• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dust Aerosol Effects on Cirrus and Altocumulus Clouds in Northwest China

    2015-11-21 11:23:28WANGWencai王文彩SHENGLifang盛立芳JINHongchun金宏春andHANYongqing韓永清
    Journal of Meteorological Research 2015年5期
    關鍵詞:永清

    WANG Wencai(王文彩),SHENG Lifang(盛立芳),JIN Hongchun(金宏春),and HAN Yongqing(韓永清)

    1 Physical Oceanography Laboratory,Ocean University of China,Qingdao 266100

    2 Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    3 Shandong Provincial Meteorological Bureau,Jinan 250031

    Dust Aerosol Effects on Cirrus and Altocumulus Clouds in Northwest China

    WANG Wencai1?(王文彩),SHENG Lifang1(盛立芳),JIN Hongchun2(金宏春),and HAN Yongqing3(韓永清)

    1 Physical Oceanography Laboratory,Ocean University of China,Qingdao 266100

    2 Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    3 Shandong Provincial Meteorological Bureau,Jinan 250031

    Dust aerosol effects on the properties of cirrus and altocumulus cloud in Northwest China were studied for the period March-May 2007 by using the satellite data of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations(CALIPSO),Aqua,and CloudSat.Dusty clouds were defined as those mixed with dust aerosols or existing in dust aerosol conditions,while pure clouds were those in a dust-free environment. For dusty altocumulus clouds,the mean values of cloud optical depth(OPD),cloud liquid water path(LWP),cloud ice water path(IWP),cloud effective particle radius(Re),and cloud effective particle diameter(De)were 6.40,40.23 g m-2,100.70 g m-2,8.76μm,and 40.72μm,respectively.For pure altocumulus clouds,the corresponding mean values were 9.28,76.70 g m-2,128.75 g m-2,14.03μm,and 48.92μm,respectively. These results show a significant decrease of OPD,LWP,IWP,Re,and Deof approximately 31%,48%,22%,38%,and 17%because of the effects of dust aerosols.Moreover,the effects of dust aerosols on liquid-phase altocumulus clouds were greater than on ice-phase altocumulus clouds.Regarding dusty cirrus clouds,the mean values of OPD,IWP,and Dewere 5.11,137.53 g m-2,and 60.44μm,respectively.In contrast,the mean values were 6.69,156.17 g m-2,and 66.63μm,respectively,for pure cirrus clouds,with a 24%decrease in OPD,a 12%decrease in IWP,and a 9%decrease in De.These results indicate that dust aerosols can significantly change cloud properties,leading to a reduction of OPD,LWP,and effective particle size for both altocumulus and cirrus clouds in Northwest China.

    dusty cloud,aerosol-cloud interaction,altocumulus cloud,cirrus cloud

    1.Introduction

    Dust aerosols are an important and complicated component in the earth-climate system. They influence climate forcing by scattering and absorbing solar and terrestrial radiation(direct effects)(Sokolik and Toon,1996;Demott et al.,2003;Shi et al.,2005;Huang et al.,2006a),and affect cloud properties and precipitation processes by their indirect/semidirect effects(Albrecht,1989;Sassen,2002;Yin et al.,2002,2007;Huang et al.,2006b,c).Furthermore, dust aerosols play important roles in regional climate due to massive emissions of dust aerosols into the atmosphere from arid/semi-arid regions(Zhang et al.,1997).Additionally,dust aerosols can influence urban air quality,human health,marine ecosystems,and biogeochemical cycles through their transportation mechanisms(Gong et al.,2003;Zhang et al.,2003;Zhang,2007;Huang et al.,2008;Liu et al.,2008;Wang and Huang,2009;Tao M.H.et al.,2012,2013).

    The Loess Plateau and the Gobi Desert,which are the main source areas of dust aerosols in north-western China,are expanding(Fu et al.,2008;Wang et al.,2008;Huang J.P.et al.,2010).Zhang et al.(1997)estimated that the annual mean emission of dust is about 800 kt from China.For the past few decades,the dramatic increase in the human population has had a significant impact on the earth's drylands.Major anthropogenic drivers affect drylands in complex ways and on multiple scales,such as the recovery of vegetation,unsuitable irrigation practices,and wind erosion caused by humans(Huang et al.,2014).These activities produce a large amount of anthropogenic dust aerosols,which also contribute to the uncertainties of the climate forcing(Mao et al.,2002;Zhang and Christopher,2003;Zhang,2007;Wang H. et al.,2006,2010).

    Supported by the National Natural Science Foundation of China(41505013,41375032,and 41175026)and China Postdoctoral Science Fund(2014M552506).

    ?Corresponding author:wangwc@ouc.edu.cn.

    ?The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015

    Previous studies suggest that mineral dust particles,one of the most common ingredients acting as cloud condensation nuclei(CCN)and ice nuclei(IN),can be transported into the atmosphere and influence cloud formation(e.g.,Min et al.,2009;Stith et al.,2009;Twohy et al.,2009;Huang J.P.et al.,2010;Wang W.C.et al.,2010).They may suppress precipitation due to the changes in cloud properties(e.g.,Rosenfeld et al.,2001;Andreae et al.,2004;Huang et al.,2009,2010).

    Through theoretical hypotheses and model simulation,Tao W.-K.et al.(2012)reported that aerosols have different influences on stratiform clouds and convective clouds.Rosenfeld(1999)and Rosenfeld and Woodley(2000)proposed that polluted aerosols invigorate deep convective clouds but suppress warm shallow clouds,based on aircraft and satellite data.Fan et al.(2012)simulated convective and frontal cloud systems over China with a cloud-resolving model,in comparison with observational data,during the EASTAIRC(East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate)project(Li J. et al.,2011),and suggested that aerosols had a significant invigoration effect on clouds.Satellite observations have revealed that desert dust and heavy air pollution over East Asia glaciated the tops of growing convective clouds,producing ice precipitation(Rosenfeld et al.,2011).Using a 10-yr ground-based dataset and global A-Train satellite measurements,Li Z.Q. et al.(2011)found that precipitation increased with the aerosol concentration when the liquid water path(LWP)was greater than 0.8 mm,but decreased with the aerosol concentration when it was less than 0.8 mm,in deep clouds.The above results imply that dust aerosols have different and uncertain effects on different cloud types.

    Due to the lack of ground observations over the Asian arid/semi-arid regions,satellite observations are widely used to study dust aerosol effects on clouds and precipitation(Huang et al.,2006a,b,2010;Wang W. C.et al.,2010,2013).Huang et al.(2006a)found that dust aerosols decreased the cloud effective particle diameter(De)and cloud optical depth(OPD)by 11%and 33%,after comparing cloud properties existing in dusty and pure conditions under the same meteorological environment in northwestern China.Wang W.C.et al.(2010)compared dust aerosol effects on cloud over the dust source region and the downwind region,and found consistent results with those of Huang et al.(2006b,c).In addition,the investigations by Kawamoto et al.(2004)and Huang J.P.et al.(2010)over the Asian arid and semi-arid regions also demonstrated similar results,indicating that dust aerosols can change cloud properties.

    Previous studies have shown that the main cloud types in Northwest China are cirrus clouds and cumulus clouds(Chen et al.,2007;Ding et al.,2012).Dust aerosols originating from the Taklimakan Desert and the Gobi Desert are often transported into the atmosphere,mixed with clouds,and involved in cloud formation(Rosenfeld et al.,2001).Although special attention has been paid to dust aerosol effects on clouds over Northwest China(Huang et al.,2006c,2007a,b,2010;Su et al.,2008;Wang W.C.et al.,2010),few studies have focused on the dust aerosol impact on different cloud types.This paper extends our previous research(Wang W.C.et al.,2010),but further investigates the influence of dust aerosols on altocumulus and cirrus clouds over the arid and semi-arid regions of Northwest China.Satellite data and cloud type definitions are described in Section 2.Section 3 presents an analysis of the results.Conclusions and further discussion are provided in Section 4.

    2.Data and methods

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations(CALIPSO)level-2 data,the Clouds and the Earth's Radiant Energy System(CERES)on the Aqua satellite,and CloudSat vertical profiles and cloud mask data were obtained for the period between March and May 2007 to identify dusty clouds,with the purpose of studying the dust aerosol effect on cirrus and altocumulus clouds.Aqua,CALIPSO,and CloudSat are part of the A-Train constellation of satellites that fly in close formation to each other(CloudSat and CALIPSO trail Aqua by only 54 and 75 s,respectively),providing near simultaneous and collocated cloud observations.

    2.1 CALIPSO

    The CALIPSO payload was launched in 2006,and provides a wealth of information on cloud and aerosols globally(Winker et al.,2006;Hu et al.,2007a,b;Liu et al.,2008;Li J.et al.,2011;Liu et al.,2014). The main instrument onboard CALIPSO is CALIOP(Cloud-Aerosol Lidar with Orthogonal Polarization),which is a two-wavelength,polarization-sensitive lidar operating at 532 and 1064 nm(Winker et al.,2004;Liu et al.,2008;Hu et al.,2009,2010;Chen et al.,2010,2014;Huang Z.W.et al.,2010;Zhang et al.,2011). The linear depolarization acquired by CALIOP is used operationally to discriminate ice-phase clouds,liquidphase clouds,and non-spherical aerosols(Hu et al.,2009;Zhou et al.,2013).The horizontal and vertical resolutions for CALIOP distributions are as follows:from the surface to 8.2 km,the horizontal and vertical resolutions are 333 and 30 m,respectively;and above 8.2 km,the values are 1000 and 60 m.Moreover,the CALIOP level-2 Vertical Feature Mask(VFM)product consists of cloud and aerosol types according to their optical and physical properties(Liu et al.,2004,2009).

    2.2 CERES

    The CERES Aqua Single Scanner Footprint(SSF)datasets are used in this study,which consist of comprehensive and high-quality satellite-derived data by combining radiation measurements from CERES, cloud properties from MODIS(Moderate Resolution Imaging Spectroradiometer),and the ancillary meteorology fields.Five SSF parameters are utilized in the current analysis,including OPD,LWP,cloud ice water path(IWP),cloud effective particle radius(Re),and De.

    2.3 CloudSat

    The CloudSat satellite flies closely with Aqua and CALIPSO.It carries a millimeter-wavelength cloud profiling radar,which is more sensitive to cloud particles than existing weather radars,thus allowing the detection of smaller(i.e.,cloud droplet-sized)liquid water and ice particles.In this study,the CloudSat 2B-GEOPROF vertical profiles and cloud mask data are used to identify clouds.

    2.4 Method

    To study dust aerosol influences on cirrus and altocumulus clouds in Northwest China,it is necessary to distinguish dusty clouds(a mixture of dust and cloud).In this study,dusty cloud is defined as those mixed with dust aerosols,or the distance between the cloud and dust layer is less than 50 m in the same field of view when combined with CALIPSO and CloudSat measurements(see Wang W.C.et al.,2010 for details).

    2.5 Dusty cloud cases

    A typical example of dusty cirrus cloud,captured on 3 March 2007,is displayed in Fig.1.The CALIPSO VFM information in Fig.1a suggests that cloud and aerosols both existed in the region denoted by the black rectangle.Moreover,aerosols were next to and below the clouds.Figures 1b and 1c show the cloud and aerosol types from CALIPSO VFM.Cirrus clouds were found in the black rectangular region(Fig.1b),with the presence of dust aerosols denoted in Fig.1c.Additionally,the red coloring in Fig.1d shows high confidence in the identification of clouds by CloudSat,confirming the existence of clouds.Based on the aforementioned analysis from Fig.1,this cirrus cloud,with the presence of dust aerosols in the same scene,is defined as a dusty cirrus cloud(the black rectangular region).

    A similar observation for a dusty altocumulus cloud is shown in Fig.2,captured on 23 March 2007. The black rectangle shown in Fig.2a denotes aerosols above and below cloud.Figure 2b illustrates that the cloud type was altocumulus cloud.The aerosol type plotted in Fig.2c denotes that the aerosol type was dust aerosol,and the red areas in Fig.2d confirm the existence of clouds.The area denoted by the black rectangle in Figs.2a-d shows dust aerosols mixed with altocumulus clouds.

    Following the criterion of distinguishing dusty clouds described in Section 2.4(for more information,see Wang W.C.et al. (2010b)and Jin et al.(2015)),we firstly selected single-layered dusty altocumulus and single-layered dusty cirrus clouds using the CALIPSO VFM products.Secondly,the CloudSat cloud mask observations were used to further identify the existence of clouds,as CALIPSO may falsely distinguish dense dust layers as clouds.Following this method,18 dusty cirrus clouds and 18 dusty altocumulus clouds were selected,as shown in Tables 1 and 2,from all the data during March to May 2007 in Northwest China(35°-45°N,70°-110°E).To detect the influence of dust aerosol on clouds,we randomly selected 18 pure single-layered altocumulus cloud cases and 18 pure single-layered cirrus clouds.The criterionto select the pure cloud cases was a difference of less than 5 hPa in the mean cloud top(base)pressure between dusty and pure clouds.This should minimize the interference effects from other factors such as cloud height,meaning the property differences between pure and dusty clouds are most likely attributable to dust aerosols.

    Fig.1.Vertical profiles of dusty cirrus cloud on 3 March 2007:(a)CALIPSO VFM,(b)CALIPSO cloud type,(c)CALIPSO aerosol type,and(d)CloudSat cloud mask image.

    Fig.2.As in Fig.1,but for dusty altocumulus clouds on 23 March 2007.

    Table 1.Dusty cirrus cloud information from March to May 2007 in Northwest China

    Table 2.Dusty altocumulus cloud information from March to May 2007 in Northwest China

    3.Analysis of results

    Table 3 lists the cloud top pressure(pt),cloud effective pressure(pe),cloud effective temperature(Te),cloud effective height(He),and cloud base pressure(pb)for altocumulus and cirrus clouds in this study. For water-phase altocumulus clouds,the differences of pt,pe,Te,He,and pbbetween dusty clouds and pure clouds were-1.81 hPa,-0.86 hPa,-0.44 K,-0.14 km,and-0.85 hPa,respectively.For ice-phase altocumulus clouds,the differences of pt,pe,Te,He,and pbbetween dusty clouds and pure clouds were 0.32 hPa,-1.48 hPa,1.17 K,0.17 km,and-2.66 hPa,respectively.For ice-phase cirrus clouds,the differences of the above five values were 0.88 hPa,1.66 hPa,3.92 K,-0.23 km,and-4.76 hPa,respectively.Since the differences in pt,pe,Te,He,and pbbetween dusty clouds and pure clouds were subtle for both altocumulus and cirrus clouds,it is likely that meteorological and other factors(e.g.,cloud height)will not significantly influence our analysis of the two dusty cloud scenarios.

    Table 3.The mean values of cloud properties for altocumulus and cirrus clouds

    The cases in Tables 1 and 2 are presented as histograms of liquid water and ice water properties(OPD,LWP,IWP,Re,and De)for cirrus and altocumulus clouds in Figs.3-6,where dusty and pure clouds are displayed with red-and blue-colored bars,respectively.Figure 3 shows the OPD for dusty and pure altocumulus cloud.The majority of the OPDs for these dusty clouds are approximately distributed between 0 and 4.0.For water-phase altocumulus(Fig. 3a),the mean OPDs for pure altocumulus clouds and dusty altocumulus clouds are 9.28 and 6.40.Similarly,regarding the ice-phase altocumulus,the mean OPDs for pure altocumulus clouds and dusty altocumulus clouds are 9.16 and 5.03.These results show decreases of around 31%and 45%in OPD for water-and icephase altocumulus clouds due to the presence of dust aerosols.

    The frequency distributions of LWP and IWP for pure altocumulus clouds and dusty altocumulus clouds are displayed in Fig.4.The mean values of LWP for dusty altocumulus clouds and pure altocumulus cloud are 40.23 and 76.70 g m-2,respectively.Larger values of LWP occur more frequently in pure altocumulus clouds than in dusty altocumulus clouds.Similarly,regarding the ice-phase altocumulus,the mean IWP for pure altocumulus clouds is 128.75 g m-2,and for dusty altocumulus clouds the value is 100.70 g m-2(Fig.4b).As expected,the corresponding mean values of IWP for pure altocumulus clouds are considerably larger than those for dusty altocumulus clouds(Fig.4b).

    The above results demonstrate that dust aerosols could warm mid-level altocumulus clouds by absorbing solar radiation,enhance cloud droplet evaporation,reduce the cloud water path,and further suppress precipitation via the semi-direct effect.This result agreeswith previous work by Huang et al.(2006a)and Wang W.C.et al.(2010).Moreover,the cloud evaporation and cloud water path reduction will influence the redistribution of hydrometeors within the atmosphere(Twomey,1977).

    Fig.3.Frequency distributions of dusty and pure OPD for(a)water altocumulus and(b)ice altocumulus clouds.

    Fig.4.As in Fig.3,but for(a)LWP and(b)IWP for dusty altocumulus and pure altocumulus clouds.

    The results of similar analysis procedures for Reand Deare given in Fig.5.The mean values of Refor dusty altocumulus and pure altocumulus clouds are 8.76 and 14.03μm,as shown in Fig.5a.However,it is evident that the mean values of Dedecrease from 48.92 μm for pure altocumulus clouds to 40.72μm for dusty altocumulus clouds(Fig.5b).These results show a 38%decrease in Reand a 17%decrease in De.In addition,the cloud properties have larger differences for liquid-phase clouds than ice-phase clouds.

    Cirrus clouds play a major role in the earthclimate system(Manabe and Strickler,1964;Hallett,1996).The ice crystals of cirrus clouds are formed on aerosol particles.The finer dust particles floating in the atmosphere are lifted into the upper troposphere,making them a primary IN source in the troposphere(Pruppacher and Klett,1997;Huang et al.,2007a). Therefore,cirrus clouds may be mainly affected by finer dust aerosols(Jin et al.,2015).

    The frequency distributions of De,IWP,and OPD of dusty and pure cirrus clouds are shown in Fig.6. Figure 6a shows the mean value of Defor dusty cirrus clouds to be 60.44μm,while the pure cirrus clouds mean value is 66.63μm-a decrease of roughly 10% compared to pure cirrus clouds.Moreover,a value of Debetween 20 and 40μm(approximately 30μm in Fig.6a)is more frequent for dusty cirrus clouds than for pure clouds,while a value of Debetween 80 and 100 μm(about 90μm in Fig.6a)is more frequent for pure cirrus clouds than for dusty cirrus clouds.The frequency of IWP for dusty cirrus and pure cirrus clouds is shown in Fig.6b.The mean value of IWP is 156.17 g m-2for pure cirrus clouds,while the mean value is137.53 g m-2for dusty cirrus clouds.In addition,the OPD distribution displayed in Fig.6c is similar to the IWP in Fig.6b,as expected.The mean value of OPD for pure cirrus clouds is 6.69.In contrast,for dusty cirrus clouds,the mean value is 5.11,with a decrease of 24%as a result of dust aerosols.These results agree with those of Jin et al.(2014),indicating the evaporation of large ice crystals due to dust aerosols.

    Fig.5.As in Fig.3,but for(a)Reand(b)Defor dusty and pure altocumulus clouds.

    Fig.6.Comparison of(a)De,(b)IWP,and(c)OPD for dusty and pure cirrus clouds.

    The significance of the above differences in cloud properties between dusty and pure clouds for both altocumulus and cirrus was tested statistically.Although there were 18 cases for dusty altocumulus and dusty cirrus clouds,the samples for the statistical tests were based on individual pixels that were greater than 500,sufficient for justifying the test.The significance test results for altocumulus clouds in Table 4 show that the differences between dusty and pure altocumulus were all significant at the 99%confidence level. Table 5 lists the statistical significance of the differences between dusty and pure cirrus clouds;the differences also passed the significance tests at the 99% confidence level.

    Table 4.Statistical significance of the differences between dusty altocumulus clouds and pure altocumulus clouds

    Table 5.Statistical significance of the differences between dusty cirrus clouds and pure cirrus clouds

    Chen et al. (2006)indicated that LWP/IWP can be regarded as the latent capacity index of artificial precipitation.For dusty altocumulus clouds,the latent capacity index of artificial precipitation is -1.75,while for pure altocumulus,the index is-1.55. The precipitation potential for altocumulus clouds decreases by 11%due to dust aerosols.

    Our results show that cloud microphysical properties can be significantly changed by dust aerosols. The values of particle sizes,OPDs,and water paths for dusty clouds are smaller than pure clouds both for altocumulus and cirrus clouds,indicating that dust aerosols can cause the evaporation of clouds,thus decreasing the precipitation potential for the cloud,which may prolong the lifetime of the cloud(cloud lifetime effect)and scatter more radiation back to space(cloud albedo effect).These results show good agreement with a series of previous studies in Northwest China(Huang et al.,2006b,c,2010;Wang W.C.et al.,2010).Furthermore,dust has a greater influence on altocumulus clouds than on cirrus clouds.

    4.Conclusions and discussion

    Dust aerosols and clouds play important roles in the earth-atmosphere system. The interactions between dust and cloud have attracted increasing attention of research,especially over arid/semi-arid regions.Dust aerosols influence the climate system and cloud microphysics in multiple ways.Jin et al.(2015)showed that dust aerosols have great impacts on the cloud thermodynamic phase,which can further alter the climate forcing.For instance,they disturb the radiation of the climate system by scattering and partly absorbing shortwave and longwave radiation(e.g.,Sokolik and Toon,1996;Demott et al.,2003;Shi et al.,2005;Han et al.,2012,2013)-semi-directly by changing the cloud cover through evaporation of cloud droplets,and indirectly by serving as CCN(e.g.,Albrecht,1989;Sassen,2002;Yin et al.,2002;Huang et al.,2006b,c;Yin and Chen,2007).This changes the optical properties of clouds(first indirect effect),and may decrease or increase precipitation formation(second indirect effect). Interactions between dust and clouds have become one of the major subjects for the aerosol and climate change research(Mahowald and Kiehl,2003).

    Although particular attention has been directed towards dust aerosol effects on cloud over Northwest China,there is a lack of knowledge about the dust aerosol impacts on different cloud types.In the present study,we investigated the dust aerosol effects on the properties of cirrus and altocumulus cloud by using CALIPSO,CERES onboard Aqua,and CloudSat in the A-Train constellation of satellites.For dusty altocumulus clouds,the mean values of OPD,LWP,IWP,Re,and Deshowed a decrease of 31%,48%,22%,38%,and 17%because of the existence of dust aerosols,respectively. Moreover,dust aerosols had larger effects on liquid-phase altocumulus clouds than for ice-phase altocumulus clouds. Regarding dusty cirrus clouds,there was a 24%decrease in OPD,a 12%decrease in IWP,and a 9%decrease in De,respectively.These results clearly indicate that dust aerosols modify cloud properties,leading to a reduction in cloud optical depth,water path,and effective particle size for both mid-level altocumulus clouds and high-level cirrus clouds in Northwest China.Moreover,statistical analysis proved that the differences are significant.

    The reduction of cloud water path may result in a lower level of cloud amount,and may contribute to the reduction of precipitation through the semi-direct effect over arid/semi-arid regions in Northwest China. Our results indicate that the precipitation potential for altocumulus clouds decreased by 11%due to dust aerosols,which might lead to the occurrence of more dust storms,and accelerated occurrence of more arid conditions in northwestern China.Our results also demonstrate that dust aerosol had a greater effect on altocumulus clouds than on cirrus clouds.

    It is important to note that the present investigation was limited to short-term statistics,based on mainly satellite remote sensing datasets.Meteorological factors also have effects on cloud formation and properties.Such effects require detailed model simulations,the analysis of which was beyond the scope of this paper.In addition,our previous results(Wang W.C.et al.,2010)also indicate that meteorological factors(such as humidity)had little effect on the differences between dusty and pure clouds,based on our criterion.In the future,larger-scale and longer-term monitoring,and detailed analysis,particularly cloudresolving model simulations,are needed to investigate dust aerosols effects on different cloud types.

    Acknowledgments.Thesatellitedataof CALIPSO,CERES,and CloudSat were obtained from NASA.

    Albrecht,B.A.,1989:Aerosols,cloud microphysics,and fractional cloudiness.Science,245,1227-1230.

    Andreae,M.Q.,D.Rosenfeld,P.Artaxo,et al.,2004:Smoking rain clouds over the Amazon.Science,303,1337-1342,doi:10.1126/science.1092779.

    Chen,B.,J.Huang,P.Minnis,et al.,2010:Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements.Atmos.Chem. Phys.,10,4241-4251,doi:10.5194/acp-10-4241-2010.

    Chen Bin,Zhang Peng,Zhang Beidou,et al.,2014:An overview of passive and active dust detection meth-ods using satellite measurements.J.Meteor.Res.,28,1029-1040,doi:10.1007/s13351-014-4032-4.

    Chen Qian,Chen Tianyu,and Zhang Hong,2006:Estimates of precipitation efficiency and latent capacity of artificial precipitation over Northwest China using Aqua/CERES data retrieval of cloud parameters. Arid Meteor.,24,1-8.(in Chinese)

    Chen Yonghang,Chen Yan,Huang Jianping,et al.,2007:Distribution and variation trend of cloud over northwestern China.Plateau Meteor.,26,741-748.(in Chinese)

    DeMott,P.J.,D.J.Cziczo,A.J.Prenni,et al.,2003:Measurements of the concentration and composition of nuclei for cirrus formation.Proc.Nat.Acad.Sci. USA,100,14655-14660.

    Ding Xiaodong,Huang Jianping,Li Jiming,et al.,2012:Study on cloud vertical structure feature over Northwest China based on active satellite remote sensing and its influence on precipitation enhancement.Arid Meteor.,30,529-538.(in Chinese)

    Fan,J.W.,L.Ruby Leung,Z.Q.Li,et al.,2012:Aerosol impacts on clouds and precipitation in eastern China:Results from bin and bulk microphysics. J.Geophys. Res.,117,D00K36,doi:10.1029/2011JD016537.

    Fu,P.J.,J.P.Huang,C.W.Li,et al.,2008:The properties of dust aerosol and reducing tendency of the dust storms in Northwest China.Atmos.Environ.,42,5896-5904,doi:10.1016/j.atmosenv.2008.03.041.

    Gong,S.L.,X.Y.Zhang,T.L.Zhao,et al.,2003:Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia. Part II:Model simulation and validation.J.Geophys.Res.,108,4262,doi:10.1029/2002JD002633. Hallett,J.,1996:Freeze frame.Science,36,22-26.

    Han,Z.W.,J.W.Li,X.G.Xia,et al.,2012:Investigation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate-chemistry-aerosol model. Atmos. Environ.,54,688-699.

    Han,Z.W.,J.W.Li,W.D.Guo,et al.,2013:A study of dust radiative feedback on dust cycle and meteorology over East Asia by a coupled regional climate-chemistry-aerosol model.Atmos.Environ.,68,54-63.

    Hu,Y.X.,M.Vaughan,Z.Y.Liu,et al.,2007a:The depolarization-attenuated backscatter relation:CALIPSO lidar measurements vs.theory.Optics Express,15,5327-5332.

    Hu,Y.X.,M.Vaughan,C.Mcclain,et al.,2007b:Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements.Atmos.Chem.Phys.,7,3353-3359.

    Hu,Y.X.,D.Winker,M.Vaughan,et al.,2009:CALIPSO/CALIOP cloud phase discrimination algorithm.J.Atmos.Oceanic Technol.,26,2293-2309.

    Hu,Y.X.,S.Rodier,K.M.Xu,et al.,2010:Occurrence,liquid water content,and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements.J.Geophys.Res.,115,D00H34,doi:10.1029/2009JD012384.

    Huang,J.P.,Y.J.Wang,T.H.Wang,et al.,2006a:Dusty cloud radiative forcing derived from satellite data for midlatitude regions of East Asia. Prog. Nat.Sci.,16,1084-1089.

    Huang,J.P.,P.Minnis,B.Lin,et al.,2006b:Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES.Geophys.Res.Lett.,33,L06824,doi:10.1029/2005GL024724.

    Huang,J.P.,B.Lin,P.Minnis,et al.,2006c:Satellitebased assessment of possible dust aerosols semidirect effect on cloud water path over East Asia. Geophys. Res. Lett.,33,L19802,doi:10.1029/2006GL026561.

    Huang,J.P.,P.Minnis,Y.H.Yi,et al.,2007a:Summer dust aerosols detected from CALIPSO over the Tibetan Plateau.Geophys.Res.Lett.,34,L18805,doi:10.1029/2007GL029938.

    Huang,J.P.,J.M.Ge,and F.Z.Weng,2007b:Detection of Asia dust storms using multisensor satellite measurements.Remote Sens.Environ.,110,186-191.

    Huang,J.P.,P.Minnis,B.Chen,et al.,2008:Longrange transport and vertical structure of Asian dust from CALIPSO and surface.J.Geophys.Res.,113,D23212,doi:10.1029/2008JD010620.

    Huang,J.P.,Q.Fu,J.Su,et al.,2009:Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints.Atmos.Chem.Phys.,9,4011-4021.

    Huang,J.P.,P.Minnis,H.Yan,et al.,2010:Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements.Atmos. Chem.Phys.,10,6863-6872.

    Huang,J.P.,T.H.Wang,W.C.Wang,et al.,2014:Climate effects of dust aerosols over East Asian arid and semiarid regions.J.Geophys.Res.,119,11398-11416.

    Huang,Z.W.,J.P.Huang,J.R.Bi,et al.,2010:Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S.joint dust field experiment.J.Geophys.Res.,115,D00K15,doi:10.1029/2009JD013273.

    Jin,H.C.,and S.L.Nasiri,2014:Evaluation of AIRS cloud-thermodynamic-phase determination with CALIPSO.J.Appl.Meteor.Climatol.,53,1012-1027,doi:10.1175/JAMC-D-13-0137.1.

    Jin,H.C.,Y.H.Yi,S.L.Nasiri,et al.,2015:Impacts of Asian dust on the determination of cloud thermodynamic phase from satellite observations. Environ.Res.Lett.,10,034006,doi:10.1088/1748-9326/10/3/034006.

    Kawamoto,K.,T.Nakajima,D.Streets,et al.,2004:Examining the aerosol indirect effect over China using an SO2emission inventory.Atmos.Res.,72,353-363,doi:10.1016/j.atmosres.

    Li,J.,Y.Hu,J.Huang,et al.,2011:A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal.Atmos. Chem.Phys.,11,2903-2916.

    Li,Z.Q.,F(xiàn).Niu,J.W.Fan,et al.,2011:Long-term impacts of aerosols on the vertical development of clouds and precipitation.Nature Geosci.,4,888-894,doi:10.1038/ngeo1313.

    Liu,D.,Z.E.Wang,Z.Y.Liu,et al.,2008:A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements.J.Geophys. Res.,113,D16214,doi:10.1029/2007JD009776.

    Liu Jingjing,Chen Bin,and Huang Jianping,2014:Discrimination and validation of clouds and dust aerosol layers over the Sahara desert with combined CALIOP and IIR measurements.J.Meteor.Res.,28,185-198,doi:10.1007/s13351-014-3051-5.

    Liu,Z.Y.,M.A.Vaughan,D.M.Winker,et al.,2004:Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data. J.Geophys. Res.,109,D15202,doi:10.1029/2004JD004732.

    Liu,Z.Y.,M.Vaughan,D.Winker,et al.,2009:The CALIPSO lidar cloud and aerosol discrimination:Version 2 algorithm and initial assessment of performance.J.Atmos.Ocean.Technol.,26,1198-1213.

    Mahowald,N.M.,and M.L.Kiehl,2003:Mineral aerosol and cloud interactions.Geophys.Res.Lett.,30, 1475,doi:10.1029/2002GL016762.

    Manabe,S.,and R.F.Strickler,1964:Thermal equilibrium of the atmosphere with a convective adjustment.J.Atmos.Sci.,21,361-385.

    Mao Jietai,Zhang Junhua,and Wang Meihua,2002:Summary comment on research of atmospheric aerosol in China.Acta Meteor.Sinica,60,625-634.(in Chinese)

    Min,Q.,R.Li,B.Lin,et al.,2009:Evidence of mineral dust altering cloud microphysics and precipitation.Atmos.Chem.Phys.,9,3223-3231,doi:10.5194/acp-9-3223-2009.

    Pruppacher,H.R.,and J.D.Klett,1997:Microphysics of Clouds and Precipitation.Kluwer Academic Publishers,Dordrecht,the Netherlands,714 pp.

    Rosenfeld,D.,1999:TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett.,26,3105-3108,doi:10.1029/1999GL006066.

    Rosenfeld,D.,and W.L.Woodley,2000:Convective clouds with sustained highly supercooled liquid water down to-37℃.Nature,405,440-442,doi:10.1038/35013030.

    Rosenfeld,D.,Y.Rudich,and R.Lahav,2001:Desert dust suppressing precipitation:A possible desertification feedback loop.Proc.Nat.Acad.Sci.USA,98,5975-5980,doi:10.1073/pnas.101122798.

    Rosenfeld,D.,X.Yu,G.H.Liu,et al.,2011:Glaciation temperatures of convective clouds ingesting desert dust,air pollution and smoke from forest fires.Geophys.Res.Lett.,38,L21804,doi:10.1029/2011GL049423.

    Sassen,K.,2002:Indirect climate forcing over the western US from Asian dust storms.Geophys.Res. Lett.,29,103-1-103-4,doi:10.1029/2001GL014051.

    Shi,G.Y.,H.Wang,B.Wang,et al.,2005:Sensitivity experiments on the effects of optical properties of dust aerosols on their radiative forcing under clear sky condition.J.Meteor.Soc.Japan,83A,333-346,doi:10.2151/jmsj.83A.333.

    Sokolik,I.N.,and O.B.Toon,1996:Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature,381,681-683.

    Stith,J.L.,V.Ramanathan,W.A.Cooper,et al.,2009:An overview of aircraft observations from the Pacific Dust Experiment campaign.J.Geophys.Res.,114,D05207,doi:10.1029/2008jd010924.

    Su,J.,J.P.Huang,Q.Fu,et al.,2008:Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements.Atmos.Chem.Phys.,8,2763-2771.

    Tao,M.H.,L.F.Chen,L.Su,et al.,2012:Satellite observation of regional haze pollution over the North China Plain.J.Geophys.Res.,117,D12203,doi:10.1029/2012JD017915.

    Tao,M.H.,L.F.Chen,Z.F.Wang,et al.,2013:Satellite observation of abnormal yellow haze clouds over East China during summer agricultural burning season.Atmos.Environ.,79,632-640.

    Tao,W.-K.,J.-P.Chen,Z.Q.Li,et al.,2012:Impact of aerosols on convective clouds and precipitation.Rev.Geophys.,50,RG2001,doi:10.1029/ 2011RG000369.

    Twohy,C.H.,S.M.Kreidenweis,T.Eidhammer,et al.,2009:Saharan dust particles nucleate droplets in eastern Atlantic clouds.Geophys.Res.Lett.,36,L01807,doi:10.1029/2008gl035846.

    Twomey,S.,1977:The influence of pollution on the shortwave albedo of clouds.J.Atmos.Sci.,34,1149-1152.

    Wang,H.,G.Y.Shi,S.Y.Li,et al.,2006:The impacts of optical properties on radiative forcing due to dust aerosol.Adv.Atmos.Sci.,23,431-441.

    Wang,H.,X.Y.Zhang,S.L.Gong,et al.,2010:Radiative feedback of dust aerosols on the East Asian dust storms.J.Geophys.Res.,115,D23214,doi:10.1029/2009JD013430.

    Wang,T.H.,and J.P.Huang,2009:A method for estimating optical properties of dusty cloud.Chinese Optics Letters,7,368-372.

    Wang,W.C.,J.P.Huang,P.Minnis,et al.,2010:Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A-Train dataduringthePacificDustExperiment. J.Geophys. Res.,115,D00H35,doi:10.1029/2010JD014109.

    Wang,W.C.,J.P.Huang,T.Zhou,et al.,2013:Estimation of radiative effect of a heavy dust storm over Northwest China using Fu-Liou model and ground measurements.Journal of Quantitative Spectroscopy and Radiative Transfer,122,114-126.

    Wang,X.,J.Huang,M.Ji,et al.,2008:Variability of East Asian dust events and their long-term trend. Atmos. Environ.,42,3156-3165,doi:10.1016/j.atmosenv.2007.07.046.

    Winker,D.M.,W.H.Hunt,and C.Hostetler,2004:Status and performance of the CALIOP lidar.Proc. SPIE,5575,8-15,doi:10.1117/12.571955.

    Winker,D.M.,J.Pelon,and M.Patrick McCormick,2006:Initial results from CALIPSO.23rd International Laser Radar Conference.Nara,Japan,July 2006,Tokyo Metropolitan Univ.,991-994.

    Yin,Y.,and L.Chen,2007:The effects of heating by transported dust layers on cloud and precipitation:A numerical study.Atmos.Chem.Phys.,7,3497-3505.

    Yin,Y.,S.Wurzler,Z.Levin,et al.,2002:Interactions of mineral dust particles and clouds:Effects on precipitation and cloud optical properties. J. Geophys.Res.,107,AAC 19-1-AAC 19-14,doi:10.1029/2001JD001544.

    Zhang,J.L.,and S.A.Christopher,2003: Longwave radiative forcing of Saharan dust aerosols from Terra.Geophys.Res.Lett.,30,2188,doi:10.1029/2003GL018479.

    Zhang,J.L.,J.R.Campbell,J.S.Reid,et al.,2011:Evaluating the impact of assimilating CALIOP-derived aerosol extinction profiles on a global mass transport model.Geophys.Res.Lett.,38,L14801,doi:10.1029/2011GL047737.

    Zhang Xiaoye,2007:Aerosol over China and their climate effect.Adv.Earth Sci.,22,12-16.(in Chinese)

    Zhang,X.Y.,R.Arimoto,and Z.S.An,1997:Dust emission from Chinese desert sources linked to variations in atmospheric circulation.J.Geophys.Res.,102,28041-28047.

    Zhang,X.Y.,S.L.Gong,Z.X.Shen,et al.,2003:Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia. Part 1:Network observations.J.Geophys.Res.,108,4261,doi:10.1029/2002JD002632.

    Zhou,T.,J.P.Huang,Z.W.Huang,et al.,2013:The depolarization-attenuated backscatter relationship for dust plumes.Optic Express,21,15195-15204,doi:10.1364/OE.21.015195.

    Wang Wencai,Sheng Lifang,Jin Hongchun,et al.,2015:Dust aerosol effects on cirrus and altocumulus clouds in Northwest China.J.Meteor.Res.,29(5),793-805,

    10.1007/s13351-015-4116-9.

    (Received November 20,2014;in final form July 21,2015)

    猜你喜歡
    永清
    春茶
    不同孔徑泡沫銅填充對平板微熱管傳熱特性的影響
    基于虛擬仿真與混合式教學模式的計算機組成原理實驗教學改革
    花甲老漢苦練功,只為博母開心笑
    金秋(2022年23期)2022-03-15 16:36:16
    北桑寄生醋酸乙酯部位化學成分研究
    中草藥(2022年4期)2022-02-24 00:14:58
    走近父老鄉(xiāng)親
    嶺南音樂(2022年6期)2022-02-04 13:50:24
    Thermal stress reduction of GaAs epitaxial growth on V-groove patterned Si substrates*
    下廚
    植樹節(jié)(1)
    羌家人的夢
    黃河之聲(2019年17期)2019-10-21 01:40:38
    桃红色精品国产亚洲av| 国产又爽黄色视频| 国产精品久久久av美女十八| 久久久精品免费免费高清| 日韩欧美一区视频在线观看| 日本精品一区二区三区蜜桃| 黑丝袜美女国产一区| 天天操日日干夜夜撸| tocl精华| 成人国语在线视频| 亚洲国产中文字幕在线视频| av一本久久久久| 国产av国产精品国产| 夜夜骑夜夜射夜夜干| 久久国产精品影院| 久久人人97超碰香蕉20202| 日韩 欧美 亚洲 中文字幕| 亚洲av美国av| 国产av精品麻豆| 日韩人妻精品一区2区三区| 久9热在线精品视频| 成人国语在线视频| 丰满迷人的少妇在线观看| 欧美日韩国产mv在线观看视频| 九色亚洲精品在线播放| 欧美+亚洲+日韩+国产| 日韩精品免费视频一区二区三区| 黄片小视频在线播放| 国产精品自产拍在线观看55亚洲 | 天天操日日干夜夜撸| 欧美人与性动交α欧美精品济南到| 成人国产av品久久久| 日韩免费av在线播放| 啦啦啦免费观看视频1| 日本精品一区二区三区蜜桃| 99精国产麻豆久久婷婷| 1024视频免费在线观看| 亚洲人成电影免费在线| 狂野欧美激情性xxxx| 人人妻人人添人人爽欧美一区卜| 热re99久久国产66热| 精品少妇一区二区三区视频日本电影| 午夜精品国产一区二区电影| 丝袜喷水一区| 美女高潮喷水抽搐中文字幕| 日韩欧美免费精品| a在线观看视频网站| 性少妇av在线| 最近最新中文字幕大全电影3 | cao死你这个sao货| av福利片在线| www.精华液| 久久 成人 亚洲| 国产精品1区2区在线观看. | 午夜激情av网站| 麻豆成人av在线观看| 丝瓜视频免费看黄片| 丁香欧美五月| 人人妻人人爽人人添夜夜欢视频| 日本黄色日本黄色录像| 51午夜福利影视在线观看| 超色免费av| 亚洲第一欧美日韩一区二区三区 | 三上悠亚av全集在线观看| 精品一区二区三卡| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 欧美一区二区三区| 美女国产高潮福利片在线看| 老司机靠b影院| 日韩视频在线欧美| 国产亚洲欧美在线一区二区| 久久精品91无色码中文字幕| 视频区图区小说| 欧美日韩一级在线毛片| 亚洲欧洲日产国产| 99九九在线精品视频| 亚洲欧美激情在线| 国产精品麻豆人妻色哟哟久久| 国产欧美日韩精品亚洲av| 黄色视频,在线免费观看| 十八禁人妻一区二区| 十分钟在线观看高清视频www| 欧美大码av| www.精华液| 99国产精品99久久久久| 制服人妻中文乱码| 又黄又粗又硬又大视频| 少妇粗大呻吟视频| 欧美变态另类bdsm刘玥| 国产有黄有色有爽视频| 欧美成狂野欧美在线观看| 亚洲国产中文字幕在线视频| 王馨瑶露胸无遮挡在线观看| 丰满饥渴人妻一区二区三| 日韩成人在线观看一区二区三区| 亚洲精品美女久久av网站| 啪啪无遮挡十八禁网站| aaaaa片日本免费| 淫妇啪啪啪对白视频| 国产精品久久久久久精品电影小说| 国产精品影院久久| a级片在线免费高清观看视频| 免费观看人在逋| 高清毛片免费观看视频网站 | 色在线成人网| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av日韩精品久久久久久密| 纵有疾风起免费观看全集完整版| 亚洲国产av影院在线观看| 久久久久精品国产欧美久久久| 757午夜福利合集在线观看| 中文字幕制服av| 亚洲,欧美精品.| 国产成人精品无人区| 热99re8久久精品国产| 国产一区二区 视频在线| 免费日韩欧美在线观看| 亚洲精品在线观看二区| 日本黄色日本黄色录像| 最新的欧美精品一区二区| 久久久久视频综合| 国产成人免费无遮挡视频| 日本黄色视频三级网站网址 | 19禁男女啪啪无遮挡网站| 视频在线观看一区二区三区| 91麻豆av在线| 女人爽到高潮嗷嗷叫在线视频| 18禁观看日本| 亚洲,欧美精品.| a级毛片在线看网站| 可以免费在线观看a视频的电影网站| 亚洲成人手机| 成人av一区二区三区在线看| 亚洲第一青青草原| 久久免费观看电影| 一级片'在线观看视频| 久久精品国产综合久久久| 纯流量卡能插随身wifi吗| kizo精华| 亚洲精品自拍成人| 久久久国产一区二区| 夜夜骑夜夜射夜夜干| 亚洲伊人色综图| 久久久水蜜桃国产精品网| 两性夫妻黄色片| 91大片在线观看| 一二三四在线观看免费中文在| 午夜免费成人在线视频| 十八禁网站免费在线| 久久久久国内视频| 成人三级做爰电影| av电影中文网址| 国产精品影院久久| 日本精品一区二区三区蜜桃| 1024视频免费在线观看| 高清av免费在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美 亚洲 国产 日韩一| 伊人久久大香线蕉亚洲五| 男女床上黄色一级片免费看| 视频在线观看一区二区三区| 亚洲国产中文字幕在线视频| 亚洲自偷自拍图片 自拍| 国产精品影院久久| 日本黄色日本黄色录像| a在线观看视频网站| 欧美国产精品一级二级三级| 国产精品熟女久久久久浪| 一个人免费看片子| 国产三级黄色录像| 波多野结衣一区麻豆| 制服人妻中文乱码| 97人妻天天添夜夜摸| 国产精品麻豆人妻色哟哟久久| 大陆偷拍与自拍| 一区二区av电影网| 国产精品电影一区二区三区 | 日本黄色视频三级网站网址 | 人人妻人人爽人人添夜夜欢视频| 久久亚洲真实| 久久久久国产一级毛片高清牌| 丝袜美足系列| 少妇粗大呻吟视频| 一二三四社区在线视频社区8| 青草久久国产| 国产av一区二区精品久久| 国产成人精品无人区| 色综合欧美亚洲国产小说| 一本大道久久a久久精品| 波多野结衣av一区二区av| 肉色欧美久久久久久久蜜桃| 久久精品国产99精品国产亚洲性色 | av网站在线播放免费| 欧美精品啪啪一区二区三区| 无遮挡黄片免费观看| 国内毛片毛片毛片毛片毛片| 夜夜夜夜夜久久久久| 夜夜骑夜夜射夜夜干| 亚洲第一av免费看| cao死你这个sao货| 国产精品免费大片| 国产精品国产高清国产av | 99精品欧美一区二区三区四区| 后天国语完整版免费观看| 精品国产乱子伦一区二区三区| 老汉色∧v一级毛片| 亚洲精品粉嫩美女一区| 18禁黄网站禁片午夜丰满| 国产成人av教育| 久久国产精品人妻蜜桃| 亚洲精品中文字幕在线视频| 日本黄色日本黄色录像| 人人妻人人澡人人看| 亚洲av片天天在线观看| 日本五十路高清| 久久人妻熟女aⅴ| 欧美成人免费av一区二区三区 | 怎么达到女性高潮| 成人av一区二区三区在线看| 美女高潮到喷水免费观看| 国产极品粉嫩免费观看在线| 亚洲成人手机| 色在线成人网| 大型av网站在线播放| 午夜成年电影在线免费观看| 女同久久另类99精品国产91| 日本精品一区二区三区蜜桃| 中文字幕人妻熟女乱码| 亚洲中文日韩欧美视频| 十八禁高潮呻吟视频| 久久人妻福利社区极品人妻图片| 欧美一级毛片孕妇| 亚洲精品一卡2卡三卡4卡5卡| 黄片小视频在线播放| 美女主播在线视频| 色播在线永久视频| 无遮挡黄片免费观看| 亚洲av日韩在线播放| 欧美国产精品一级二级三级| 国产精品免费视频内射| 美女高潮喷水抽搐中文字幕| 在线观看免费午夜福利视频| 99九九在线精品视频| 丁香欧美五月| 亚洲精华国产精华精| 久久人妻av系列| 女人被躁到高潮嗷嗷叫费观| 国产精品美女特级片免费视频播放器 | 巨乳人妻的诱惑在线观看| 男女免费视频国产| 黄色丝袜av网址大全| 妹子高潮喷水视频| 十八禁网站免费在线| 一区二区av电影网| 中文字幕精品免费在线观看视频| 亚洲国产看品久久| 中亚洲国语对白在线视频| 久久久久久久久免费视频了| 久久久久久久国产电影| 久久人妻福利社区极品人妻图片| 国产男女内射视频| 日韩中文字幕欧美一区二区| 久久久水蜜桃国产精品网| 99热网站在线观看| 色老头精品视频在线观看| 国产精品国产av在线观看| 国产欧美日韩一区二区精品| 亚洲成人手机| 午夜福利欧美成人| 欧美日韩成人在线一区二区| 日日爽夜夜爽网站| 91成人精品电影| 欧美在线一区亚洲| 国产一区二区 视频在线| www.自偷自拍.com| 狠狠狠狠99中文字幕| 中文字幕最新亚洲高清| 美女视频免费永久观看网站| 天天添夜夜摸| 大片电影免费在线观看免费| 亚洲熟女毛片儿| 亚洲中文av在线| 18禁裸乳无遮挡动漫免费视频| 一级a爱视频在线免费观看| 91精品三级在线观看| 操美女的视频在线观看| 亚洲色图av天堂| 亚洲久久久国产精品| 免费不卡黄色视频| 岛国在线观看网站| 国产精品免费一区二区三区在线 | 日韩人妻精品一区2区三区| 午夜免费鲁丝| 无遮挡黄片免费观看| 中国美女看黄片| 日日摸夜夜添夜夜添小说| 搡老岳熟女国产| 黄片大片在线免费观看| 热re99久久国产66热| 一区福利在线观看| 欧美日韩一级在线毛片| 亚洲va日本ⅴa欧美va伊人久久| 久久中文看片网| 菩萨蛮人人尽说江南好唐韦庄| 黄色成人免费大全| 视频区欧美日本亚洲| 国产亚洲午夜精品一区二区久久| 在线亚洲精品国产二区图片欧美| 叶爱在线成人免费视频播放| 国产片内射在线| 自线自在国产av| 久久精品91无色码中文字幕| 黄色毛片三级朝国网站| 搡老岳熟女国产| 国产av又大| 国产亚洲精品一区二区www | 国产在线视频一区二区| 可以免费在线观看a视频的电影网站| 亚洲三区欧美一区| 色94色欧美一区二区| 国产精品免费大片| 成人av一区二区三区在线看| 黑丝袜美女国产一区| 在线播放国产精品三级| 欧美 日韩 精品 国产| 亚洲欧美一区二区三区黑人| 黄片播放在线免费| 亚洲少妇的诱惑av| 高清毛片免费观看视频网站 | 叶爱在线成人免费视频播放| av一本久久久久| 国产深夜福利视频在线观看| 夜夜爽天天搞| 一区二区三区国产精品乱码| 欧美在线黄色| 免费观看a级毛片全部| av不卡在线播放| 国产欧美日韩精品亚洲av| 精品午夜福利视频在线观看一区 | 成年人免费黄色播放视频| 欧美一级毛片孕妇| 老司机靠b影院| 在线看a的网站| 亚洲色图综合在线观看| 巨乳人妻的诱惑在线观看| 国产熟女午夜一区二区三区| 岛国在线观看网站| 19禁男女啪啪无遮挡网站| 久久久国产一区二区| 好男人电影高清在线观看| 男女边摸边吃奶| 精品卡一卡二卡四卡免费| 宅男免费午夜| 在线av久久热| 国产成人欧美| 大型av网站在线播放| 怎么达到女性高潮| 精品国产一区二区三区四区第35| 99精品久久久久人妻精品| 欧美日韩精品网址| 国产精品一区二区在线观看99| 国产高清videossex| 好男人电影高清在线观看| 亚洲国产欧美一区二区综合| 亚洲成人手机| 国产伦理片在线播放av一区| 老司机午夜福利在线观看视频 | 亚洲av电影在线进入| 欧美精品av麻豆av| 国产男靠女视频免费网站| 免费人妻精品一区二区三区视频| 久久精品亚洲精品国产色婷小说| 日本精品一区二区三区蜜桃| 人妻久久中文字幕网| 久久人人97超碰香蕉20202| 视频在线观看一区二区三区| 咕卡用的链子| 亚洲精品美女久久久久99蜜臀| 高清av免费在线| 99国产极品粉嫩在线观看| 日韩大码丰满熟妇| 老司机深夜福利视频在线观看| 日本a在线网址| 精品少妇久久久久久888优播| 久久精品熟女亚洲av麻豆精品| 精品一区二区三区四区五区乱码| 午夜两性在线视频| 黄频高清免费视频| 中文字幕av电影在线播放| av视频免费观看在线观看| 日本撒尿小便嘘嘘汇集6| 国产亚洲av高清不卡| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 成年动漫av网址| 国产精品美女特级片免费视频播放器 | 免费在线观看完整版高清| 中文字幕色久视频| 成人国产一区最新在线观看| 国产黄频视频在线观看| 美女国产高潮福利片在线看| 露出奶头的视频| 亚洲情色 制服丝袜| 国产淫语在线视频| aaaaa片日本免费| 妹子高潮喷水视频| 夜夜爽天天搞| 国产成+人综合+亚洲专区| 国产精品九九99| 两个人看的免费小视频| 日韩欧美一区视频在线观看| 两人在一起打扑克的视频| 午夜视频精品福利| 欧美亚洲 丝袜 人妻 在线| 免费日韩欧美在线观看| 91成年电影在线观看| 黄色怎么调成土黄色| 一区二区日韩欧美中文字幕| 亚洲第一欧美日韩一区二区三区 | 日本a在线网址| 亚洲国产欧美网| 美女高潮到喷水免费观看| 久久久久久久久免费视频了| 日韩视频在线欧美| 极品人妻少妇av视频| 老汉色∧v一级毛片| 这个男人来自地球电影免费观看| 亚洲va日本ⅴa欧美va伊人久久| 露出奶头的视频| 看免费av毛片| 亚洲成人国产一区在线观看| 午夜久久久在线观看| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 狠狠精品人妻久久久久久综合| 国产av又大| 亚洲中文字幕日韩| 亚洲精品自拍成人| 手机成人av网站| 久久99一区二区三区| 成人永久免费在线观看视频 | 午夜福利影视在线免费观看| 人人妻人人澡人人爽人人夜夜| 国产av国产精品国产| 一二三四社区在线视频社区8| 久久热在线av| 蜜桃在线观看..| www.熟女人妻精品国产| 欧美黑人精品巨大| 精品午夜福利视频在线观看一区 | 嫁个100分男人电影在线观看| 曰老女人黄片| 亚洲av日韩在线播放| 超碰成人久久| 欧美激情高清一区二区三区| 精品国产国语对白av| 久久精品人人爽人人爽视色| 免费一级毛片在线播放高清视频 | 人妻久久中文字幕网| 亚洲国产毛片av蜜桃av| 成人国产av品久久久| 后天国语完整版免费观看| 亚洲国产精品一区二区三区在线| 久久青草综合色| 国产欧美日韩精品亚洲av| 青青草视频在线视频观看| 亚洲男人天堂网一区| 制服人妻中文乱码| 宅男免费午夜| 久久影院123| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 蜜桃在线观看..| 制服人妻中文乱码| 国产一卡二卡三卡精品| 欧美精品av麻豆av| 蜜桃在线观看..| 制服人妻中文乱码| 欧美老熟妇乱子伦牲交| 成人影院久久| 亚洲第一青青草原| 淫妇啪啪啪对白视频| 美女高潮喷水抽搐中文字幕| 丰满迷人的少妇在线观看| 亚洲av美国av| 黄色a级毛片大全视频| 99国产精品免费福利视频| 高潮久久久久久久久久久不卡| 国产欧美日韩精品亚洲av| 啦啦啦中文免费视频观看日本| 成年人免费黄色播放视频| 久久 成人 亚洲| 露出奶头的视频| 搡老熟女国产l中国老女人| 俄罗斯特黄特色一大片| 一本综合久久免费| 黄频高清免费视频| 热99国产精品久久久久久7| 亚洲一码二码三码区别大吗| 国产精品久久久久久精品电影小说| 母亲3免费完整高清在线观看| 成年版毛片免费区| 日韩人妻精品一区2区三区| 变态另类成人亚洲欧美熟女 | 久久国产亚洲av麻豆专区| 女性生殖器流出的白浆| 王馨瑶露胸无遮挡在线观看| 国产精品av久久久久免费| 我要看黄色一级片免费的| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 视频在线观看一区二区三区| 国产日韩欧美视频二区| 久久午夜亚洲精品久久| 热re99久久精品国产66热6| 免费观看a级毛片全部| 久久久久久久大尺度免费视频| 国产极品粉嫩免费观看在线| 国产精品影院久久| 少妇的丰满在线观看| 精品视频人人做人人爽| 成人18禁在线播放| 美女高潮喷水抽搐中文字幕| 看免费av毛片| 国产免费现黄频在线看| 国产在视频线精品| 国产成人精品无人区| 久久国产精品影院| 如日韩欧美国产精品一区二区三区| 三上悠亚av全集在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产成人系列免费观看| 免费久久久久久久精品成人欧美视频| 一进一出好大好爽视频| 人人妻人人添人人爽欧美一区卜| 五月开心婷婷网| 欧美人与性动交α欧美软件| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 欧美日韩一级在线毛片| 午夜免费成人在线视频| 大码成人一级视频| 国产欧美日韩一区二区三| 看免费av毛片| 天天添夜夜摸| 五月天丁香电影| 欧美亚洲 丝袜 人妻 在线| 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| 国产精品久久久av美女十八| svipshipincom国产片| 男女床上黄色一级片免费看| 美女福利国产在线| 51午夜福利影视在线观看| 在线观看66精品国产| 大香蕉久久成人网| 天天躁夜夜躁狠狠躁躁| 久久久久视频综合| 在线永久观看黄色视频| 精品一区二区三区av网在线观看 | 熟女少妇亚洲综合色aaa.| 亚洲,欧美精品.| 99国产精品99久久久久| 国产免费福利视频在线观看| 麻豆乱淫一区二区| 18禁黄网站禁片午夜丰满| 日韩成人在线观看一区二区三区| 免费av中文字幕在线| 十八禁网站网址无遮挡| 欧美乱码精品一区二区三区| 电影成人av| 久久婷婷成人综合色麻豆| av片东京热男人的天堂| 午夜福利乱码中文字幕| 精品国产乱子伦一区二区三区| 国产男女超爽视频在线观看| 9热在线视频观看99| 亚洲熟女精品中文字幕| 十八禁高潮呻吟视频| 午夜成年电影在线免费观看| 91精品三级在线观看| 美国免费a级毛片| 中国美女看黄片| 久久久久久久国产电影| 亚洲国产欧美在线一区| 人妻一区二区av| 咕卡用的链子| 久久精品91无色码中文字幕| 女人被躁到高潮嗷嗷叫费观| 成年女人毛片免费观看观看9 | 美女午夜性视频免费| 欧美大码av| 90打野战视频偷拍视频| 手机成人av网站| 久久久国产成人免费| 亚洲欧美色中文字幕在线| 成人18禁高潮啪啪吃奶动态图| 国产成人精品在线电影| 777久久人妻少妇嫩草av网站| 日本av免费视频播放| 亚洲美女黄片视频| 国产高清videossex| 久久精品人人爽人人爽视色| 欧美日韩av久久| 精品国产乱码久久久久久小说| 精品一区二区三卡| 亚洲欧美日韩高清在线视频 | 成年人午夜在线观看视频| 亚洲天堂av无毛| 国产成人系列免费观看| 国产在线精品亚洲第一网站| 久久中文字幕一级| 国产精品亚洲一级av第二区| 亚洲人成伊人成综合网2020| 另类亚洲欧美激情|