在线观看.| 国产av不卡久久| 干丝袜人妻中文字幕| 波野结衣二区三区在线| 国产亚洲最大av| 免费看av在线观看网站| 精品国产露脸久久av麻豆 | 亚洲av熟女| av在线天堂中文字幕| 高清毛片免费看| 大话2 男鬼变身卡| 搡老妇女老女人老熟妇| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 国产在视频线精品| 国产精品99久久久久久久久| 美女国产视频在线观看| 99热全是精品| 国产极品精品免费视频能看的| 综合色av麻豆| 精品人妻一区二区三区麻豆| 国产 一区精品| 男人的好看免费观看在线视频| 看片在线看免费视频| 91av网一区二区| 男人的好看免费观看在线视频| 99久久精品一区二区三区| 久久国产乱子免费精品| 狂野欧美白嫩少妇大欣赏| 白带黄色成豆腐渣| 变态另类丝袜制服| 又爽又黄a免费视频| 波多野结衣高清无吗| 亚洲精品影视一区二区三区av| 99热精品在线国产| 黄片wwwwww| 亚洲av免费高清在线观看| 国产精品人妻久久久久久| 免费av毛片视频| 久久精品夜色国产| 最近中文字幕2019免费版| 久久久久久久午夜电影| 午夜久久久久精精品| 男人舔奶头视频| 成人无遮挡网站| 免费一级毛片在线播放高清视频| 免费av毛片视频| 韩国av在线不卡| 国产精品国产高清国产av| 亚洲av福利一区| 国产精品蜜桃在线观看| 波多野结衣高清无吗| 成人无遮挡网站| 尾随美女入室| 亚洲内射少妇av| 男人狂女人下面高潮的视频| 国产熟女欧美一区二区| 综合色丁香网| 成人欧美大片| 蜜桃亚洲精品一区二区三区| 久久久久免费精品人妻一区二区| 国产真实乱freesex| 特大巨黑吊av在线直播| 小蜜桃在线观看免费完整版高清| 三级国产精品欧美在线观看| 日韩制服骚丝袜av| 久久久久久国产a免费观看| 国产老妇伦熟女老妇高清| 亚洲在线观看片| 国产精品久久久久久久电影| 精品国产三级普通话版| 一个人免费在线观看电影| 国产精品久久久久久av不卡| 午夜精品在线福利| 99热这里只有是精品50| 亚洲中文字幕一区二区三区有码在线看| 免费不卡的大黄色大毛片视频在线观看 | 久久精品影院6| 天美传媒精品一区二区| 亚洲国产最新在线播放| 亚洲图色成人| 内射极品少妇av片p| 亚洲精品,欧美精品| 免费电影在线观看免费观看| 色播亚洲综合网| 亚洲精品456在线播放app| 欧美激情国产日韩精品一区| 亚洲精品久久久久久婷婷小说 | 久久久国产成人免费| 男女那种视频在线观看| 欧美日韩综合久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 成人鲁丝片一二三区免费| 国产免费又黄又爽又色| 国产高清不卡午夜福利| 狠狠狠狠99中文字幕| 99热这里只有是精品50| 久久婷婷人人爽人人干人人爱| 韩国av在线不卡| 三级男女做爰猛烈吃奶摸视频| 国产高清国产精品国产三级 | 亚洲内射少妇av| 国产乱人偷精品视频| 午夜日本视频在线| 水蜜桃什么品种好| av.在线天堂| 女人十人毛片免费观看3o分钟| 美女被艹到高潮喷水动态| 午夜a级毛片| 国产精品一二三区在线看| 国内精品美女久久久久久| 欧美激情在线99| 午夜视频国产福利| 亚洲精品乱久久久久久| 日本三级黄在线观看| 欧美日韩在线观看h| 最近2019中文字幕mv第一页| 中文天堂在线官网| 亚洲国产色片| av福利片在线观看| 色播亚洲综合网| 麻豆一二三区av精品| 免费不卡的大黄色大毛片视频在线观看 | 青春草国产在线视频| 午夜福利网站1000一区二区三区| 国产精品熟女久久久久浪| 亚洲经典国产精华液单| 女人十人毛片免费观看3o分钟| 美女被艹到高潮喷水动态| 亚洲一级一片aⅴ在线观看| 欧美另类亚洲清纯唯美| 亚洲乱码一区二区免费版| 亚洲欧美中文字幕日韩二区| 精品不卡国产一区二区三区| 18禁在线无遮挡免费观看视频| 麻豆一二三区av精品| 国产高清视频在线观看网站| 国产在视频线在精品| 少妇人妻一区二区三区视频| 麻豆av噜噜一区二区三区| 亚洲激情五月婷婷啪啪| 在线免费十八禁| 亚洲电影在线观看av| 嫩草影院新地址| 中文字幕av在线有码专区| 天堂√8在线中文| 亚洲天堂国产精品一区在线| 久久99热这里只有精品18| 免费在线观看成人毛片| 亚洲精品亚洲一区二区| 亚洲va在线va天堂va国产| 欧美激情久久久久久爽电影| 欧美一区二区国产精品久久精品| 亚洲人成网站高清观看| 亚洲国产精品专区欧美| 女人被狂操c到高潮| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 你懂的网址亚洲精品在线观看 | 国产精品一区二区性色av| 一个人观看的视频www高清免费观看| 国产伦理片在线播放av一区| 国产视频首页在线观看| 可以在线观看毛片的网站| 亚洲国产欧美在线一区| 亚洲三级黄色毛片| 国产av不卡久久| 中文在线观看免费www的网站| 看非洲黑人一级黄片| 国产精品伦人一区二区| 蜜臀久久99精品久久宅男| 最近的中文字幕免费完整| 国产成人精品久久久久久| 天天躁日日操中文字幕| 一个人看的www免费观看视频| 日本av手机在线免费观看| 欧美日韩国产亚洲二区| 日本av手机在线免费观看| 免费av观看视频| 国产成人福利小说| 国产午夜精品一二区理论片| 国产高清国产精品国产三级 | 丰满乱子伦码专区| 精品久久久久久久人妻蜜臀av| 国产高清视频在线观看网站| 久久久a久久爽久久v久久| 国产成人免费观看mmmm| 日本一本二区三区精品| 亚洲精品色激情综合| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄 | 国产av在哪里看| 乱系列少妇在线播放| 成年女人看的毛片在线观看| 能在线免费看毛片的网站| 国产精品一区二区在线观看99 | 乱系列少妇在线播放| 欧美精品一区二区大全| 最近的中文字幕免费完整| 欧美一区二区精品小视频在线| 好男人在线观看高清免费视频| 久久精品91蜜桃| 一级毛片我不卡| 一级黄色大片毛片| 久久久久九九精品影院| 日本-黄色视频高清免费观看| 春色校园在线视频观看| 亚洲图色成人| 国产私拍福利视频在线观看| 又黄又爽又刺激的免费视频.| 美女黄网站色视频| 99热精品在线国产| or卡值多少钱| 内射极品少妇av片p| 校园人妻丝袜中文字幕| 九草在线视频观看| av国产久精品久网站免费入址| 亚洲成色77777| 久久午夜福利片| 小说图片视频综合网站| 毛片女人毛片| 亚洲欧美精品自产自拍| 亚洲欧美中文字幕日韩二区| 国内精品美女久久久久久| 大香蕉97超碰在线| 欧美三级亚洲精品| 人妻少妇偷人精品九色| 日韩欧美 国产精品| 水蜜桃什么品种好| 日本与韩国留学比较| 亚洲精品456在线播放app| 婷婷色综合大香蕉| 亚洲人成网站在线播| 亚洲美女视频黄频| 国产精品一二三区在线看| 国产精品无大码| 老司机福利观看| 热99在线观看视频| 日本一本二区三区精品| 精品久久国产蜜桃| 国产午夜精品论理片| 我要搜黄色片| 亚洲经典国产精华液单| 一级毛片我不卡| 亚洲中文字幕一区二区三区有码在线看| 中文乱码字字幕精品一区二区三区 | 国产极品精品免费视频能看的| 亚洲高清免费不卡视频| 国产淫语在线视频| 成人欧美大片| 99久久精品热视频| 久久草成人影院| 欧美一区二区精品小视频在线| 一个人观看的视频www高清免费观看| 欧美日韩国产亚洲二区| 国产精品日韩av在线免费观看| 亚洲精品一区蜜桃| 亚洲精品自拍成人| 天美传媒精品一区二区| 国产成人午夜福利电影在线观看| 欧美性猛交黑人性爽| 麻豆一二三区av精品| 亚洲av福利一区| 日本三级黄在线观看| 日本-黄色视频高清免费观看| 免费搜索国产男女视频| 一个人看视频在线观看www免费| 中国国产av一级| 免费av观看视频| 久久久久久国产a免费观看| 亚洲天堂国产精品一区在线| 日本与韩国留学比较| 久久国内精品自在自线图片| www.av在线官网国产| 听说在线观看完整版免费高清| 精品久久久噜噜| www.色视频.com| 中文字幕亚洲精品专区| 国产av在哪里看| 水蜜桃什么品种好| 成年女人看的毛片在线观看| 日韩av在线大香蕉| 亚洲性久久影院| 国产视频首页在线观看| 国产探花在线观看一区二区| 美女国产视频在线观看| 中文字幕免费在线视频6| 久久99蜜桃精品久久| 亚洲欧美一区二区三区国产| 免费观看在线日韩| 毛片一级片免费看久久久久| 亚洲,欧美,日韩| 狂野欧美激情性xxxx在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲18禁久久av| 麻豆一二三区av精品| 日本五十路高清| 伦精品一区二区三区| АⅤ资源中文在线天堂| 老师上课跳d突然被开到最大视频| 日日啪夜夜撸| 亚洲欧美日韩无卡精品| 欧美xxxx黑人xx丫x性爽| 99热这里只有是精品50| 婷婷六月久久综合丁香| 特大巨黑吊av在线直播| 美女大奶头视频| 麻豆乱淫一区二区| 日本免费一区二区三区高清不卡| 午夜老司机福利剧场| 看免费成人av毛片| 我要搜黄色片| 波多野结衣巨乳人妻| 国产一区二区在线av高清观看| 色尼玛亚洲综合影院| 国产 一区精品| 韩国av在线不卡| 男女啪啪激烈高潮av片| 能在线免费观看的黄片| 国产黄片美女视频| 成年女人永久免费观看视频| 国产在视频线在精品| 日本黄大片高清| 久久精品夜夜夜夜夜久久蜜豆| 最近2019中文字幕mv第一页| 永久免费av网站大全| 两个人视频免费观看高清| 国产伦一二天堂av在线观看| 丰满乱子伦码专区| 99热这里只有是精品50| 久久久久精品久久久久真实原创| 青春草亚洲视频在线观看| 久久久国产成人免费| 欧美区成人在线视频| 视频中文字幕在线观看| 亚洲精华国产精华液的使用体验| 国产精品爽爽va在线观看网站| 国内精品宾馆在线| 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱| 桃色一区二区三区在线观看| 久久99精品国语久久久| 久久人人爽人人片av| 一区二区三区高清视频在线| 国内精品宾馆在线| 熟女电影av网| 18禁裸乳无遮挡免费网站照片| 国产高清不卡午夜福利| 丰满少妇做爰视频| 亚洲成人av在线免费| 天天一区二区日本电影三级| av免费在线看不卡| 中文字幕免费在线视频6| 神马国产精品三级电影在线观看| 国产亚洲精品久久久com| www.av在线官网国产| 一个人免费在线观看电影| 91狼人影院| 国产成人a∨麻豆精品| 九九在线视频观看精品| 搡老妇女老女人老熟妇| 99久久九九国产精品国产免费| 亚洲五月天丁香| 在线观看66精品国产| 男人和女人高潮做爰伦理| 91久久精品电影网| 久久久久网色| 1000部很黄的大片| 在现免费观看毛片| 日日干狠狠操夜夜爽| 99久久精品一区二区三区| 欧美一区二区国产精品久久精品| 麻豆一二三区av精品| 国产亚洲最大av| 色5月婷婷丁香| 久久99热这里只频精品6学生 | 国产精品一区二区在线观看99 | 久久久精品94久久精品| 亚洲精华国产精华液的使用体验| 欧美性感艳星| 成人高潮视频无遮挡免费网站| 69av精品久久久久久| 欧美最新免费一区二区三区| 97热精品久久久久久| 国产极品精品免费视频能看的| 久久久国产成人免费| 午夜日本视频在线| 免费看av在线观看网站| 男人舔女人下体高潮全视频| 色尼玛亚洲综合影院| 亚州av有码| 国产在线男女| 亚洲国产最新在线播放| 亚洲欧美精品专区久久| 欧美一级a爱片免费观看看| 成人午夜高清在线视频| 中文字幕av成人在线电影| 亚洲精品一区蜜桃| 偷拍熟女少妇极品色| 国产极品精品免费视频能看的| 色视频www国产| 日韩大片免费观看网站 | 男女国产视频网站| 夫妻性生交免费视频一级片| 桃色一区二区三区在线观看| 五月玫瑰六月丁香| 久久久久国产网址| 午夜激情福利司机影院| 日韩欧美三级三区| 国内精品一区二区在线观看| 国产麻豆成人av免费视频| 久久久久久伊人网av| 国产免费男女视频| 国产老妇伦熟女老妇高清| 亚洲欧洲国产日韩| 国产又色又爽无遮挡免| 美女cb高潮喷水在线观看| 五月伊人婷婷丁香| 国产午夜精品一二区理论片| 男人的好看免费观看在线视频| 亚洲成人中文字幕在线播放| 午夜视频国产福利| 久久久久九九精品影院| eeuss影院久久| 日韩欧美在线乱码| 99久国产av精品国产电影| 少妇被粗大猛烈的视频| 麻豆一二三区av精品| 午夜免费激情av| 成人三级黄色视频| 精品久久久久久久人妻蜜臀av| 插阴视频在线观看视频| 精品人妻视频免费看| 国产伦精品一区二区三区四那| 丰满少妇做爰视频| 91av网一区二区| 少妇的逼水好多| 日本一二三区视频观看| 久久精品久久久久久噜噜老黄 | 午夜福利在线观看吧| 亚洲欧美精品专区久久| av专区在线播放| 亚洲综合精品二区| 亚洲精品成人久久久久久| 人人妻人人看人人澡| 国产精品熟女久久久久浪| 热99在线观看视频| 欧美激情国产日韩精品一区| 亚洲成人久久爱视频| 久久久久久久久久黄片| 亚洲色图av天堂| 韩国高清视频一区二区三区| 有码 亚洲区|