• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates*

    2021-01-21 02:12:54ZeYuanYang楊澤園JunWang王俊GuoFengWu武國峰YongQingHuang黃永清XiaoMinRen任曉敏HaiMingJi季海銘andShuaiLuo羅帥
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王俊永清

    Ze-Yuan Yang(楊澤園), Jun Wang(王俊),?, Guo-Feng Wu(武國峰), Yong-Qing Huang(黃永清),Xiao-Min Ren(任曉敏), Hai-Ming Ji(季海銘), and Shuai Luo(羅帥)

    1State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: GaAs on Si,thermal stress,V-groove,finite-element method

    1. Introduction

    Silicon (Si) is a fundamental material of modern electronic technology, and about 95% of all semiconductor devices are manufactured by using Si substrates.[1]But, the physical properties of Si limit its application to optoelectronic devices. Gallium arsenide(GaAs)is a matured secondgeneration semiconductor material with the direct bandgap structure and high electron mobility, which is a favorable optoelectronic material. The quality of GaAs layers directly affects the performances of GaAs optoelectronic devices. The research of directly epitaxial GaAs on Si substrates can combine the matured Si-based integrated circuit process with excellent GaAs-based optoelectronic devices to realize Si-based optoelectronic integration. In addition, the GaAs-on-Si substrate will have a high market potential,which is the basis for manufacturing many kinds of optoelectronic devices, such as lasers,[2,3]solar cells,[4]and photodetectors.[5]

    However, obtaining high crystal quality GaAs on Si is still a challenge because of a high density of threading dislocations generated by 4% lattice mismatch and 119% thermal expansion coefficient(TEC)mismatch,anti-phase boundaries (APBs) formation as a consequence of the polar GaAs grown on nonpolar Si system. Many upwardly propagated threading dislocations appear in the GaAs layer.In order to inhibit the threading dislocations from upward propagating,several approaches have been employed for the epitaxial growth,such as two-step or three-step growth method,[6,7]thermal cycles annealing,[8]quantum dots dislocation filters,[9]strained layer superlattice buffer layers,[10]graded buffer layers,[11]and amorphous Si buffer layer.[12]These methods are used individually to grow the epitaxial layer, still resulting in high dislocation density. This is why two or three of these methods are commonly used together in GaAs/Si epitaxial growth.The dislocation density of the GaAs/Si epitaxial layer has decreased to about 105-cm-2orders of magnitude.[13]Nevertheless,these methods need to be less time-consuming before being employed in an industrial manufacturing process.

    An alternative approach is to use a nanopatterned Si substrate with SiO2as a mask.[14,15]The method enables the epitaxial layer to realize area-selective growth on the substrate,since forming the nuclei of deposited material on the Si surface requires much lesser free energy than that required on the mask surface. With the development of etching technology,the technology for fabricating nanoscale patterned substrates is becoming more and more matured and cheaper. Moreover,one found that for patterned substrates, the V-groove has its unique advantages in the geometry of kinds of trenches.[16]First,for 60?threading dislocations generated in the course of growth,they tend to glide along the{111}planes.These dislocations will be annihilated on the SiO2mask wall and confined in the trench. The GaAs nucleation on Si(111)generates less defects than the on Si(001).[17]Second,a GaAs lattice in the V-shape of Si with {111} facets is along the [110] direction.The crystallography analysis indicates[18]that GaAs grown on the Si(111)surface cannot result in the formation of APBs in the GaAs layer. Moreover, Li et al. have grown high-quality GaAs films with low dislocation densities through V-groove nanopatterned Si substrates.[19]High-quality GaAs films are conducive to our realizing the fabrication of subsequent devices.

    Generally speaking,during the growth of GaAs/Si materials, the lattice stress caused by lattice mismatch is released through dislocations. Subsequently, after epitaxial growth of GaAs on Si substrate is completed,in the cooling process from the growth temperature to room temperature, thermal stress arises due to the difference in TEC between GaAs and Si.When the stress(tensile in GaAs)is sufficiently large, cracks are formed on the GaAs film.[20]The presence of cracks in GaAs thin film is not desirable for device fabrication because they can deteriorate the performance and lifetime of devices fabricated on the epilayers. Therefore, the thermal mismatch effects must be addressed during GaAs epitaxial growth.Thermal stress caused by TEC mismatch has attracted the attention of researchers. Many experiments have confirmed that the thermal stress is existent and harmful.[21,22]Moreover,Li et al. have proved through the photoluminescence spectroscopy that the method of selective area growth of GaAs in V-grooved Si can efficiently relax the strain induced by the TEC mismatch.[23]However, the thermal stress distributed at each point of the structure cannot be measured experimentally.To date, the thermal stress distribution on the GaAs epitaxial layer of V-grooved patterned Si substrates has not been studied in detail. Therefore, in order to fabricate optoelectronic devices with better performance, it is necessary to explore the thermal stress distribution in nanoscale V-groove patterned structures for the growth of GaAs/Si.

    In this paper, we aim to systematically study the thermal stress in the coalesced GaAs layer grown on V-groove nanopatterned Si substrate by the finite-element method.First,we describe two models of two-dimensional (2D) structures with GaAs epitaxial growth on planar Si substrate and Vgroove patterned Si substrate, respectively. Subsequently, we compare the thermal stresses of the GaAs layers grown on two kinds of Si substrates. Comparing with the planar Si substrate,the thermal stress is significantly reduced for the GaAs layer on the V-groove patterned Si substrate. Finally,the influences of the width of the V-groove,the thickness and the width of the SiO2mask of the structure on thermal stress of the GaAs epitaxial layer are discussed.The results demonstrate that the role of the SiO2mask and the V-groove are outstanding,reducing the thermal stress on the GaAs layer.

    2. Material structures and simulation model

    The finite element method is used to calculate the thermal stress distributions of the two structures. The fixed constraint is applied to point O as shown in Fig.1,and the prescribed displacement in the[001]direction is applied to the point O1. All other points in the two structures can move freely according to the law of thermal expansion without any external mechanical constraint. The material parameters are listed in Table 1. The triangular mesh is used to divide the two structures based on geometric dimensions. The extremely fine mesh with a maximum element size of 5 nm and minimum element size of 1 nm is introduced into the model for the GaAs window area and the SiO2mask. For other parts of the mesh,the fine mesh with a maximum element size of 2 μm and minimum element size of 10 nm is used. Experiments have shown that a GaAs epitaxial layer grown at a higher temperature (>650?C) can form a single-crystal layer with better crystal quality.[6]Therefore,for the two GaAs/Si models,it is assumed that they are cooled from the growth temperature of 685?C to room temperature 20?C, and the stability of GaAs thermal stress is analyzed.The effects of the width of the V-groove,the thickness and the width of the SiO2mask on the thermal stress of the structures are investigated.

    Fig.1. Structure of GaAs epitaxially grown on(a)planar Si substrate and[(b)and(c)]V-groove patterned Si substrate.

    Table 1. Material parameters used in simulations.

    3. Results and discussion

    The thermal stress distributions of the two 2D models in Fig.1 are shown in Fig.2.Figure 2(a)shows the thermal stress distribution of the structure on the planar Si substrate. It can be seen that the Si substrate is subjected to compressive stress(negative) and the GaAs layer is subjected to tensile stress(positive). At the GaAs/Si interface, the stress has a sharp change. The stress is laterally uniform but it varies with the position of the structure along the z-axis direction. Figure 2(b)shows the thermal stress distribution of the structure on the Vgroove patterned Si substrate. In the structure, the width of the V-groove,the thickness and width of the SiO2mask are all set to be 100 nm. The thermal stress of the structure changes periodically in the lateral direction,and the stress distribution is not uniform at different positions along the z-axis direction,especially near the GaAs/Si interface. Since the TEC of GaAs is much larger than that of Si, the GaAs layer is mostly subjected to tensile stress and the Si substrate is mostly subjected to compressive stress. Near the GaAs/Si interface, the stress may appear in the opposite state of stress. Introducing the SiO2mask,the thermal stress of GaAs layers between masks is significantly reduced. This is because the TEC of SiO2is very small(about 1/11 of GaAs),which hinders the pattern region of GaAs from shrinking in the cooling process. The Si substrate is much thicker than the SiO2mask,so the stress of the GaAs layer away from SiO2masks is mainly determined by the Si substrate. The area influenced by the SiO2mask is only in the window area as shown in Fig.2(b). The maximum stress can reach 339 MPa,which appears in the upper area of the SiO2mask, suggesting that cracks and defects are most likely to occur in the region during the experiment. However,for the small region above the SiO2mask, the cracks and defects can be easy to be avoided by experimental methods,such as forming a gap in the small region.[25]The stress at the bottom of the V-groove(point A)is 209 MPa. Figure 2(c)shows the thermal stress distribution of the structure on the V-groove patterned Si substrate without SiO2mask.Comparing with the planar Si substrate,the thermal stress is reduced for the GaAs layer in the groove. After adding the SiO2mask, the stress reduction is more obvious.

    Fig.2. Thermal stress distribution of GaAs epitaxially grown on(a)planar Si substrate and[(b)and(c)]V-groove patterned Si substrate.

    Figure 3 shows the thermal stress value along lines I, II,III, and IV in Fig. 2. Line I reveals the thermal stress distribution of the structure on the planar Si substrate. As the distance from the GaAs/Si interface increases, the stress decreases linearly for the Si substrate and the GaAs layer. It is worth noting that the stress changes extremely small within the Si layer and the GaAs layer, separately. The results show that when the distance from the interface is within 71 nm,the compressive stress in the Si substrate is about 32 MPa,and the tensile stress in the entire GaAs layer is about 245 MPa. Line II reveals the thermal stress distribution of the structure on the V-groove patterned Si substrate. As can be seen from line II,near the Si/GaAs interface, the stress of the curve fluctuates greatly in the Si layer and GaAs layer, separately. The GaAs layer is subjected to compressive stress within 5 nm from point A. Then,the GaAs layer is subjected to tensile stress at a distance of more than 5 nm from point A. In addition,the farther away from point A, the smaller the change in stress is, and the final stress is about 244 MPa. Comparing with the planar Si substrate, the thermal stress significantly decreases for the GaAs layer, of which the thickness is within 300 nm on the V-groove patterned Si substrate, and particularly, the average stress of line BD is 100 MPa,which is reduced by 59%. Line III reveals the thermal stress distribution in and around a SiO2mask layer on the patterned Si substrate. The stress of line KJ represents the stress in the SiO2mask layer. A small part of the center in the SiO2mask layer presents the tensile stress,and the rest the compressive stress. And at the edge of the SiO2mask there appears the largest compressive stress. The stresses of line HK and above point J represent the stresses in the Si substrate and the GaAs layer. It can be seen that the closer to the SiO2mask,the greater the tensile stress they are subjected to. Line IV reveals the thermal stress distribution of the GaAs layer on the V-groove patterned Si substrate without SiO2mask. The farther from the bottom of the V-groove,the higher the stress. Obviously, the stress of the structure with SiO2mask is less than that without SiO2mask. In addition,the final stress of the GaAs layer is about 244 MPa. Therefore,the SiO2mask affects the quality of the GaAs in the relevant regions. Finally,it is important to point out that the final stresses of the three lines are close to each other Our results support the experimental results[23]that epitaxial growth on a nanopatterned substrate can effectively release stress due to thermal mismatch.

    Fig.3. Thermal stress value varying with distance along four lines(lines I,II,III,and IV)in Fig.2.

    From the above analysis,we find that the stress in the window area is lower than in other areas, which is more suitable for fabricating optoelectronic devices. Therefore, in the following,we will study the thermal stress values in the window area for different widths of the V-groove,thickness values,and widths of the SiO2mask.

    Fig.4. Calculated thermal stress values along(a)line AB,(b)line BD,and(c)line EF for different widths of V-groove,with SiO2 mask being 100 nm both in thickness and in width.

    Figure 4 shows the effect of the width of V-groove on the thermal stress. The thermal stresses along lines AB, BD,and EF are shown in Figs. 4(a)–4(c), respectively. We can observe from Fig. 4(a) that the beginning of each curve located at the bottom of the V-groove presents the compressive stress. The compressive stress decreases as the distance increases from point A. This is because the region at the bottom of the V-groove is extremely narrow,and the narrower the GaAs window region,the greater the thermal stress of GaAs in the pattern region is affected by the SiO2mask. We can notice that there is a critical point where the stress is zero. Then the stress is converted into tensile stress on line AB. And the tensile stress on each curve first increases and then decreases as the distance increases from point A. In addition,as the width of the V-groove increases, the maximum of tensile stress increases. It can be seen from Fig.4(b)that the tensile stress on line BD is large at both ends and small in the middle. While the tensile stress on line EF is small at the ends and large in the middle as shown in Fig. 4(c). Due to the symmetry and repeatability of the structure,the stress value of lines EC and FC are the same. Furthermore, the tensile stress of lines BD and EF increase with the width of V-groove increasing. And the wider the V-groove,the more uniform the stress of line BD is.In particular,the stress state at point C is compressive when the width of the V-groove width is 50 nm.

    We calculate the average stress in the growth window area of the GaAs layer by the data on lines BD and EF. The result shows that when the width of V-groove is 50 nm,75 nm,100 nm,150 nm,the average stress of the GaAs epitaxial layer in the growth window region is 24 MPa, 53 MPa, 80 MPa,117 MPa,separately

    Figure 5 shows the average thermal stress values along line BD and line EF with different thickness values and widths of the SiO2mask, when the width of the V-groove is fixed at 50 nm. As shown in Fig. 5, the size of the SiO2mask has a certain effect on the stress of the GaAs layer. And within a certain range, as the thickness or width of the SiO2mask increases, the average thermal stress first decreases and then increases. When the thickness and width of the SiO2mask are both 100 nm,the average stress is minimum,which is 24 MPa.In Fig.5,the minimum value is clearly marked in gray. In this optimal structure,the aspect ratio of the window area is 2.

    Fig.5. Average thermal stress values along line BD and line EF with different thickness values and widths of SiO2 mask,with width of V-groove being 50 nm.

    Table 2 shows the influences of the thickness and width of the SiO2mask in a range of between 0 nm and 50 nm on the average thermal stress of GaAs in the patterned area. Without SiO2mask, the stress is 210 MPa. It can be clearly seen that the introduction of the SiO2mask reduces the thermal stress of GaAs in the patterned area.

    So, the three structure parameters that are the width of the V-groove, the thickness and the width of the SiO2mask,significantly affect the thermal stress of the GaAs layer. When the width of V-groove is 50 nm and the width and the thickness of the SiO2mask are both 100 nm, the GaAs layer exhibits a minimum stress. Comparing with the planar Si substrate,the average stress of the GaAs epitaxial layer in the growth window region of the V-grooved Si substrate is reduced by 90%. Finally,Guo et al. demonstrated that high quality GaAs can be obtained in sub-50-nm wide V-groove according to the experiment,[15]so the 50-nm V-groove of our optimal structure is achievable. Li et al.[23]and Freundlich et al.[27]also proved that the method of selective area growth of GaAs on V-grooved pattered Si substrate with SiO2mask can efficiently relax the strain induced by the thermal mismatch,which is consistent with our results. Therefore, our optimal structure can achieve high-quality GaAs growth.

    Table 2. Average thermal stress with width of V-groove being 50 nm.

    4. Conclusions

    In this work we perform the thermal stress analysis of a GaAs layer grown on the V-groove patterned Si substrate by the finite-element method. First, structures of the GaAs layers respectively grown on the V-groove patterned Si substrate and the planar Si substrate are modeled to calculate their stress distributions The results show that the thermal stress distribution near the interface in the patterned substrate is nonuniform,which is different from the planar structure. Comparing with the planar substrate,the thermal stress of the GaAs layer on the patterned substrate is significantly reduced, especially when the thickness of the GaAs layer is within 300 nm. Second,the three factors that are the width of the V-groove,the thickness and the width of the SiO2mask are also studied,which significantly affect the thermal stress distribution of the GaAs layer.The results indicate that when the width of V-groove is 50 nm and the width and the thickness of the SiO2mask are both 100 nm,the GaAs layer is subjected to the minimum stress. In addition, comparing with the planar Si substrate, the average stress of the GaAs epitaxial layer in the growth window region of the V-grooved Si substrate is reduced by 90%. These findings are important for growing the high-quality GaAs films and provide an important step towards the optoelectronic device integration on GaAs substrates.

    猜你喜歡
    王俊永清
    春茶
    Improving dynamic characteristics for IGBTs by using interleaved trench gate
    走近父老鄉(xiāng)親
    嶺南音樂(2022年6期)2022-02-04 13:50:24
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    下廚
    羌家人的夢
    黃河之聲(2019年17期)2019-10-21 01:40:38
    導(dǎo)數(shù)應(yīng)用點(diǎn)睛
    Dust Aerosol Effects on Cirrus and Altocumulus Clouds in Northwest China
    王俊看醫(yī)改政府盡快解決三個(gè)問題
    High-resolution boosted reconstruction of γ-ray spectra?
    夫妻性生交免费视频一级片| 能在线免费观看的黄片| 亚洲内射少妇av| av在线观看视频网站免费| 伦精品一区二区三区| 欧美高清性xxxxhd video| 欧美性猛交黑人性爽| 亚洲精品久久久久久婷婷小说 | 秋霞伦理黄片| 综合色av麻豆| 国产成人精品久久久久久| 国产v大片淫在线免费观看| 一边摸一边抽搐一进一小说| 村上凉子中文字幕在线| 亚洲av中文字字幕乱码综合| 久热久热在线精品观看| 亚洲欧美中文字幕日韩二区| 国产69精品久久久久777片| 国产黄a三级三级三级人| 麻豆成人午夜福利视频| 成人毛片a级毛片在线播放| 欧美一级a爱片免费观看看| 人妻少妇偷人精品九色| 色综合站精品国产| 国产精品国产三级专区第一集| 不卡视频在线观看欧美| 国产精品野战在线观看| 狂野欧美白嫩少妇大欣赏| 99久久精品国产国产毛片| 国产成人91sexporn| 女人久久www免费人成看片 | 成人亚洲欧美一区二区av| 伦精品一区二区三区| 久久久久久久久久成人| 99久国产av精品国产电影| 色综合站精品国产| 国产 一区精品| 久久久久久久久久成人| 久久久欧美国产精品| 可以在线观看毛片的网站| 国产真实乱freesex| 亚洲内射少妇av| 高清日韩中文字幕在线| 午夜福利网站1000一区二区三区| 亚洲在线观看片| 午夜老司机福利剧场| 国产精品一区二区三区四区久久| 日日啪夜夜撸| 少妇熟女aⅴ在线视频| 乱码一卡2卡4卡精品| 狂野欧美白嫩少妇大欣赏| 天天躁日日操中文字幕| 亚州av有码| 久久99精品国语久久久| 久久久久免费精品人妻一区二区| 国产人妻一区二区三区在| 丝袜美腿在线中文| 国产成人福利小说| 国产成年人精品一区二区| 亚洲国产精品专区欧美| av.在线天堂| 国产成人一区二区在线| 久久精品国产99精品国产亚洲性色| 大香蕉97超碰在线| 久久99热这里只频精品6学生 | 日韩欧美三级三区| 91午夜精品亚洲一区二区三区| av在线亚洲专区| 人人妻人人看人人澡| 亚洲aⅴ乱码一区二区在线播放| 亚洲伊人久久精品综合 | av天堂中文字幕网| 国产乱人偷精品视频| 久久午夜福利片| 九九热线精品视视频播放| 免费播放大片免费观看视频在线观看 | 精品久久久久久久末码| 中文精品一卡2卡3卡4更新| 村上凉子中文字幕在线| 日韩人妻高清精品专区| av在线蜜桃| 国产成人精品久久久久久| 午夜免费男女啪啪视频观看| 如何舔出高潮| 简卡轻食公司| 亚洲av一区综合| 我要搜黄色片| av视频在线观看入口| 中文欧美无线码| 人妻夜夜爽99麻豆av| 欧美激情久久久久久爽电影| 午夜精品国产一区二区电影 | 亚洲人成网站在线播| 两个人视频免费观看高清| 午夜免费激情av| 超碰av人人做人人爽久久| 免费电影在线观看免费观看| 26uuu在线亚洲综合色| 国产午夜精品久久久久久一区二区三区| 九九在线视频观看精品| 久久久a久久爽久久v久久| 麻豆av噜噜一区二区三区| 69av精品久久久久久| 亚洲精品国产成人久久av| 男女边吃奶边做爰视频| 淫秽高清视频在线观看| 中文字幕熟女人妻在线| 男人舔女人下体高潮全视频| 欧美bdsm另类| 久久精品久久久久久噜噜老黄 | 国产免费视频播放在线视频 | 欧美精品国产亚洲| 国产免费又黄又爽又色| 麻豆精品久久久久久蜜桃| 亚洲最大成人手机在线| or卡值多少钱| 亚洲av成人精品一二三区| 久久99精品国语久久久| 天堂中文最新版在线下载 | 三级国产精品欧美在线观看| 精品一区二区三区人妻视频| av天堂中文字幕网| av福利片在线观看| 亚洲色图av天堂| 亚洲人成网站在线观看播放| 波多野结衣巨乳人妻| 乱码一卡2卡4卡精品| 尤物成人国产欧美一区二区三区| 青春草国产在线视频| 能在线免费看毛片的网站| 卡戴珊不雅视频在线播放| 久久久精品94久久精品| 精品久久国产蜜桃| 嫩草影院精品99| 床上黄色一级片| 免费av毛片视频| 亚洲av中文av极速乱| 久久久午夜欧美精品| 五月伊人婷婷丁香| 国产一级毛片七仙女欲春2| 亚洲欧美日韩东京热| kizo精华| 天堂av国产一区二区熟女人妻| 精品人妻一区二区三区麻豆| 国产精品蜜桃在线观看| 91在线精品国自产拍蜜月| 亚洲av免费在线观看| 爱豆传媒免费全集在线观看| 欧美一区二区国产精品久久精品| 国产高清视频在线观看网站| 亚洲三级黄色毛片| 真实男女啪啪啪动态图| 欧美97在线视频| 国产av一区在线观看免费| 丝袜喷水一区| 99热精品在线国产| 中文在线观看免费www的网站| 成年av动漫网址| av在线老鸭窝| 日韩成人伦理影院| 欧美潮喷喷水| 国产日韩欧美在线精品| 尤物成人国产欧美一区二区三区| 中文在线观看免费www的网站| 国产探花在线观看一区二区| 国产精品久久久久久久久免| 国产亚洲av嫩草精品影院| 久久韩国三级中文字幕| 七月丁香在线播放| 午夜日本视频在线| 国产乱人视频| 神马国产精品三级电影在线观看| 男人舔女人下体高潮全视频| 中文欧美无线码| 亚洲真实伦在线观看| 国产真实伦视频高清在线观看| 久久亚洲精品不卡| 国产成年人精品一区二区| 高清av免费在线| 青春草亚洲视频在线观看| 国产精品人妻久久久影院| 亚洲精品色激情综合| 精品不卡国产一区二区三区| 全区人妻精品视频| 日产精品乱码卡一卡2卡三| 你懂的网址亚洲精品在线观看 | 亚洲自偷自拍三级| 日本wwww免费看| 国产精品av视频在线免费观看| 久久久久久久久大av| 欧美性猛交黑人性爽| 深爱激情五月婷婷| 久久久久久久久久黄片| 91久久精品国产一区二区三区| 国产黄色小视频在线观看| 午夜福利视频1000在线观看| 三级毛片av免费| 国产亚洲一区二区精品| 人妻系列 视频| 色视频www国产| 国产一级毛片在线| 亚洲精品一区蜜桃| 久久久精品大字幕| 小蜜桃在线观看免费完整版高清| 亚洲最大成人中文| 天堂中文最新版在线下载 | 午夜福利高清视频| 国产乱人视频| 深夜a级毛片| 亚洲欧洲国产日韩| 亚洲18禁久久av| 毛片一级片免费看久久久久| 男女视频在线观看网站免费| 欧美激情在线99| 国产片特级美女逼逼视频| 99热全是精品| 国产一级毛片在线| 国产成人a区在线观看| 伦精品一区二区三区| 亚洲第一区二区三区不卡| 成人毛片60女人毛片免费| 日韩av在线免费看完整版不卡| 亚洲欧美日韩无卡精品| av免费观看日本| 欧美激情久久久久久爽电影| 精品久久久久久成人av| 最近2019中文字幕mv第一页| 日本欧美国产在线视频| 91久久精品国产一区二区成人| 噜噜噜噜噜久久久久久91| 九九久久精品国产亚洲av麻豆| 亚洲精品日韩av片在线观看| 午夜福利网站1000一区二区三区| 22中文网久久字幕| 精品一区二区三区人妻视频| 成年版毛片免费区| 18+在线观看网站| 国产精品国产三级国产专区5o | 99热精品在线国产| 99热这里只有精品一区| 男人狂女人下面高潮的视频| 亚洲不卡免费看| 亚洲精品456在线播放app| 又爽又黄无遮挡网站| 中文字幕免费在线视频6| 亚洲欧美精品综合久久99| 欧美xxxx性猛交bbbb| 18禁在线播放成人免费| 综合色丁香网| 91久久精品国产一区二区成人| 亚洲欧美清纯卡通| 男女视频在线观看网站免费| 国产精品三级大全| 变态另类丝袜制服| 五月玫瑰六月丁香| 国产一区亚洲一区在线观看| 亚洲精品乱久久久久久| 国产一区亚洲一区在线观看| 国产男人的电影天堂91| 中文精品一卡2卡3卡4更新| 爱豆传媒免费全集在线观看| 免费不卡的大黄色大毛片视频在线观看 | 精品一区二区三区人妻视频| 日本黄大片高清| 男的添女的下面高潮视频| 日本免费一区二区三区高清不卡| 天堂中文最新版在线下载 | 中文字幕精品亚洲无线码一区| 国产成人福利小说| 亚洲av免费在线观看| 听说在线观看完整版免费高清| 久久精品久久精品一区二区三区| 久久精品久久精品一区二区三区| 国产精品女同一区二区软件| 亚洲欧美清纯卡通| 一本久久精品| 久久精品久久久久久久性| 国产真实乱freesex| 成人av在线播放网站| 欧美一区二区国产精品久久精品| 成年女人永久免费观看视频| 又粗又硬又长又爽又黄的视频| 亚洲欧洲国产日韩| 免费av毛片视频| 国产一区亚洲一区在线观看| 麻豆国产97在线/欧美| 一级毛片电影观看 | 亚洲av男天堂| 亚洲欧洲国产日韩| 免费电影在线观看免费观看| av又黄又爽大尺度在线免费看 | 少妇高潮的动态图| 久久精品人妻少妇| 黑人高潮一二区| 美女国产视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 韩国av在线不卡| 国产av一区在线观看免费| 国产精品野战在线观看| www.av在线官网国产| 亚洲天堂国产精品一区在线| 久久精品夜色国产| 18禁动态无遮挡网站| 啦啦啦观看免费观看视频高清| 国产免费男女视频| 一个人看视频在线观看www免费| 欧美激情国产日韩精品一区| 国产白丝娇喘喷水9色精品| 夜夜看夜夜爽夜夜摸| 亚洲电影在线观看av| 午夜福利高清视频| 国产亚洲5aaaaa淫片| 亚洲av.av天堂| 国产一区二区亚洲精品在线观看| 久久久久久大精品| 18禁裸乳无遮挡免费网站照片| 我要看日韩黄色一级片| 亚洲内射少妇av| 观看美女的网站| 最后的刺客免费高清国语| 一级av片app| 久久精品熟女亚洲av麻豆精品 | 国产伦一二天堂av在线观看| 国产午夜福利久久久久久| 国产免费一级a男人的天堂| 久久99蜜桃精品久久| 日本wwww免费看| 国产精品日韩av在线免费观看| 国产男人的电影天堂91| 99久久中文字幕三级久久日本| 国产精品,欧美在线| 日韩欧美三级三区| 观看美女的网站| 好男人在线观看高清免费视频| 成年免费大片在线观看| 久久久久性生活片| 亚洲精品国产av成人精品| 欧美激情在线99| 欧美性猛交╳xxx乱大交人| 欧美一区二区亚洲| 天天躁日日操中文字幕| 三级国产精品片| 中文字幕亚洲精品专区| 国产亚洲av片在线观看秒播厂 | .国产精品久久| 亚洲中文字幕一区二区三区有码在线看| 又粗又爽又猛毛片免费看| 亚洲精品日韩av片在线观看| 男人舔女人下体高潮全视频| 国产高清国产精品国产三级 | 高清在线视频一区二区三区 | 99久国产av精品| 老师上课跳d突然被开到最大视频| 联通29元200g的流量卡| 夫妻性生交免费视频一级片| 亚洲欧美日韩无卡精品| 精品国产三级普通话版| 午夜a级毛片| 少妇裸体淫交视频免费看高清| 久久综合国产亚洲精品| 一个人免费在线观看电影| 男插女下体视频免费在线播放| 成年免费大片在线观看| 日韩欧美国产在线观看| 国产精品电影一区二区三区| 在线播放无遮挡| 波野结衣二区三区在线| 亚洲精品456在线播放app| 国产午夜精品一二区理论片| 欧美日韩综合久久久久久| 亚洲欧美精品专区久久| 变态另类丝袜制服| 一区二区三区乱码不卡18| 非洲黑人性xxxx精品又粗又长| av黄色大香蕉| 久久精品国产亚洲av涩爱| 日日啪夜夜撸| 床上黄色一级片| 69人妻影院| 国产在视频线精品| 中文乱码字字幕精品一区二区三区 | 色尼玛亚洲综合影院| 一个人看视频在线观看www免费| 91久久精品电影网| 天堂√8在线中文| 亚洲av熟女| 久久精品国产亚洲网站| 一级爰片在线观看| 日日摸夜夜添夜夜添av毛片| 永久免费av网站大全| 亚洲国产精品专区欧美| 国产视频首页在线观看| 能在线免费看毛片的网站| 最近手机中文字幕大全| 又爽又黄无遮挡网站| 免费观看精品视频网站| 国产免费男女视频| 一区二区三区高清视频在线| 在线观看一区二区三区| 日韩强制内射视频| 亚洲精品国产av成人精品| 亚洲久久久久久中文字幕| 日韩国内少妇激情av| 婷婷色麻豆天堂久久 | 七月丁香在线播放| av在线播放精品| 久99久视频精品免费| videos熟女内射| 亚洲成色77777| 神马国产精品三级电影在线观看| 91在线精品国自产拍蜜月| 建设人人有责人人尽责人人享有的 | 亚洲欧美一区二区三区国产| 免费一级毛片在线播放高清视频| 国产高潮美女av| 日韩欧美三级三区| 丰满少妇做爰视频| 婷婷色av中文字幕| 国产成人午夜福利电影在线观看| 国产免费福利视频在线观看| 免费电影在线观看免费观看| 欧美成人a在线观看| 色尼玛亚洲综合影院| 一个人看视频在线观看www免费| 亚洲激情五月婷婷啪啪| 又粗又硬又长又爽又黄的视频| 日韩高清综合在线| 99热这里只有是精品在线观看| 中国美白少妇内射xxxbb| 成人毛片a级毛片在线播放| 国产男人的电影天堂91| 久久久久久国产a免费观看| 国产老妇伦熟女老妇高清| videos熟女内射| 人体艺术视频欧美日本| 日本五十路高清| 国产精品爽爽va在线观看网站| 国产淫片久久久久久久久| 亚洲天堂国产精品一区在线| 精品少妇黑人巨大在线播放 | 天堂√8在线中文| 美女cb高潮喷水在线观看| 国产亚洲av片在线观看秒播厂 | 国产精品人妻久久久久久| 久久欧美精品欧美久久欧美| 床上黄色一级片| 亚洲国产精品成人综合色| 好男人在线观看高清免费视频| 别揉我奶头 嗯啊视频| 久久久久久久久久久免费av| 成人三级黄色视频| 国产午夜福利久久久久久| 2022亚洲国产成人精品| 爱豆传媒免费全集在线观看| 国产亚洲av嫩草精品影院| 九九爱精品视频在线观看| 女人久久www免费人成看片 | a级毛片免费高清观看在线播放| 少妇熟女欧美另类| 亚洲欧美成人精品一区二区| 国产一区二区在线观看日韩| 卡戴珊不雅视频在线播放| 桃色一区二区三区在线观看| 国产午夜精品论理片| 亚洲自拍偷在线| 免费观看人在逋| 一级av片app| 国产精品一区二区三区四区免费观看| 黄片无遮挡物在线观看| 激情 狠狠 欧美| 亚洲在久久综合| 亚洲欧美成人综合另类久久久 | 日韩高清综合在线| 亚洲图色成人| 你懂的网址亚洲精品在线观看 | or卡值多少钱| 久久精品国产亚洲网站| 亚洲成av人片在线播放无| 国产亚洲5aaaaa淫片| 久久久精品欧美日韩精品| 如何舔出高潮| 一个人看的www免费观看视频| 热99在线观看视频| 亚洲va在线va天堂va国产| 国产乱人偷精品视频| 国产老妇女一区| 精品久久久久久电影网 | 日本黄色片子视频| 日日摸夜夜添夜夜添av毛片| 黄片无遮挡物在线观看| 两个人视频免费观看高清| 中文字幕免费在线视频6| 成人亚洲欧美一区二区av| 亚洲熟妇中文字幕五十中出| 国产麻豆成人av免费视频| 国产又色又爽无遮挡免| 久久欧美精品欧美久久欧美| 听说在线观看完整版免费高清| 久久99热6这里只有精品| 免费看光身美女| 少妇丰满av| 99久久精品国产国产毛片| 久久这里有精品视频免费| 日韩人妻高清精品专区| 久久精品综合一区二区三区| 国产视频内射| 大香蕉久久网| 哪个播放器可以免费观看大片| 国产免费视频播放在线视频 | 亚洲欧美日韩高清专用| 人人妻人人看人人澡| 菩萨蛮人人尽说江南好唐韦庄 | 狂野欧美白嫩少妇大欣赏| 18+在线观看网站| 亚洲精品日韩av片在线观看| 欧美精品国产亚洲| 国产精品一区www在线观看| 亚洲成av人片在线播放无| 最近中文字幕2019免费版| 在线免费观看的www视频| 精品一区二区三区视频在线| 18+在线观看网站| 国产午夜精品久久久久久一区二区三区| 久久精品久久精品一区二区三区| 亚洲精品一区蜜桃| 国产精品综合久久久久久久免费| 少妇裸体淫交视频免费看高清| 国产精品永久免费网站| 国产老妇女一区| 精品午夜福利在线看| 国产精品美女特级片免费视频播放器| 午夜免费男女啪啪视频观看| 亚洲精品自拍成人| 91在线精品国自产拍蜜月| 老女人水多毛片| 亚洲成人av在线免费| 一边亲一边摸免费视频| 精品人妻熟女av久视频| 人人妻人人看人人澡| 亚洲欧美日韩无卡精品| 日韩av在线大香蕉| 久热久热在线精品观看| 国产毛片a区久久久久| 亚洲国产欧美在线一区| av国产久精品久网站免费入址| 真实男女啪啪啪动态图| 亚洲精品久久久久久婷婷小说 | 国产女主播在线喷水免费视频网站 | 级片在线观看| 国产真实伦视频高清在线观看| 人妻少妇偷人精品九色| 亚洲电影在线观看av| 有码 亚洲区| 亚洲人成网站高清观看| 日韩国内少妇激情av| 久久久亚洲精品成人影院| 久久精品久久精品一区二区三区| 国产单亲对白刺激| 人体艺术视频欧美日本| 变态另类丝袜制服| 99久国产av精品国产电影| 欧美高清成人免费视频www| 国产白丝娇喘喷水9色精品| 床上黄色一级片| 非洲黑人性xxxx精品又粗又长| 人人妻人人看人人澡| 91aial.com中文字幕在线观看| 久久精品久久精品一区二区三区| 午夜老司机福利剧场| 久久久久久久亚洲中文字幕| 免费av不卡在线播放| 九九久久精品国产亚洲av麻豆| 久99久视频精品免费| 午夜精品一区二区三区免费看| 91午夜精品亚洲一区二区三区| 免费看美女性在线毛片视频| 国产大屁股一区二区在线视频| 日韩av不卡免费在线播放| 日韩成人av中文字幕在线观看| 九九爱精品视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 色吧在线观看| 建设人人有责人人尽责人人享有的 | 国产精品野战在线观看| 少妇被粗大猛烈的视频| 在现免费观看毛片| 日本-黄色视频高清免费观看| 99久久中文字幕三级久久日本| 少妇人妻精品综合一区二区| 波野结衣二区三区在线| 亚洲最大成人av| 亚洲不卡免费看| 久久欧美精品欧美久久欧美| 精品免费久久久久久久清纯| 国产成人a区在线观看| 欧美日韩精品成人综合77777| 亚洲国产成人一精品久久久| 久久精品夜夜夜夜夜久久蜜豆| 国产乱人偷精品视频| 国产私拍福利视频在线观看| 久久久a久久爽久久v久久| 亚洲国产欧美在线一区| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 亚洲丝袜综合中文字幕| 在线观看一区二区三区| 精品欧美国产一区二区三| 特级一级黄色大片| 国产成人精品婷婷| 又爽又黄无遮挡网站| 亚洲精品aⅴ在线观看| 国产免费视频播放在线视频 | 搡女人真爽免费视频火全软件| 久久人人爽人人片av| 国产高清不卡午夜福利|