• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristic Length of Metallic Nanorods under Physical Vapor Deposition

    2021-01-23 02:35:24KaiJunBoJunWangHaiYuanChen

    Kai Jun | Bo-Jun Wang | Hai-Yuan Chen

    Abstract—By using physical vapor deposition (PVD) to grow metallic nanorods, the characteristic length is controllable, which can be identified by two different growth modes: Mode I and Mode II.In Mode I, the growth of metallic nanorods is dominated by the monolayer surface steps.Whereas in Mode II, the growth mechanism is mainly determined by the multilayer surface steps.In this work, we focused on the analysis of the physical process of Mode I, in which the adatoms diffuse on the monolayer surface at beginning, then diffuse down to the next monolayer surface, and finally result in the metallic nanorods growth.Based on the physical process, both the variations of the characteristic length and the numerical solutions were theoretically proposed.In addition, the twodimensional (2D) lattice kinetic Monte Carlo simulations were employed to verify the theoretical derivation of the metallic nanorods growth.Our results pay a new way for modifying the performance of metallic nanorods-based applications and devices.

    1.lntroduction

    Metallic nanorods have been studied widely, which have broad prospects in optical devices, sensors,biomedicine, and catalysts[1]-[3].However, the properties and applications are generally affected by the changes of the characteristic length and surface morphology.Therefore, the investigation of the characteristic length of metallic nanorods is of significant interest to both simulations and experiments.By using physical vapor deposition (PVD) to grow metallic nanorods[4]-[6], the characteristic length and surface morphology can be regulated[7],[8].Generally, there are two types of growth models for metallic nanorods by PVD[9]: Mode I is taking place on the wetting substrate,however, Mode II is occurring on the no-wetting substrate[10].In Mode I, the growth of nanorods primarily depends on the adatoms diffusing in the monolayer and down to the next nearest monolayer surface.Whereas, Mode II mainly relies on the multilayer surface steps that limit the diffusion of the adatoms[11].Therefore, in the absence of chemical reaction, the physical process of diffusion is the dominant factor in the growth of metallic nanorods[12].

    Mode II leads to the successful preparation of the smallest diameter of the metallic nanorods in our previous study[11], because of the complete or nearly complete shadowing beneath the upper most layer.Comparing with the monolayer surface steps, the multilayer surface steps with a large three-dimensional (3D) Ehrlich-Schwoebel (ES)diffusion barrier play a dominant role in the growth process and limit the diffusion of the adatoms[13]-[15].The smallest diameter theory of metallic nanorods in Mode II has been established and the theoretical result of the smallest diameter iswherenis the number of layers of the metal nanorods,V3Dis the diffusion jump rate of the adatoms over multilayer surface steps,αis the probability of the adatoms jump to the next step, andFeis the effective deposition rate on the top of the nanorod.Besides, the theory is verified by the lattice kinetic Monte Carlo simulations and PVD experiments[11].

    For Mode I, the characteristic length of metallic nanorods has been described by a closed theory[9], which is derived from a wedding cake model for the growth of thin films[16]-[18]and verified by the lattice kinetic Monte Carlo simulations.This closed theory provides a bridge for the growth of thin films to be transformed into the growth of nanorods by Mode I[19],[20].However, the details describing the physical process of growing metallic nanorods in the closed theory by Mode I are absent.Due to the absence, it is eager to comprehensively describe the metallic nanorods growth by Model I.In the physical process of the metallic nanorods growth of Model I, the monolayer epitaxial growth leads to a larger diameter than that by Mode II[10].This epitaxial growth is stemmed from the adatoms diffusion, which can overcome the smaller two-dimensional (2D) ES barrier and then diffuse down to the next monolayer surface[21],[22].

    In this paper, we established a simple growth model by analyzing the physical growth process of Model I, which can be utilized to simulate the variation of the characteristic length and obtain the numerical solutions.By analyzing the physical process of the adatoms in the monolayer of metallic nanorods in Mode I, the mechanism of the monolayer growth in metallic nanorods growing was discovered, i.e., the adatoms diffuse on the monolayer surface and then down to the next monolayer surface.Based on the mechanism, the changes of the characteristic length and the numerical solutions in Mode I were achieved.Finally, the theoretical derivation was verified by the 2D lattice kinetic Monte Carlo simulations.

    2.Results and Discussion

    Firstly, we proposed a simple growth model with schematic descriptions by theoretically analyzing the growth process of metallic nanorods in Mode I.Secondly, the changes of the characteristic length and the numerical solutions were theoretically derived.This derivation is based on the approximation of the quasi-steady state and perfect nucleation.Finally, the copper (Cu) was considered as an example to simulate the growth of metallic nanorods by the 2D lattice kinetic Monte Carlo simulations, where the numerical results agreed well with the theoretical derivation.

    2.1.Growth Process

    Fig.1.Simple growth process of metallic nanorods: (a)shadowing effect happening at time t=0 and (b) Layer 0 reaching the length of Layer -1 at time t=t1.

    Based on Mode I, we studied a simple case of the step-dynamic mechanism as shown in Fig.1.At timet=0, when the shadowing effect happens, the shadowing pointXSlies on the upper most layer, i.e.,Layer 0.All the layers underneath will remain unchanged.As shown in Fig.1 (a), sinceXSis less than the length of Layer 0,L0, there exists a possibility that Layer 0 will reach the length of Layer -1 before the newly formed Layer 1 reachingXS.Furthermore, two monolayer steps will collapse and form a new multilayer step at the positionXd, as shown in Fig.1 (b).According to the growth mechanism of Mode I,Xdis the final diameter of nanorods determined by the length of Layer -1 at timet=0.

    2.2.General Theory

    Following by previous discussion, the simple model in subsection 2.1 can be extended to a more general case (as shown in Fig.2): Layer -1 is large enough so that before Layer 0 catching up with it, the new Layer 1 reaches the shadowing pointXSand Layer 0 is shadowed.In another word, the finalXdis smaller than the size of Layer -1.Since the layers under Layer 0 are completely shadowed fromt=0, those layers beneath Layer 0 in Fig.2 will be not taken into account.

    Fig.2.Step dynamics in a more general case: (a) shadowing effect happening at time t=0, (b) Layer 0 reaching the length of Layer -1 at time t=t1, (c) new monolayer appearing at time t=τ (τ represents the average time), and(d) Layer 1 reaching the length of the Layer 0 at time t=t2.

    Assume that the shadowing boundaryXSis on the layers.As shown in Fig.2 (a), we set the time point when Layer 1 just nucleates ast=0 and so the length of Layer 0 is 2L0.With the increase of time, Layer 0 will still become elongated.On Layer 0, with the approximation of the quasi-steady state, when timetgoes from 0 tot1, we define the half length of Layer 1 and Layer 0 to bel1(t) andl0(t), respectively.It is noted that the metallic nanorods are completely symmetric in the growth process.With the increase of growth time,the effective area of the adatoms on the surface of Layer 0 gradually decreases, so the average deposition rateF0of the adatoms on Layer 0 isF0=F[(XS?l1(t))/(l0(t)?l1(t))], whereFis the deposition rate.The concentration distribution of Layer 0 can be calculated by using the Tersoff’s theory on the critical size of island[16]as shown in (1):

    wheren0is the concentration distribution of deposited atoms in Layer 0 andDcis the diffusion constant.

    According to the approximation of perfect nucleation, the adatoms diffuse down to the next monolayer surface and nucleate directly at the kink of the step.The boundary conditions can be expressed as: Whenx=l1(x), thenn0(x)=0; whenx=l0(x), then dn0(x)/dx=?αn0(x).Here,α=?exp[?(EES?ED)/kT] withkTbeing the Boltzmann factor, which is the probability per unit time that the adatoms diffuse to the next monolayer surface[16].For the reason that the growth of Mode I depends on the monolayer surface steps,EESis considered as the 2D ES diffusion barrier andEDis the diffusion barrier on the surface.

    From (1) and the boundary conditions, the concentration distribution at Layer 0 is derived as

    As for Layer 1, it grows initially at timet=0 and there is no shadowing effect in the time period from 0 tot1, so the deposition rate of adatoms isF.Since Layer 2 does not appear in this period, the adatoms hop to the edge of Layer 1 and then diffuse to Layer 0.These adatoms will result in the growth of Layer 1, so the boundary conditions can be expressed as: Whenx=0, then dn1(x)/dx=0; whenx=I1(t), then dn1(x)/dx=?αn1(x).Meanwhile, the concentration distribution of the adatoms in Layer 1 can be expressed as

    During the period fromt1toτ, because Layer -1 is large enough, the newly emerged Layer 1 has reachedXSand Layer 0 is completely covered before Layer 0 catching up with Layer -1.As for Mode I, it depends on the monolayer surface steps and only a few adatoms can overcome the multiple step barriers and jump off the edge.Therefore, the length of Layer 0 remains unchanged, and this size is the final diameter of the metallic nanorods, i.e., 2Xd.At timet1shown in Fig.2 (b), Layer 1 grows to the shadowing pointXSand Layer 2 does not appear in this time period.Thus, the adatoms will be deposited only on Layer 1.Besides, Layer 1 will become elongated.The average deposition rate of the adatoms isXSF/l1(t),and the boundary conditions are whenx=0, then dn1(x)/dx=0; whenx=I1(t), then dn1(x)/dx=?αn1(x).So the concentration distribution of the adatoms in Layer 1 is

    At timeτ, Layer 2 occurs to grow and Layer 1 has grown toL0, as shown in Fig.2 (c).Between the time periodτtot2, Layer 1 will repeat the growth process of Layer 0 happened during the period from 0 tot1until it grows toXdat timet2, as shown in Fig.2 (d).For Layer 2, the complete growth process will be the same as that of Layer 1.It is assumed that timet=0 is just the time point when Layerm(1 ≤m≤n) appears.Hence, based on (2) to (4), the concentration distribution of the adatoms deposited on Layermduring the period from 0 tot2can be summarized as

    Here we defineSmas the rate of the adatoms from themth monolayer diffusing down to the (m-1)th monolayer.Due to the assumption of perfect nucleation, these adatoms will be nucleated and grow in themth monolayer.The expression forSmis

    According to (5) to (8), the rates of the adatoms at the edge of themth monolayer diffusing down to the (m-1)th monolayer in different growth periods are summarized as

    According to (9) to (11) and the total amount of the adatoms deposited on the (m-1)th monolayer per unit timeF[XS?Im(t)], the growth rates of themth monolayer in the whole growth process can be obtained as

    According to the lone adatoms model[23], the average time is[24]

    whereV2Dis the diffusion jump rate of the adatoms over monolayer surface steps.

    According to (12) to (15), we can describe the variation of the characteristic length of metallic nanorods with time.From this characteristic length-time relationship, the final diameter of metallic nanorods can be acquired.

    2.3.2D Lattice Kinetic Monte Carlo Simulations

    Because the 2D lattice kinetic Monte Carlo simulations involve the crucial diffusion process in the whole growth including the diffusion on the same monolayer, down to the next monolayer, and multilayer diffusion.Hence, the 2D Monte Carlo method was utilized to verify the theoretical derivation of the characteristic length for metallic nanorods.

    In the simulations, we chose Cu as the deposition atoms.The deposition rate, temperature, and the size of the metallic substrate areF=1 nm/s, 100 K, and 40 lattice units, respectively.Owing to the shadowing effect, only specific portions of the substrate are injected with Cu, so the deposition range is given as 12 lattice units, which has the reflection symmetry, i.e., the position of the shadowing pointXSis 6 lattice units.In previous studies, the adatoms diffusion barrier on a flat surface of nanorods was 0.06 eV[13],[15].Meanwhile, the adatoms diffusion barriers over a monolayer and multilayer step were 0.16 eV and 0.40 eV, respectively[13],[15].The prefactor of the diffusion frequency was reported as 5×1011s?1in the previous study[25].

    As shown in Fig.3, it is the entire process of the change of the characteristic length of metallic nanorods.In the initial stage of the monolayer growth, the monolayer surface has no shadowing effect.The main mechanism of the monolayer growth is the diffusion and nucleation of Cu atoms deposited on the surface of the monolayer.Only a small part of the Cu atoms can overcome the 2D ES barrier and diffuse to the next monolayer, leading to the monolayer growth.The contribution to the monolayer growth of this part is weaker than that of the diffusion and nucleation of the Cu atoms on the monolayer.Therefore, the growth trend of the metallic nanorods in the early growth stage behaves a linear relationship.When the monolayer grows to the shadowing point, the shadowing effect begins to affect on the surface of the monolayer and the effective deposition size on the surface of the monolayer is reduced, so that the atomic action of the diffusion nucleation portion on the monolayer is gradually weakened during the growth process.Until a new monolayer appears, this weakness is becoming more obvious.Meanwhile,the growth of the monolayer in which the adatoms overcome the 2D ES barrier and diffuse to the next monolayer gradually becomes pronounced, so the gradient of the growth curve changes.When this new monolayer grows to the shadowing point, all layers under this new monolayer are masked, and no deposition is injected, so the monolayer diameter will not change.

    Fig.3.2D lattice kinetic Monte Carlo simulations of the change process of the Cu nanorods characteristic length.

    Fig.4.Theoretical variation curves of the Cu nanorods characteristic length comparing with the simulation.

    Since the relationship between the number of deposition steps and the characteristic length of the metal nanorods is obtained in the simulation results, in order to obtain a comparison between the simulation and theory,t/τcan only be calculated at a certain length.From this point, the growth of the metallic nanorods from the shadow point at timet1to the time when the new single layer appears atτis targeted.Besides, another five points are gotten where the final diameter of the metallic nanorods is nearly unchanged,which is shown in Fig.4.From Fig.4, the results between the simulation and theory show great agreement.However, it is noted that the perfect nucleation and quasi-steady-state conditions were utilized in the calculation process and the 3D step barrier is considered as infinite.The 2D lattice kinetic Monte Carlo simulated diameter of the metallic nanorods is slightly different from the theoretical one, when the diameter of the metallic nanorods grows to the shadowing point and the new monolayer appears.However, the theoretical derivation of the growth process of metallic nanorods in general is consistent with its simulated growth process.

    3.Conclusions

    In summary, by analyzing the physical diffusion process of the adatoms on monolayers during the growth of metallic nanorods in Mode I, we have established a simple model to reveal the process in details for the growth of metallic nanorods.The variations of the characteristic length and final diameter of metallic nanorods were theoretically derived in Mode I.Then the theoretical derivation of the characteristic length of metallic nanorods was verified by the 2D lattice kinetic Monte Carlo simulations, which showed good agreement.Our results provide a new view to better understand the mechanism of the metallic nanorods growth, which have a great impact on the metallic nanorods-related applications and devices.

    Disclosures

    The authors declare no conflicts of interest.

    日韩欧美三级三区| 国产色婷婷99| 久久精品国产亚洲av天美| 成人亚洲精品av一区二区| 老司机午夜福利在线观看视频| 91精品国产九色| 蜜桃久久精品国产亚洲av| 老师上课跳d突然被开到最大视频| 别揉我奶头 嗯啊视频| 一卡2卡三卡四卡精品乱码亚洲| 国产单亲对白刺激| 精品午夜福利视频在线观看一区| 欧美成人免费av一区二区三区| 国产v大片淫在线免费观看| 欧美极品一区二区三区四区| 色尼玛亚洲综合影院| 最近最新中文字幕大全电影3| 人人妻人人看人人澡| 伦理电影大哥的女人| 午夜福利高清视频| 精品一区二区免费观看| 极品教师在线免费播放| 嫁个100分男人电影在线观看| 女人被狂操c到高潮| 久久久精品大字幕| 日日摸夜夜添夜夜添av毛片 | 九色成人免费人妻av| 男女之事视频高清在线观看| www.www免费av| 欧美xxxx性猛交bbbb| 久久人妻av系列| 欧美+日韩+精品| 国产高潮美女av| 我的女老师完整版在线观看| 制服丝袜大香蕉在线| 亚洲欧美清纯卡通| 成人二区视频| 免费观看精品视频网站| 赤兔流量卡办理| 亚洲国产精品合色在线| 午夜福利在线观看免费完整高清在 | 日韩一本色道免费dvd| 悠悠久久av| 人妻久久中文字幕网| 女的被弄到高潮叫床怎么办 | h日本视频在线播放| 婷婷精品国产亚洲av| 在线播放无遮挡| 日本熟妇午夜| 老熟妇乱子伦视频在线观看| 午夜福利在线观看免费完整高清在 | 欧美成人性av电影在线观看| 亚洲精品久久国产高清桃花| 三级毛片av免费| 久久草成人影院| 国产av一区在线观看免费| 国产大屁股一区二区在线视频| 天堂av国产一区二区熟女人妻| 搡老熟女国产l中国老女人| 小说图片视频综合网站| 精品人妻偷拍中文字幕| eeuss影院久久| 欧美性猛交黑人性爽| 97热精品久久久久久| bbb黄色大片| 亚洲国产精品久久男人天堂| 国产 一区 欧美 日韩| 成人综合一区亚洲| 变态另类成人亚洲欧美熟女| 成人三级黄色视频| 男人狂女人下面高潮的视频| 99热精品在线国产| 又紧又爽又黄一区二区| 国产精品综合久久久久久久免费| 久久精品夜夜夜夜夜久久蜜豆| 免费电影在线观看免费观看| 国产一区二区亚洲精品在线观看| 久久久久久国产a免费观看| 偷拍熟女少妇极品色| 18禁裸乳无遮挡免费网站照片| 国产麻豆成人av免费视频| 如何舔出高潮| 最近最新中文字幕大全电影3| 久久久久久久久中文| 欧美激情国产日韩精品一区| 久久香蕉精品热| 人妻丰满熟妇av一区二区三区| 最近视频中文字幕2019在线8| 美女xxoo啪啪120秒动态图| 午夜精品在线福利| 韩国av在线不卡| 天堂av国产一区二区熟女人妻| 在线a可以看的网站| 午夜免费成人在线视频| 国产精品国产三级国产av玫瑰| 国产黄色小视频在线观看| a在线观看视频网站| 男人狂女人下面高潮的视频| 亚洲图色成人| 国产精品99久久久久久久久| 黄色一级大片看看| 亚洲精品亚洲一区二区| 国产伦精品一区二区三区视频9| 男女边吃奶边做爰视频| 亚洲va在线va天堂va国产| 性欧美人与动物交配| 最近最新中文字幕大全电影3| 国产探花极品一区二区| 色综合色国产| 日日啪夜夜撸| 99在线人妻在线中文字幕| 天天躁日日操中文字幕| 性欧美人与动物交配| 别揉我奶头~嗯~啊~动态视频| 1024手机看黄色片| 日本欧美国产在线视频| 久久精品国产亚洲网站| av黄色大香蕉| 在线观看舔阴道视频| 国产老妇女一区| 午夜福利18| 长腿黑丝高跟| 桃红色精品国产亚洲av| 成熟少妇高潮喷水视频| 99久久精品一区二区三区| 一个人看的www免费观看视频| 日本与韩国留学比较| 国产成人福利小说| 高清毛片免费观看视频网站| 午夜福利成人在线免费观看| 成人精品一区二区免费| 免费无遮挡裸体视频| 精品一区二区三区视频在线观看免费| 久久久午夜欧美精品| 床上黄色一级片| 人妻少妇偷人精品九色| 高清在线国产一区| h日本视频在线播放| 日本 av在线| 久久天躁狠狠躁夜夜2o2o| 桃色一区二区三区在线观看| 啦啦啦观看免费观看视频高清| 国产精品98久久久久久宅男小说| 12—13女人毛片做爰片一| av国产免费在线观看| 男女做爰动态图高潮gif福利片| 露出奶头的视频| 俺也久久电影网| 夜夜夜夜夜久久久久| 国产伦精品一区二区三区四那| 国产精品综合久久久久久久免费| 亚洲aⅴ乱码一区二区在线播放| 真实男女啪啪啪动态图| 一级a爱片免费观看的视频| 久久亚洲真实| a级一级毛片免费在线观看| 欧美日本亚洲视频在线播放| 桃红色精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 哪里可以看免费的av片| 亚洲精品456在线播放app | 最近中文字幕高清免费大全6 | 亚洲精品在线观看二区| videossex国产| 人妻丰满熟妇av一区二区三区| 亚洲精品在线观看二区| 亚洲精品影视一区二区三区av| 淫妇啪啪啪对白视频| 亚洲精品一区av在线观看| 久久久久久久精品吃奶| 国产伦精品一区二区三区四那| 婷婷色综合大香蕉| 可以在线观看的亚洲视频| 欧美人与善性xxx| 国产伦精品一区二区三区视频9| 欧美色视频一区免费| 中国美白少妇内射xxxbb| 国内揄拍国产精品人妻在线| 中文字幕精品亚洲无线码一区| 国产探花极品一区二区| АⅤ资源中文在线天堂| 国产精品久久电影中文字幕| 男人舔奶头视频| 免费人成视频x8x8入口观看| 啦啦啦观看免费观看视频高清| 精品久久久久久,| 色av中文字幕| 久久精品91蜜桃| 亚洲性夜色夜夜综合| 亚洲不卡免费看| 国产精品综合久久久久久久免费| 色精品久久人妻99蜜桃| av在线亚洲专区| 欧美bdsm另类| 热99re8久久精品国产| 黄色一级大片看看| 亚洲精品国产成人久久av| 中文字幕免费在线视频6| 成人av一区二区三区在线看| 亚洲精华国产精华精| av专区在线播放| 亚洲精品成人久久久久久| 一本一本综合久久| 伦理电影大哥的女人| 精品久久国产蜜桃| 久久国产精品人妻蜜桃| 午夜a级毛片| 在线免费十八禁| 成人国产综合亚洲| 亚洲狠狠婷婷综合久久图片| av在线老鸭窝| 男人舔女人下体高潮全视频| 非洲黑人性xxxx精品又粗又长| 婷婷精品国产亚洲av| a级毛片免费高清观看在线播放| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区三区人妻视频| 国产精品久久久久久av不卡| 搡老熟女国产l中国老女人| 我的女老师完整版在线观看| 亚洲avbb在线观看| 自拍偷自拍亚洲精品老妇| 午夜老司机福利剧场| 国产亚洲精品综合一区在线观看| 天堂动漫精品| 一本精品99久久精品77| 一区福利在线观看| 国产69精品久久久久777片| 精品一区二区三区视频在线观看免费| 男女之事视频高清在线观看| 日韩在线高清观看一区二区三区 | 蜜桃亚洲精品一区二区三区| 22中文网久久字幕| 亚洲四区av| 亚洲欧美日韩东京热| 亚洲av成人av| av黄色大香蕉| 国产主播在线观看一区二区| 日本黄色片子视频| 久久精品人妻少妇| 久久午夜亚洲精品久久| 欧美区成人在线视频| 一个人免费在线观看电影| 国产色婷婷99| 日韩欧美三级三区| 黄色丝袜av网址大全| 国产男靠女视频免费网站| 亚洲四区av| 国产精品一区二区三区四区免费观看 | a级毛片a级免费在线| 久久久久久久久久久丰满 | 真人一进一出gif抽搐免费| 亚洲国产精品合色在线| 日韩欧美免费精品| 国产精品人妻久久久久久| 亚洲av.av天堂| 国产亚洲欧美98| 不卡一级毛片| 亚洲精品国产成人久久av| 成人性生交大片免费视频hd| 噜噜噜噜噜久久久久久91| 人妻少妇偷人精品九色| 精品国内亚洲2022精品成人| 少妇高潮的动态图| 国内揄拍国产精品人妻在线| 少妇猛男粗大的猛烈进出视频 | 国产综合懂色| 亚洲人成网站在线播放欧美日韩| 一a级毛片在线观看| а√天堂www在线а√下载| 美女高潮的动态| 国内精品一区二区在线观看| 精华霜和精华液先用哪个| 亚洲国产精品成人综合色| 又爽又黄a免费视频| 成人特级黄色片久久久久久久| 99热只有精品国产| 亚洲欧美日韩高清专用| 人人妻人人看人人澡| 精品人妻视频免费看| 少妇裸体淫交视频免费看高清| 国产69精品久久久久777片| h日本视频在线播放| 色综合亚洲欧美另类图片| 人妻少妇偷人精品九色| 熟妇人妻久久中文字幕3abv| 九九热线精品视视频播放| 成人美女网站在线观看视频| 久久久久久伊人网av| 亚洲欧美精品综合久久99| 日韩欧美国产一区二区入口| 三级毛片av免费| 国产极品精品免费视频能看的| 久久6这里有精品| 亚洲午夜理论影院| 久久精品综合一区二区三区| 日日摸夜夜添夜夜添小说| 久久久久久久久久黄片| 中文字幕免费在线视频6| 村上凉子中文字幕在线| 久久久久性生活片| 一进一出抽搐gif免费好疼| 成人无遮挡网站| 日韩,欧美,国产一区二区三区 | 99久久九九国产精品国产免费| 深爱激情五月婷婷| 色5月婷婷丁香| 欧美日韩中文字幕国产精品一区二区三区| 免费在线观看日本一区| 哪里可以看免费的av片| 欧美最黄视频在线播放免费| 国产男人的电影天堂91| 日韩大尺度精品在线看网址| 亚洲av成人av| 成人一区二区视频在线观看| 精品久久久久久久久av| 日韩一区二区视频免费看| 日韩欧美三级三区| 亚洲在线自拍视频| 99热只有精品国产| 久久久久久久亚洲中文字幕| 国产精品免费一区二区三区在线| 久久人妻av系列| 丰满的人妻完整版| 高清在线国产一区| 91麻豆精品激情在线观看国产| 亚洲精品乱码久久久v下载方式| 国产男靠女视频免费网站| 狂野欧美白嫩少妇大欣赏| 色哟哟哟哟哟哟| 午夜福利视频1000在线观看| 夜夜看夜夜爽夜夜摸| 夜夜爽天天搞| 又紧又爽又黄一区二区| 午夜免费激情av| 婷婷精品国产亚洲av| 欧美zozozo另类| 亚洲最大成人中文| 91久久精品国产一区二区成人| 日本熟妇午夜| 丝袜美腿在线中文| 黄色日韩在线| 俺也久久电影网| 欧美区成人在线视频| 精品久久久久久久末码| x7x7x7水蜜桃| 亚洲第一区二区三区不卡| 一级毛片久久久久久久久女| 色尼玛亚洲综合影院| 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女视频黄频| 国产日本99.免费观看| 精品一区二区三区视频在线观看免费| 欧美日韩乱码在线| 成人亚洲精品av一区二区| 女同久久另类99精品国产91| 国产精品人妻久久久影院| 两人在一起打扑克的视频| 婷婷亚洲欧美| 有码 亚洲区| 精品午夜福利视频在线观看一区| 一区二区三区激情视频| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 免费看a级黄色片| 成人无遮挡网站| 欧美+日韩+精品| 亚洲av.av天堂| xxxwww97欧美| 九九在线视频观看精品| 深爱激情五月婷婷| 男女那种视频在线观看| 亚洲成人中文字幕在线播放| 精品欧美国产一区二区三| 欧美精品啪啪一区二区三区| 麻豆国产97在线/欧美| 别揉我奶头 嗯啊视频| 欧美bdsm另类| av黄色大香蕉| 十八禁网站免费在线| 午夜精品一区二区三区免费看| 波多野结衣高清作品| 淫妇啪啪啪对白视频| 波多野结衣高清作品| 免费观看精品视频网站| 露出奶头的视频| 久久久久免费精品人妻一区二区| 亚洲av第一区精品v没综合| 久久精品国产亚洲av涩爱 | 九九热线精品视视频播放| 日韩在线高清观看一区二区三区 | 成人欧美大片| 我要看日韩黄色一级片| 老司机深夜福利视频在线观看| 观看美女的网站| 少妇熟女aⅴ在线视频| 偷拍熟女少妇极品色| 国产免费男女视频| 91久久精品国产一区二区成人| 精品福利观看| 国产亚洲av嫩草精品影院| 成年女人看的毛片在线观看| 可以在线观看的亚洲视频| 日韩欧美国产一区二区入口| 国产精品伦人一区二区| 久久婷婷人人爽人人干人人爱| 亚洲图色成人| 波多野结衣高清作品| av专区在线播放| 淫秽高清视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 69av精品久久久久久| 免费无遮挡裸体视频| 一边摸一边抽搐一进一小说| 1000部很黄的大片| 乱系列少妇在线播放| 悠悠久久av| 桃红色精品国产亚洲av| 国产精品一区二区三区四区免费观看 | 国产老妇女一区| 亚洲欧美日韩卡通动漫| 久久久久国产精品人妻aⅴ院| 免费看美女性在线毛片视频| 亚洲中文日韩欧美视频| 亚洲成人精品中文字幕电影| 春色校园在线视频观看| 日日摸夜夜添夜夜添av毛片 | 真人一进一出gif抽搐免费| 国产精品国产高清国产av| 亚洲国产欧美人成| 老女人水多毛片| 亚洲精品成人久久久久久| 国产麻豆成人av免费视频| 国产精品1区2区在线观看.| 色哟哟·www| 日本三级黄在线观看| 精品久久久久久,| 非洲黑人性xxxx精品又粗又长| 日本-黄色视频高清免费观看| 91在线精品国自产拍蜜月| 亚洲av中文字字幕乱码综合| 亚洲av免费在线观看| 国产v大片淫在线免费观看| 成人无遮挡网站| 啦啦啦啦在线视频资源| 老师上课跳d突然被开到最大视频| 亚洲自拍偷在线| 人妻夜夜爽99麻豆av| 国产欧美日韩一区二区精品| 三级国产精品欧美在线观看| 人妻夜夜爽99麻豆av| 长腿黑丝高跟| 日韩一区二区视频免费看| 九色成人免费人妻av| 人妻丰满熟妇av一区二区三区| 精品一区二区免费观看| 亚洲av电影不卡..在线观看| 成人三级黄色视频| 国产视频内射| 午夜福利在线在线| 免费在线观看成人毛片| 国内少妇人妻偷人精品xxx网站| 成年人黄色毛片网站| 国产高清不卡午夜福利| 免费搜索国产男女视频| 女的被弄到高潮叫床怎么办 | 一个人看的www免费观看视频| 欧美日韩乱码在线| 亚洲性久久影院| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩精品一区二区| 免费不卡的大黄色大毛片视频在线观看 | videossex国产| 成人美女网站在线观看视频| 婷婷六月久久综合丁香| 亚洲久久久久久中文字幕| 黄片wwwwww| 亚洲avbb在线观看| 最新中文字幕久久久久| 99久国产av精品| 亚洲真实伦在线观看| 国产成人aa在线观看| 亚洲一区二区三区色噜噜| 嫁个100分男人电影在线观看| av福利片在线观看| 国产精品久久视频播放| 人妻制服诱惑在线中文字幕| 淫秽高清视频在线观看| 中文亚洲av片在线观看爽| 最近最新免费中文字幕在线| 欧美不卡视频在线免费观看| 99国产精品一区二区蜜桃av| 国产精品国产高清国产av| 两个人视频免费观看高清| 亚洲国产精品合色在线| 少妇裸体淫交视频免费看高清| 91在线观看av| 久久久久久国产a免费观看| 免费看光身美女| 午夜福利视频1000在线观看| 2021天堂中文幕一二区在线观| 日本在线视频免费播放| 欧美日韩中文字幕国产精品一区二区三区| 少妇高潮的动态图| 国产精品一区www在线观看 | 99久久成人亚洲精品观看| 成年女人永久免费观看视频| 伦理电影大哥的女人| 1024手机看黄色片| 婷婷色综合大香蕉| 精品国内亚洲2022精品成人| 一区二区三区四区激情视频 | 一个人看的www免费观看视频| 久久久国产成人免费| 亚洲自拍偷在线| 老女人水多毛片| 国产精品自产拍在线观看55亚洲| 麻豆成人av在线观看| 18禁黄网站禁片午夜丰满| 少妇丰满av| 欧美最黄视频在线播放免费| 99国产精品一区二区蜜桃av| 一进一出抽搐gif免费好疼| 精品午夜福利视频在线观看一区| АⅤ资源中文在线天堂| 久久久久国产精品人妻aⅴ院| 麻豆国产av国片精品| av国产免费在线观看| 成人综合一区亚洲| 搡老妇女老女人老熟妇| 人妻夜夜爽99麻豆av| 91麻豆av在线| 九色成人免费人妻av| 国产精品国产高清国产av| 在线免费十八禁| 男人舔女人下体高潮全视频| 国产伦精品一区二区三区四那| 欧美在线一区亚洲| 成人av一区二区三区在线看| 亚洲人成网站在线播| 亚洲精品粉嫩美女一区| 一个人看的www免费观看视频| 亚洲人与动物交配视频| 久久亚洲精品不卡| 午夜日韩欧美国产| 久久久久国内视频| 欧美日本亚洲视频在线播放| 日本一本二区三区精品| а√天堂www在线а√下载| 两个人的视频大全免费| 国产精品久久电影中文字幕| 九九热线精品视视频播放| 麻豆成人av在线观看| xxxwww97欧美| 亚洲自偷自拍三级| 亚洲国产精品合色在线| 一进一出抽搐动态| 99久久精品热视频| 久久久久免费精品人妻一区二区| 亚洲四区av| 日韩中字成人| 日日夜夜操网爽| 久久久久久久精品吃奶| 成人国产一区最新在线观看| 亚洲图色成人| 美女xxoo啪啪120秒动态图| 国产极品精品免费视频能看的| 婷婷丁香在线五月| 久久精品综合一区二区三区| 女同久久另类99精品国产91| 成人鲁丝片一二三区免费| 久久人人爽人人爽人人片va| 网址你懂的国产日韩在线| 国内精品久久久久久久电影| 国产私拍福利视频在线观看| 熟妇人妻久久中文字幕3abv| 别揉我奶头~嗯~啊~动态视频| 搡女人真爽免费视频火全软件 | 亚洲av五月六月丁香网| 国产精品美女特级片免费视频播放器| 久久99热这里只有精品18| 国产成人一区二区在线| 99在线视频只有这里精品首页| 一a级毛片在线观看| 亚洲中文日韩欧美视频| 亚洲欧美清纯卡通| 少妇被粗大猛烈的视频| 日韩大尺度精品在线看网址| 欧美成人a在线观看| 免费看a级黄色片| 黄色欧美视频在线观看| 欧美黑人巨大hd| 久久人人精品亚洲av| 久久久精品大字幕| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美国产一区二区入口| 国产高清三级在线| 91久久精品国产一区二区成人| 神马国产精品三级电影在线观看| 午夜久久久久精精品| 91在线精品国自产拍蜜月| 97碰自拍视频| 亚洲av成人精品一区久久| 欧美zozozo另类| 日本五十路高清| 精品国内亚洲2022精品成人| 一区二区三区免费毛片| 美女大奶头视频| 成人精品一区二区免费| 久久国内精品自在自线图片| 一区福利在线观看| 亚洲性久久影院| 精品人妻熟女av久视频| 精品乱码久久久久久99久播| 人妻制服诱惑在线中文字幕|