• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ECC-Based RFlD Authentication Protocol

    2021-01-23 02:35:20XingChunYangChunXiangXuChaoRongLi

    Xing-Chun Yang | Chun-Xiang Xu | Chao-Rong Li

    Abstract—The radio frequency identification (RFID) technology has been widely used so far in industrial and commercial applications.To develop the RFID tags that support elliptic curve cryptography (ECC), we propose a scalable and mutual authentication protocol based on ECC.We also suggest a tag privacy model that provides adversaries exhibiting strong abilities to attack a tag’s privacy.We prove that the proposed protocol preserves privacy under the privacy model and that it meets general security requirements.Compared with other recent ECCbased RFID authentication protocols, our protocol provides tag privacy and performs the best under comprehensive evaluation of tag privacy, tag computation cost, and communications cost.

    1.lntroduction

    As the fundamental technology of the Internet of things, the radio frequency identification (RFID) technology has been widely used in domains, such as supply chain management, object identification, and access control systems.The hardware of a typical RFID system comprises tags, readers/interrogators, and a back-end server.RFID tags are resource-constrained devices that support bitwise operations, such as XOR, shift, cyclic redundancy check,and the Hash operations, whereas readers and back-end servers are powerful devices that can perform complex cryptographic operations, such as running public key encryption algorithms.Communications between tags and readers are not secure because they communicate wirelessly and tags cannot support complex cryptographic operations.However, communications between the reader and server are secure because a secure channel is established before they communicate.

    As the RFID technology has been widely used in commercial domains, the privacy issue caused by this technology has drawn considerable attention in recent years.For example, traditional low-cost tags provide no privacy when they authenticate an RFID reader because these tags broadcast their identities upon receiving a reader’s request and customer’s preferences and buying patterns are violated when attackers eavesdrop on the authentcation information.The Commission of the European Communities[1]issued recommendations on RFID-based applications, providing advice for protecting tag privacy and tag data security.

    High-performance tags that support elliptic curve cryptography (ECC) were developed[2]-[8]to address the issue of tag privacy and other security problems.Furthermore, some RFID authentication protocols[9]-[18]based on ECC were proposed.However, few of these protocols have formally proven to provide tag privacy, and as stated by He and Zeadally[19], suitable security models are required to prove the security properties of the proposed schemes.

    Herein, we propose a mutual authentication protocol that provides a fixed period of time for an RFID reader to identify a tag, and we also present a tag privacy model.Furthermore, we prove that the proposed protocol preserves privacy in our model and demonstrate that the proposed protocol performs the best under overall evaluations on tag privacy, tag computation cost, and communications cost.

    The remainder of the paper is organized as follows.Section 2 introduces the related work, and Section 3 briefly describes the preliminaries.In Section 4, we describe the proposed protocol.We explain the tag privacy model in Section 5 and provide a security analysis of our protocol in Section 6.Section 7 provides comparisons between our protocol and other recently proposed protocols.Finally, Section 8 concludes the paper.

    2.Related Work

    In some RFID-based applications (e.g., E-passport, luxury goods management, and important access control systems) that require higher-level security, low-cost RFID tags that support simple operations, such as bitwise operations (XOR, AND, and Additive), shift operation, cyclic redundancy code, and pseudo-random number generator cannot guarantee sufficient security.With advances in the technology and reduction in costs, RFID tags[2]-[8]that support ECC were developed for applications that require high security.RFID authentication protocols based on public key cryptosystems are necessary for secure communications[20].

    Recently, Liao and Hsiao[16]proposed an ECC-based RFID authentication protocol.However, it is inefficient because it requires five elliptic curve-point multiplication operations on the tag side.Zhao[21]also stated that Liao’s scheme suffers from the key compromise problem.Focusing on RFID implant systems, Moosaviet al.[17]designed a mutual authentication scheme based on ECC and the Hash function; however Khatwani and Rog[22]reported this scheme to be vulnerable to denial of service attacks and proposed an improved scheme against these types of attacks.Zhang and Qi[18]proposed an authentication protocol based on ECC for patient medication;however, Farashet al.[23]demonstrated that this scheme cannot provide forward privacy and improved this scheme by employing the Hash function.Heet al.[11]proposed an ECC-based authentication scheme and claimed that their scheme provided high security.However, Lee and Chien[15]reported that this scheme guarantees no privacy protection under active tracking attacks and proposed an improved version to overcome this flaw.Chen and Chou[10]proposed an ECC-based authentication protocol exhibiting untraceability and scalability for active tags and evidenced the privacy property.However, Shenet al.[24]demonstrated that this scheme cannot resist server spoofing and replaying attacks.

    3.Preliminaries

    In this section, we briefly introduce ECC and the decisional Diffie-Hellman (DDH) problem.

    3.1.Brief lntroduction of ECC

    ECC was first introduced by Koblitz[25]and Miller[26].Suppose that integersaandbdefine an elliptic curvey2=x3+ax+b, where 4a3+27b2≠0, and the points with coordinates (x,y) on the curve, including an infinite pointO, satisfy the equation.An addition operation of the points forms a cyclic additive groupG.Operations for the elements ofGare defined as follows: 1) If a pointP=(x,y) is an element ofG, then ?P=(x,y) andP+(?P)=O;2) if two pointsPandQare different elements andP≠?Q, thenP+Qis defined as follows: If a lineLis drawn throughPandQ, thenLwould intersect with the curve and we define the intersection point by ?RandP+Q=R;3) if a pointP=(x,0), thenP+P=O; otherwise, a tangent line is drawn throughP, and then the intersection point is denoted by ?RandP+P=2P=Ris defined; 4) there exists a generatorPinGthat can generateG, namely,G={P,2P,…,(n?1)P,np=O}, where integernis the order ofG; 5) the operation of “+” satisfies the commutative and associative laws, namely,P+Q=Q+PandP+(Q+R)=(P+Q)+R, respectively.

    3.2.Decisional Diffie-Hellman (DDH) Problem

    When the ordernof a groupGis sufficiently large, given a generatorPofGand three random elementsP1=aP,P2=bP,P3=cP∈G(a,b,c∈are unknown), it is computationally infeasible to decide whetherab=cmodn.

    4.Proposed Protocol

    In this section, we propose a mutual authentication protocol based on the work introduced in Section 2.Our protocol achieves tag privacy preservation and scalability and resists attacks such as the man-in-the-middle attack,replay attack, reader/tag impersonation attack, and desynchronization attack.

    4.1.Symbols

    For readability, the symbols used herein are listed in Table 1.

    Table 1:Symbols

    4.2.Proposed Protocol

    The proposed protocol is shown in Fig.1.It can be interpreted as follows.

    1) First, readerRfirst generates a random numbera∈Rand it then computesM1=aP∈Gand sendsM1to tagT, whose identifier isti.

    2) Upon receivingM1,Tgenerates another nonceb∈Rand it then computesM2=bP,K1=bM1,K=K1+bY,m3=ti+H(M1,M2,K1,K), andm4=H(M2,K,ti), whereM2,K1,K∈G.Finally,Tresponds toRwithM2,m3, andm4.

    4) Upon receivingm5,Tverifies whetherm5=H(M1,M2,K,ti) If it is true, thenTupdates its identifierti=[H(ti,K)]?T.Otherwise,Tfails in authenticatingR.

    Fig.1.Description of the protocol.

    5.Tag Privacy Model

    In this section, we describe a tag privacy model that defines the tag forward privacy and backward privacy.

    We provide a probabilistic polynomial time (PPT)adversaryAwith the following oracles to simulate its abilities to launch protocols, observe authentication results, impersonate a reader/tag and send a message to a reader/tag in a session, and corrupt tags.

    1) Authenticate(R,T): This oracle is provided forAto launch an authentication session betweenRandT.IfAknows the secret information ofRandT, then the session transcripts, secret information ofRandT, and the authentication result are returned toA.Otherwise, only the authentication result and session transcripts are returned.

    2) Observe(R,T): It makesRlaunch an authentication session withTand return the session transcripts as well as the authentication result.

    3) Corrupt(T): It is provided forAto corrupt tagTand return the secret information ofT.

    4) Send(T/R,m): This oracle sends the messagemtoT/R, which is involved in a running session, and returns the response based on the protocol’s specification.IfT/Ris not involved in a running session, this oracle launches a new authentication session and sendsmtoT/R, and it then returns the response based on the specification of the protocol.

    5) Test(T): It is provided for adversaries only once at any given time.This oracle launches an authentication session betweenRandTand completes this session, and then selects a random bitb∈R{0,1}.Ifb=1, the transcript of the authentication session is returned; otherwise, a random transcript that has the same format as that of a true authentication session transcript is returned.

    For readability, we denote the first four oracles byO.Informally, the tag forward privacy implies that a PPT adversaryAcannot distinguish the subsequent activities of a target tagTeven if the secret information within the tag is disclosed, and the tag backward privacy implies thatAcannot distinguish the previous activities ofTeven if its secret information is disclosed.Based on challenge games, we defined the tag forward privacy and backward privacy as follows.

    Definition 1.ChallengerCprovides the private key ofRtoA, andAcan query oracles inO.At a given time point,Aselects a corrupted tagfor queryingThereafter, it can continue to query oracles inOeven with permission to query Authenticatewherek≥1.Finally,Aprovides a bitb′∈{0,1} to end this game.

    6.Security Analysis

    Moreover, our protocol provides forward privacy and backward privacy and satisfies other common security properties.We provide proofs in the following subsection.

    6.1.Forward Privacy and Backward Privacy

    We now demonstrate that if a PPT adversaryAcan break the forward privacy and backward privacy of our protocol, then we can construct an algorithm to solve the DDH problem.

    Theorem 1.For any PPT adversaryA, the proposed authentication protocol provides forward privacy according to Definition 1.

    Proof.ChallengerCinitializes the system parametersGF(q),n,G,P, and the private and public key pairy,Y=yPfor a readerR.Calso initializes each tagTwith(i= 1, 2, ···,nT) and the database ofRwith(i= 1, 2, ···,nT) and provides the private keyytoA.CselectsP1=aP,P2=bP, andP3=cPfromG, wherea,b,andcare unknown.The goal ofCis to determine whetherabP=cPis true.We guessAwill select tag∈(1,2,…,nS) as its target tag.

    AsCpossesses the private keyyand the identifier of each tag,Ccan simulateRand each tag and interact withAas follows.

    6.2.Common Security Properties

    A.Resistance to Man-in-the-Middle Attack

    When the protocol is running, an attackerAcan intercept the first round of message (M1) and replace it with another messageand sendto tagT.Upon receivingToperates based on the protocol’s specification and responds with the second round of message (M2,m3,m4) to the reader.

    WhenAinterceptsM2,m3, andm4, it may replace them withrespectively; however,m3is the value of the tag’s secret identifiertiplus a Hash value related toM1, andm4is a Hash value related totiandK(which is also related toM1).In other words,should be computed with the first messageM1to pass the verification ofR.Hence,Acannot successfully launch a man-in-the-middle attack.Moreover,Acannot correctly generatem3andm4to pass the reader’s verification without knowingti, except in the case of a negligible probability.

    B.Resistance to Replay Attack

    The authentication sessions of our protocol are initiated by the reader, and our protocol employs secret noncesa,b, and the evolution identifiertito compute the exchanged messagesM1,M2,m3,m4, andm5.Hence, attackers cannot replay these messages to the reader/tag to pass the verification.

    C.Resistance to Reader Impersonation Attack

    The reader in our protocol employs the private keyyto compute the temporary keyK, and the last round messagem5is a Hash value that is related toKand tag’s identifierti.Hence, attackers cannot impersonate the reader without the knowledge ofyandti, except in the case of a negligible probability.

    D.Resistance to Tag Impersonation Attack

    The tag in our protocol uses its identifiertito computem3andm4, and adversaries cannot impersonate the tag without possessingtito pass the reader’s verification, except in the case of a negligible probability.

    E.Resistance to Desynchronization Attack

    To desynchronize the reader and tag,Amay block the last round messagem5to prevent the tag from updating its identifier when an authentication protocol is running.However, the reader can recover synchronization with its tag in the next session using an old identifierwhich is the last successful synchronization identifier between the reader and tag.

    7.Comparisons with Related Work

    We compared our protocol with some recently proposed protocols that are based on ECC.The comparisons focus on tag privacy preservation and performance.The conclusions drawn from the comparisons of scalability (S1), mutual authentication(S2), forward-privacy preservation (S3), and backwardprivacy preservation (S4) are summarized in Table 2.Table 3 lists the computation and communications costs for comparisons.

    7.1.Comparisons of Privacy Properties

    Results listed in Table 2 show that our protocol and that proposed in [15] provide both tag forward and backward privacy.The results can be explained as follows.

    1) All the ECC-based schemes provide a fixed period of time for the reader to identify a tag and provide mutual authentication between the reader and tag.

    2) The schemes proposed in [16] and [11] do not provide forward and backward privacy based on the analysis of [27] and [15], respectively, and those proposed in [18] and [21] do not forward privacy based on the analysis of [23].

    3) Under our tag privacy model wherein an attackerAcan obtain a reader’s private key, the scheme proposed in [18] does not provide backward privacy becauseAcan easily determine the identifier of the target tag once it receives the authentication transcripts.The schemes proposed in [4] and [23] do not provide forward and backward privacy because the identifiers of the tag are constant in these schemes, andAcan easily determine the Hash value of the identifier of the target tag if it receives the transcripts of authentication sessions.

    7.2.Comparisons of Computation and Communications Costs

    As readers/servers are known to be powerful devices, we analyzed the computation cost on the tag side andthe protocol communications cost.We denote the running time of a modular multiplication operation byTmm, a point addition operation over an elliptic curve byTeca, a scalar multiplication operation over an elliptic curve byTecm, and a Hash operation byTha.In terms of the work by Chatterjeeet al.[28], we have the proportion thatTeca≈ 5Tmm,Tecm≈ 1 200Tmm, andTha≈ 0.36Tmm.To sum up the protocol communications cost, an elliptic curve is assumed to be defined in a finite fieldF(2160), which needs 40 bytes to store an elliptic curve point and 20 bytes to store an element of the field.We employ the Hash scheme[29]as our Hash function whose output length is 10 bytes.The comparison results are listed in Table 3.

    Table 2:Comparisons of privacy properties

    Table 3:Comparisons of computations and communications costs

    The comparison in Table 3 shows that the protocols proposed in [20] and [27] have the highest computation cost on the tag side (6015Tmm), whereas those in [9] and [26] have the least computation cost (2406Tmm).The computation cost of our protocol is in the range of intermediate-high values (3607Tmm).

    With regard to the communications cost, the results listed in Table 3 show that our protocol and that in [9] have the least communications cost (110 bytes), whereas the other protocols spend more on communications(≥120 bytes).

    8.Conclusions

    We proposed an ECC-based RFID authentication protocol, which takes a fixed period of time for a reader to identify a tag and provides a mutual authentication between the reader and tag.Furthermore, we proposed a tag privacy model wherein adversaries can receive the reader’s private key corrupt tags, launch and eavesdrop on protocol sessions, and send messages to readers/tags.Using this model, we formally proved the privacy property of the proposed protocol.We also demonstrated that our protocol meets the general security requirements such as resistance to replay, man-in-the-middle, impersonation, and desynchronization attacks.Analyses showed that our protocol performs better compared with the other schemes and can be used in applications that require high privacy and security.

    Disclosures

    The authors declare no conflicts of interest.

    亚洲图色成人| 少妇的逼好多水| 91精品伊人久久大香线蕉| 少妇人妻精品综合一区二区| 乱码一卡2卡4卡精品| 黄色一级大片看看| 国产真实伦视频高清在线观看| 男女边吃奶边做爰视频| 简卡轻食公司| 99久久精品一区二区三区| 全区人妻精品视频| 美女国产视频在线观看| 免费观看无遮挡的男女| 日本三级黄在线观看| www.av在线官网国产| 一区二区三区精品91| 日韩三级伦理在线观看| 日韩欧美精品免费久久| 高清毛片免费看| 久久久久国产网址| 黄片wwwwww| 一级毛片久久久久久久久女| a级毛色黄片| 久久久欧美国产精品| 男的添女的下面高潮视频| 亚洲一级一片aⅴ在线观看| 性插视频无遮挡在线免费观看| 嘟嘟电影网在线观看| 中文资源天堂在线| 欧美日韩在线观看h| 搡老乐熟女国产| 精品人妻熟女av久视频| 亚洲av中文字字幕乱码综合| 亚洲精品aⅴ在线观看| 一本色道久久久久久精品综合| 六月丁香七月| 久久精品国产鲁丝片午夜精品| 岛国毛片在线播放| 国产精品秋霞免费鲁丝片| 91在线精品国自产拍蜜月| 韩国高清视频一区二区三区| 国产又色又爽无遮挡免| 亚洲欧美日韩无卡精品| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 国产毛片在线视频| 精华霜和精华液先用哪个| 一级毛片久久久久久久久女| 中文字幕亚洲精品专区| 九九在线视频观看精品| 久久人人爽人人爽人人片va| 亚洲成人久久爱视频| 日韩电影二区| 日产精品乱码卡一卡2卡三| 午夜免费观看性视频| 在线天堂最新版资源| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美腿在线中文| 又爽又黄a免费视频| 波野结衣二区三区在线| 黑人高潮一二区| 亚洲va在线va天堂va国产| 日日啪夜夜爽| 欧美三级亚洲精品| 男女边吃奶边做爰视频| 国产黄色视频一区二区在线观看| 欧美老熟妇乱子伦牲交| 国产精品福利在线免费观看| 最近中文字幕高清免费大全6| 狂野欧美激情性bbbbbb| 国产成人一区二区在线| 久久99热这里只有精品18| 久久韩国三级中文字幕| 观看免费一级毛片| 交换朋友夫妻互换小说| 听说在线观看完整版免费高清| 亚洲精品成人av观看孕妇| 亚洲人成网站在线观看播放| 日韩欧美精品v在线| 午夜免费鲁丝| 亚洲av在线观看美女高潮| 亚洲av二区三区四区| 日本wwww免费看| 卡戴珊不雅视频在线播放| 亚洲人成网站在线播| 一个人看的www免费观看视频| 亚洲怡红院男人天堂| 美女内射精品一级片tv| 联通29元200g的流量卡| 蜜臀久久99精品久久宅男| 中国国产av一级| 国产亚洲一区二区精品| 看十八女毛片水多多多| 国产一区亚洲一区在线观看| 久久久久国产精品人妻一区二区| 特级一级黄色大片| 国产精品久久久久久精品电影| 欧美xxxx黑人xx丫x性爽| 国产乱人偷精品视频| 你懂的网址亚洲精品在线观看| 亚洲精品色激情综合| 国内精品宾馆在线| 免费av观看视频| 亚洲精品,欧美精品| 国产综合精华液| 国产v大片淫在线免费观看| 成年版毛片免费区| 欧美精品国产亚洲| 国产精品99久久99久久久不卡 | 3wmmmm亚洲av在线观看| 欧美成人一区二区免费高清观看| 联通29元200g的流量卡| 97人妻精品一区二区三区麻豆| 久久韩国三级中文字幕| 美女被艹到高潮喷水动态| 久久精品人妻少妇| 校园人妻丝袜中文字幕| 国产色爽女视频免费观看| 国产高潮美女av| 久久久久久国产a免费观看| 青春草国产在线视频| 伊人久久精品亚洲午夜| 精品久久久久久电影网| 国产成人aa在线观看| 尾随美女入室| 久久久成人免费电影| 亚洲欧美清纯卡通| kizo精华| 精品一区二区免费观看| 国产精品熟女久久久久浪| 99久久精品一区二区三区| 国产精品福利在线免费观看| 一区二区三区免费毛片| 日韩欧美一区视频在线观看 | 肉色欧美久久久久久久蜜桃 | 精品少妇黑人巨大在线播放| 亚洲怡红院男人天堂| 国产精品熟女久久久久浪| 久久久欧美国产精品| 国产精品国产三级专区第一集| 亚洲内射少妇av| 国产精品久久久久久av不卡| 免费观看的影片在线观看| 少妇 在线观看| 亚洲人成网站在线播| 国产精品不卡视频一区二区| 老司机影院毛片| 五月伊人婷婷丁香| 国产视频首页在线观看| 春色校园在线视频观看| 女人被狂操c到高潮| 高清毛片免费看| 伊人久久精品亚洲午夜| 22中文网久久字幕| 亚洲av.av天堂| 最近中文字幕高清免费大全6| 2021少妇久久久久久久久久久| 国产69精品久久久久777片| 精品视频人人做人人爽| 亚洲色图av天堂| 日本与韩国留学比较| 大片电影免费在线观看免费| 国产一级毛片在线| 夜夜看夜夜爽夜夜摸| 欧美国产精品一级二级三级 | 国产老妇伦熟女老妇高清| 熟女av电影| 精品国产三级普通话版| 少妇熟女欧美另类| 精品国产露脸久久av麻豆| 日本猛色少妇xxxxx猛交久久| 啦啦啦啦在线视频资源| 亚洲欧美一区二区三区黑人 | 亚洲国产欧美在线一区| 国产精品久久久久久久久免| 纵有疾风起免费观看全集完整版| 在线观看免费高清a一片| 国产日韩欧美在线精品| 最新中文字幕久久久久| 最近的中文字幕免费完整| 99re6热这里在线精品视频| 久久久成人免费电影| 水蜜桃什么品种好| 老司机影院毛片| 国产亚洲午夜精品一区二区久久 | av专区在线播放| 国产一区二区三区av在线| 久久久久九九精品影院| 亚洲av中文字字幕乱码综合| 高清日韩中文字幕在线| 极品教师在线视频| 在线观看av片永久免费下载| 啦啦啦中文免费视频观看日本| 在线观看人妻少妇| 哪个播放器可以免费观看大片| 国产成人免费无遮挡视频| 男人添女人高潮全过程视频| 精品一区二区免费观看| 婷婷色av中文字幕| 中文天堂在线官网| 18禁裸乳无遮挡免费网站照片| 亚洲av中文字字幕乱码综合| 亚洲精品乱久久久久久| 免费黄网站久久成人精品| 我的老师免费观看完整版| 成人特级av手机在线观看| 国产91av在线免费观看| 午夜福利高清视频| 欧美一区二区亚洲| 联通29元200g的流量卡| eeuss影院久久| av女优亚洲男人天堂| 成人高潮视频无遮挡免费网站| 亚洲av免费在线观看| 国产视频内射| 国产爱豆传媒在线观看| 丰满少妇做爰视频| 久久久欧美国产精品| 亚洲国产精品专区欧美| 干丝袜人妻中文字幕| 全区人妻精品视频| 色播亚洲综合网| 成人午夜精彩视频在线观看| 爱豆传媒免费全集在线观看| 亚洲精品乱码久久久v下载方式| 天天躁夜夜躁狠狠久久av| 少妇猛男粗大的猛烈进出视频 | 久久99热这里只频精品6学生| 日本一本二区三区精品| 亚洲怡红院男人天堂| 韩国av在线不卡| 一级毛片黄色毛片免费观看视频| 国产免费视频播放在线视频| 久久久精品免费免费高清| www.色视频.com| 少妇熟女欧美另类| 日韩欧美 国产精品| 欧美zozozo另类| 国产在线男女| 五月玫瑰六月丁香| 极品少妇高潮喷水抽搐| 免费播放大片免费观看视频在线观看| 99热这里只有是精品在线观看| 精品熟女少妇av免费看| 97热精品久久久久久| 麻豆成人av视频| 亚洲av免费在线观看| 女的被弄到高潮叫床怎么办| 国产永久视频网站| 免费观看的影片在线观看| 亚洲最大成人中文| 我要看日韩黄色一级片| 成年女人在线观看亚洲视频 | 中文字幕久久专区| 国产成人免费观看mmmm| 中文字幕亚洲精品专区| 日本与韩国留学比较| 国产片特级美女逼逼视频| 99久久九九国产精品国产免费| 精品一区在线观看国产| 国产成人a区在线观看| 26uuu在线亚洲综合色| 狂野欧美白嫩少妇大欣赏| 国产熟女欧美一区二区| 91精品伊人久久大香线蕉| 欧美日本视频| 欧美另类一区| 国产 一区 欧美 日韩| 精品久久久久久久久亚洲| 欧美xxxx性猛交bbbb| 国产老妇女一区| 在线观看美女被高潮喷水网站| 成人综合一区亚洲| 少妇人妻久久综合中文| 欧美极品一区二区三区四区| 亚洲天堂av无毛| 国产精品99久久99久久久不卡 | 熟女人妻精品中文字幕| 天堂中文最新版在线下载 | 人人妻人人爽人人添夜夜欢视频 | 男的添女的下面高潮视频| 亚洲国产最新在线播放| 白带黄色成豆腐渣| 最近中文字幕高清免费大全6| 看黄色毛片网站| 亚洲自偷自拍三级| 国产综合懂色| 黄片wwwwww| 人妻系列 视频| 国产成人精品久久久久久| 一二三四中文在线观看免费高清| 内射极品少妇av片p| 成人特级av手机在线观看| 国产日韩欧美在线精品| 国产成年人精品一区二区| 国产91av在线免费观看| 国产精品无大码| 国产 精品1| 国产熟女欧美一区二区| 久久久久九九精品影院| 精品国产露脸久久av麻豆| 欧美激情在线99| 国产精品不卡视频一区二区| 搡老乐熟女国产| 美女被艹到高潮喷水动态| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 我的老师免费观看完整版| 亚洲国产最新在线播放| 99精国产麻豆久久婷婷| 日韩欧美精品免费久久| 欧美区成人在线视频| 国产av国产精品国产| 亚洲性久久影院| 成人特级av手机在线观看| 黄色欧美视频在线观看| www.色视频.com| 在线免费十八禁| 欧美最新免费一区二区三区| 国精品久久久久久国模美| 精品人妻一区二区三区麻豆| 少妇人妻一区二区三区视频| 欧美3d第一页| 久久99精品国语久久久| 久久精品久久久久久久性| 亚洲av中文av极速乱| 精品一区二区三区视频在线| 国产成人精品久久久久久| 亚洲va在线va天堂va国产| 成人亚洲精品一区在线观看 | 亚洲欧美清纯卡通| 免费观看av网站的网址| 国模一区二区三区四区视频| 美女脱内裤让男人舔精品视频| 国产精品久久久久久av不卡| 三级男女做爰猛烈吃奶摸视频| 少妇猛男粗大的猛烈进出视频 | 国内精品宾馆在线| 人妻夜夜爽99麻豆av| 国产亚洲av嫩草精品影院| 色网站视频免费| 亚洲国产精品成人综合色| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 亚洲无线观看免费| 久久综合国产亚洲精品| 十八禁网站网址无遮挡 | 一级a做视频免费观看| 免费大片黄手机在线观看| 美女xxoo啪啪120秒动态图| 免费av观看视频| 综合色av麻豆| 国产精品国产av在线观看| 欧美另类一区| 国产精品不卡视频一区二区| 在线观看美女被高潮喷水网站| 中国美白少妇内射xxxbb| 嫩草影院精品99| 人人妻人人看人人澡| 久久久精品94久久精品| 18+在线观看网站| 又粗又硬又长又爽又黄的视频| 国产精品麻豆人妻色哟哟久久| 国产精品国产三级国产av玫瑰| 直男gayav资源| 男女下面进入的视频免费午夜| 国产精品伦人一区二区| 精华霜和精华液先用哪个| 如何舔出高潮| 男女下面进入的视频免费午夜| 亚洲精品国产av蜜桃| 99热国产这里只有精品6| 极品教师在线视频| 自拍偷自拍亚洲精品老妇| 99热6这里只有精品| 久久精品人妻少妇| 性色av一级| 日本与韩国留学比较| 啦啦啦啦在线视频资源| 看非洲黑人一级黄片| 99热这里只有精品一区| 亚洲av.av天堂| 老女人水多毛片| 我的女老师完整版在线观看| 成人美女网站在线观看视频| 大片电影免费在线观看免费| 另类亚洲欧美激情| 少妇裸体淫交视频免费看高清| 国产毛片在线视频| 日日摸夜夜添夜夜爱| 成人高潮视频无遮挡免费网站| 亚洲aⅴ乱码一区二区在线播放| 白带黄色成豆腐渣| 亚洲综合精品二区| 寂寞人妻少妇视频99o| 亚洲四区av| 寂寞人妻少妇视频99o| 亚洲国产色片| 国产精品国产三级专区第一集| 国产亚洲一区二区精品| 久久精品国产自在天天线| 免费黄网站久久成人精品| 日韩制服骚丝袜av| 免费黄频网站在线观看国产| 九色成人免费人妻av| 国产伦精品一区二区三区四那| 精品一区在线观看国产| 精品少妇黑人巨大在线播放| 毛片一级片免费看久久久久| 肉色欧美久久久久久久蜜桃 | 国产一区二区三区av在线| 欧美成人精品欧美一级黄| 亚洲欧美成人综合另类久久久| 亚洲精品国产av蜜桃| 亚洲怡红院男人天堂| 在线观看人妻少妇| 亚洲欧洲日产国产| 高清视频免费观看一区二区| 毛片一级片免费看久久久久| 日本-黄色视频高清免费观看| 热99国产精品久久久久久7| 我的老师免费观看完整版| 日韩 亚洲 欧美在线| 亚洲av中文av极速乱| 免费看av在线观看网站| 日本wwww免费看| 免费黄频网站在线观看国产| 国产亚洲午夜精品一区二区久久 | 亚洲高清免费不卡视频| 国产免费福利视频在线观看| 亚洲欧美一区二区三区国产| 国产黄频视频在线观看| 欧美高清性xxxxhd video| www.色视频.com| 成人美女网站在线观看视频| 国产视频首页在线观看| 九草在线视频观看| 禁无遮挡网站| freevideosex欧美| 亚洲精品国产av蜜桃| 亚洲av.av天堂| 中文字幕久久专区| 深爱激情五月婷婷| 亚洲色图av天堂| 美女cb高潮喷水在线观看| 我的老师免费观看完整版| 午夜日本视频在线| 免费看日本二区| 99久久精品热视频| 国产色婷婷99| 18禁在线播放成人免费| 国产精品一区二区三区四区免费观看| 禁无遮挡网站| freevideosex欧美| 精品99又大又爽又粗少妇毛片| 国产精品一及| 美女被艹到高潮喷水动态| 深爱激情五月婷婷| 欧美最新免费一区二区三区| 简卡轻食公司| 日本色播在线视频| 免费黄频网站在线观看国产| 国产视频首页在线观看| 女人久久www免费人成看片| 午夜福利视频1000在线观看| 亚洲av中文av极速乱| 晚上一个人看的免费电影| 国产成人免费观看mmmm| 少妇的逼水好多| 精品少妇久久久久久888优播| 亚洲色图av天堂| 99久国产av精品国产电影| 中文字幕av成人在线电影| 超碰97精品在线观看| 亚洲欧洲国产日韩| 天堂网av新在线| 国产精品爽爽va在线观看网站| 免费大片黄手机在线观看| 亚洲精品国产av成人精品| 男女边摸边吃奶| 免费看日本二区| 国产成人免费观看mmmm| 久久久欧美国产精品| 女人十人毛片免费观看3o分钟| 夜夜看夜夜爽夜夜摸| 午夜激情福利司机影院| 免费播放大片免费观看视频在线观看| 夜夜爽夜夜爽视频| 超碰av人人做人人爽久久| 久久女婷五月综合色啪小说 | 插逼视频在线观看| 国产黄色视频一区二区在线观看| 少妇被粗大猛烈的视频| 欧美97在线视频| 亚洲av一区综合| 国产男女超爽视频在线观看| 国产 精品1| 日本午夜av视频| 国产日韩欧美亚洲二区| 噜噜噜噜噜久久久久久91| 九草在线视频观看| 亚洲精品日本国产第一区| 91aial.com中文字幕在线观看| 亚洲精品乱码久久久v下载方式| 国产国拍精品亚洲av在线观看| 在线精品无人区一区二区三 | 亚洲人成网站高清观看| 听说在线观看完整版免费高清| 免费av不卡在线播放| 男人爽女人下面视频在线观看| 亚洲精品,欧美精品| 97在线人人人人妻| 欧美少妇被猛烈插入视频| 少妇高潮的动态图| 人妻少妇偷人精品九色| 久久精品国产自在天天线| 欧美97在线视频| 黄色怎么调成土黄色| 免费观看在线日韩| 成人鲁丝片一二三区免费| 色吧在线观看| 国产毛片在线视频| 99久久精品国产国产毛片| 久久99蜜桃精品久久| 国产大屁股一区二区在线视频| 激情 狠狠 欧美| 成人亚洲欧美一区二区av| 在线免费观看不下载黄p国产| 日韩伦理黄色片| 夜夜爽夜夜爽视频| 国产av国产精品国产| 麻豆久久精品国产亚洲av| 久热久热在线精品观看| 大片电影免费在线观看免费| 国产欧美亚洲国产| av女优亚洲男人天堂| 黄片wwwwww| 可以在线观看毛片的网站| 啦啦啦中文免费视频观看日本| 三级国产精品欧美在线观看| 男人狂女人下面高潮的视频| 啦啦啦在线观看免费高清www| 国产成人freesex在线| 亚洲va在线va天堂va国产| 国产精品福利在线免费观看| 亚洲人成网站高清观看| 嫩草影院新地址| 我的老师免费观看完整版| 国产精品蜜桃在线观看| 亚洲欧洲日产国产| 免费av不卡在线播放| 少妇熟女欧美另类| 丰满人妻一区二区三区视频av| 91狼人影院| 最近手机中文字幕大全| 亚洲欧美日韩无卡精品| 大又大粗又爽又黄少妇毛片口| 亚洲欧美日韩卡通动漫| 久久久亚洲精品成人影院| 亚洲av在线观看美女高潮| 搡老乐熟女国产| 国产精品久久久久久久电影| 一级av片app| 久久久国产一区二区| 伦理电影大哥的女人| 水蜜桃什么品种好| 精品一区二区免费观看| 国产毛片在线视频| 色婷婷久久久亚洲欧美| 免费播放大片免费观看视频在线观看| 波多野结衣巨乳人妻| 男插女下体视频免费在线播放| 国产 一区精品| 黄色欧美视频在线观看| 在线观看免费高清a一片| 亚洲av中文av极速乱| 国产综合懂色| 日本av手机在线免费观看| 边亲边吃奶的免费视频| 99久久人妻综合| 美女xxoo啪啪120秒动态图| 天堂中文最新版在线下载 | 久久久午夜欧美精品| 老女人水多毛片| 免费观看性生交大片5| 国产乱人视频| 观看免费一级毛片| 久久97久久精品| 国产爱豆传媒在线观看| av在线app专区| 久久人人爽av亚洲精品天堂 | 中国三级夫妇交换| 亚洲欧美日韩东京热| 狂野欧美激情性bbbbbb| 日韩大片免费观看网站| 99re6热这里在线精品视频| 午夜爱爱视频在线播放| 美女国产视频在线观看| 亚洲在久久综合| 亚洲欧美一区二区三区国产| 国产精品一及| 人妻制服诱惑在线中文字幕| 97精品久久久久久久久久精品| 中国三级夫妇交换| 黄色一级大片看看| 国产乱来视频区| 啦啦啦在线观看免费高清www| 黄色日韩在线| 久久99热6这里只有精品| 一边亲一边摸免费视频| 国产黄片美女视频| 热re99久久精品国产66热6| 欧美精品国产亚洲| av福利片在线观看| 美女视频免费永久观看网站| 久久久精品94久久精品|