• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultradilute self-bound quantum droplets in Bose–Bose mixtures at finite temperature*

    2021-01-21 02:09:04JiaWang王佳XiaJiLiu劉夏姬andHuiHu胡輝
    Chinese Physics B 2021年1期
    關鍵詞:王佳

    Jia Wang(王佳), Xia-Ji Liu(劉夏姬), and Hui Hu(胡輝)

    Centre for Quantum Technology Theory,Swinburne University of Technology,Melbourne,Victoria 3122,Australia

    Keywords: Bose–Einstein condensation,quantum droplet

    1. Introduction

    The recent observation of an ultradilute self-bound droplet-like state[1]in single-component dipolar Bose–Einstein condensates (BECs)[2–5]and binary Bose–Bose mixtures[6–11]opens an entirely new direction to better understand the fascinating concept of quantum droplets – autonomously isolated quantum systems equilibrated under zero pressure in free space.Quantum droplets such as helium nanodroplets have already been intensively investigated in condensed matter community over the past few decades.[12–14]However, an in-depth understanding of helium nano-droplets is still lacking,due to the strong inter-particle interactions and the limited techniques to control and characterize the nanodroplets. These limitations could be overcome for ultradilute Bose droplets, owing to the unprecedented controllability in cold-atom experiments.[15]For example, the inter-particle interactions in Bose droplets can be tuned at will by using Feshbach resonances[16]and their structure and collective excitations can be accurately measured through in-situ or time-offlight absorption imaging.[15]In particular, the realization of a weakly interacting Bose droplet now allows us to develop quantitative descriptions and makes it possible to have testable theoretical predictions.[17–36]

    In this respect, it is worth noting the seminal work by Petrov,[17]where the existence of a Bose droplet is proposed in binary Bose mixtures with attractive inter-species attractions.The mean-field collapse is surprisingly shown to be arrested by an effective repulsive force arising from Lee–Huang–Yang(LHY) quantum fluctuations.[38]This ground-breaking proposal is now successfully confirmed in several experimental setups, including the homonuclear39K–39K mixtures[6–9]and heteronuclear41K–87Rb[10]or23Na–87Rb mixtures.[11]Following Petrov’s pioneering idea,[17]numerous theoretical investigations have been recently carried out,[17–27,29–37]addressing various zero-temperature properties of Bose droplets.

    The finite-temperature properties of Bose droplets in both dipolar BECs and binary Bose mixtures, however, do not receive too much attention. Ultradilute droplets of dipolar bosons at finite temperature have recently been considered in the presence of an external harmonic trap.[28]For Bose droplets in binary mixtures, only the bulk properties (of an infinitely large droplet) at nonzero temperature are addressed most recently.[39,40]As the effective repulsive force provided by the LHY fluctuation term can be easily neutralized by thermal fluctuations,it is not a surprise to find that a Bose droplet in binary mixtures can be completely destabilized above a threshold temperature Tth.[39]

    The less interest in the finite temperature effect is probably due to the peculiar self-evaporation feature of quantum droplets. As a self-bound entity, the energy of elementary excitations of quantum droplets – either single-particle excitations or collective excitations – has to be bounded from above by the so-called particle-emission threshold,making the droplet essentially a low-temperature object. This is fairly evident in helium nano-droplets: once the nano-droplet is created, its temperature rapidly decreases to about 0.4 K in several milliseconds.[13]Afterward,however,the self-evaporation becomes not so efficient.[13]A Bose droplet in a binary mixture is similarly anticipated to be a low-temperature object.In particular, as predicted by Petrov from zero-temperature calculations,[17]for the number of particles in a certain range,there are no collective excitations below the particle-emission threshold. In other words, an excitation-forbidden region in the particle number exists. The Bose droplet then may automatically lose its thermal energy upon releasing the most energetic particles and reach exactly zero temperature.

    In this work, we would like to argue that the selfevaporation efficiency of Bose droplets at low temperature could be much reduced, as in helium nano-droplets.[13]As a result, the experimentally observed Bose droplets might have a small but nonzero temperature in the realistic timescale of experiments.[6–9]We theoretically determine the finite-temperature structure and collective excitations of selfbound spherical Bose droplets with a finite number of particles, based on time-independent and time-dependent extended Gross–Pitaevskii equations (GPEs),[17]respectively.We find a rich phase diagram at finite temperature. In particular,the excitation-forbidden,self-evaporation region of the Bose droplet,found earlier by Petrov using a zero-temperature theory,[17]turns out to shrink with increasing temperature and disappears eventually. We also predict that the surface modes and compressional sound modes of the Bose droplet become softened at the droplet-to-gas transition upon increasing temperature. Our results could be experimentally examined in binary Bose mixtures if efficient thermometry can be established at low temperatures.

    2. Extended Gross–Pitaevskii equation at finite temperature

    To address the finite-temperature properties of a finitesize Bose droplet, we consider the finite-temperature version of the extended GPE

    where Φ(x,t)can be treated as the wave-function of the Bose droplet with atomic mass m, μ is the chemical potential to be determined by the total number of particles N,and ?(n)is the local free energy functional(per unit volume V)depending on the local density n(x,t)=|Φ(x,t)|2.

    The extended GPE in the form of Eq.(1)was first used by Petrov in his seminal work as an effective phenomenological theory to describe the low-energy dynamics of an LHY droplet at zero temperature.[17]In the studies of helium nano-droplets,such a density-functional description is widely adopted.[12]For an overview,we refer to the review paper.[13]The microscopic derivation of the extended GPE Eq.(1)is difficult,due to an intrinsic in-consistency in Petrov’s theory of the LHY droplet: one needs to artificially remove a small imaginary part in the LHY energy functional, which is related to the instability of mean-field collapse.[17]This difficulty was recently overcome by the present authors,with the consideration of the inter-species pairing of two bosons in different hyperfine states.[33,34]As a result of the correct description for the ground state, the extended GPE can be microscopically derived. This was demonstrated in our recent work for the zerotemperature case under the local density approximation.[35]The generalization of the derivation to the nonzero temperature T /=0 case is straightforward. We can simply replace the ground-state energy functional ?(n)at zero temperature used in our previous work[35]with a finite-temperature energy function ?(n)for free energy.

    From the previous work for the finite-temperature bulk properties of the LHY droplet,[39]it is easy to show that the free energy functional per unit volume takes the form

    At zero temperature,where the last term in Eq.(13)is absent,Eq. (12) recovers the dimensionless extended GPE used earlier by Petrov.[17]The two temperature-dependent constants CTand BTare the functions of the ratio T/Tthonly and do not depend explicitly on the scattering lengths a and a12. Near the threshold temperature T ~Tth,both constants become significant, and we find that the LHY quantum-fluctuation term(∝|φ|5) in the free energy functional is largely compensated by the last thermal-fluctuation term. This eventually destabilizes a large Bose droplet at the threshold temperature Tth.[39]Let us now analyze how does this thermal destabilization occur for a Bose droplet with a finite(reduced)number of particles.

    2.1. Time-independent GPE for the density distribution φ0

    In this work, we solve the static GPE numerically via a gradient method, which improves the accuracy and efficiency from our previous work.[15,41,42]The details of our numerical method are described in Appendix A.

    2.2. Bogoliubov equations for collective excitations

    To study the collective excitations of the Bose droplet,we consider small fluctuation modes around the condensate wavefunction φ0(r)[15,32,42]

    It should be noted that the wave-functions u(x)=+φ0(r)and v(x)=-φ0(r)are the zero-energy solution(i.e.,ωj=0)of the Bogoliubov equations. This is precisely the condensate mode of the Bose droplet and therefore should be discarded. To numerically solve the Bogoliubov equations,we follow the technique by Hutchinson,Zaremba,and Griffin.[43]The details of the numerical implementation can be found in Ref. [42] and Appendix A.

    3. Results and discussion

    3.1. Collective excitations at a given temperature

    To start, let us briefly review the essential zerotemperature properties of a self-bound Bose droplet.[17]First,the chemical potential μ of the droplet has to be negative(μ <0), less than that of the surrounding vacuum (i.e., μvac=0).Otherwise, it is not energetically favorable for particles to be added into the droplet. For an infinitely large droplet, where the edge effect can be safely neglected,it is clear from the stationary GPE Eq.(16)that the condensate wave-function in the bulk is φ0=1 in the re-scale units and the chemical potential μ =-1/2. As we decrease the number of particles in the droplet,the wave-function φ0(r)will be smaller than unity and the chemical potential increases towards μ →0-. The droplet will eventually become unstable and experience a droplet-togas transition,when the zero-pressure condition for the droplet state is strongly violated at low density. The droplet-to-gas transition at the critical number of particles Nc?18.65 has been analyzed in detail by Petrov,[17]by considering the balance between the kinetic energy (i.e., from the Laplace operator -?2/2) and the interaction energy (i.e., ?(φ0)). The transition is clearly signaled by the softening of the breathing mode frequency ωl=0,n=0,which vanishes precisely at Nc.This is shown by blue circles in Fig.2(a),where we reproduce the lower panel of Fig. 1 in Ref. [17]. Petrov also predicted the existence of a metastable droplet state when the number of particles is slightly larger than the critical number, i.e.,Nc<N <Nm?22.55.[17]This metastable state has a positive total energy, i.e., -? <0 as shown in Fig. 2(a), so the particles in the droplet will eventually escape to the vacuum via tunneling through an energy barrier(created by the competing kinetic and interaction energies).

    Another interesting zero-temperature feature of the Bose droplet is the existence of an excitation-forbidden window in the number of particles,[17]as we mentioned earlier. In Fig.2(a),there is no collective excitation in the stable droplet state below a threshold number of particles, N <Nth?94.2.All collective excitations are accumulated right above the particle-emission threshold |μ|, forming an unbounded collective excitation continuum.[42]The bounded collective excitations are only possible at N >Nth, where the quadruple mode frequency ωl=2,n=0first becomes smaller than|μ|,[17]as shown by the red empty squares. At sufficiently large number of particles(i.e.,N ~104),the Bose droplet is able to acquire a series of the surface modes and compressional sound modes with well-defined dispersion relations,[17,42]as we shall see later.

    Fig. 2. The chemical potential -μ, free energy per particle -?/N,breathing mode frequency, and quadrupole mode frequency as a function of the number of particle at zero temperature(a)and at temperature T =0.6Tth (b). At zero temperature in (a), a metastable Bose droplet occurs when the number of particles decreases down to Nm ?22.55,when the free energy ? becomes positive(or-? becomes negative).

    At finite temperature, the collective excitation spectrum can dramatically change. In Fig.2(b),we report the excitation spectrum at T = 0.6Tth. It is readily seen that the dropletto-gas transition now occurs at a much larger critical number of particles, Nc(T =0.6Tth)?30.9, where the breathing mode frequency drops to zero. At the same time, the free energy ? is always negative, indicating that the metastable droplet state found at zero temperature does not exist anymore. The threshold number of particle for the excitationforbidden window also significantly decreases and we find that Nth(T =0.6Tth)?66.2. For N >66.2, the quadruple mode frequency ω20decreases with increasing number of particles,while the breathing mode frequency ω00continuously follows the particle-emission threshold |μ| at the number of particles considered in the figure.

    In Fig. 3, we show the excitation spectrum at an even higher temperature T = 0.8Tth. At this temperature, the excitation-forbidden window in the number of particles completely disappears. Both the breathing mode frequency and quadruple mode frequency appear to be bounded below the particle-emission threshold|μ|.

    Fig. 3. The chemical potential -μ, breathing mode frequency, and quadrupole mode frequency as a function of the number of particle at temperature T =0.8Tth.

    3.2. A finite-temperature phase diagram

    We have calculated the excitation spectrum at different reduced temperatures and consequently have obtained a finitetemperature phase diagram,as reported in Fig.4.This presents the main result of our work. Here,the critical number of particle Nc(black solid curve)is determined by extrapolating the breathing mode frequency ω00to zero, and the critical number Nm(red dashed curve) is obtained by tracing the position where the free energy becomes positive. The two curves crosses with each other at about 0.24Tth,above which the window for a metastable droplet state closes. It is interesting to note that the critical number of particles Ncshows a sensitive temperature dependence. It increases very rapidly once the temperature is above about 0.4Tth. Approaching the bulk threshold temperature Tth,a Bose droplet with any number of particles becomes thermally unstable, as we already show in the previous work.[39]

    On the other hand, the threshold number of particle Nth(blue dash-dotted curve) can be determined from the crossing point between the quadruple mode frequency ω20and the particle-emission threshold |μ|. It separates the phase space for a stable Bose droplet into two regimes: an excitationforbidden droplet regime without any bounded collective excitations below the particle-emission threshold and a standard droplet regime with at least one discrete collective excitation.With increasing temperature, we find that the Nth-curve terminates at about 0.73Tth(see, i.e., the solid circle symbol in the figure). Above this temperature, we always find standard Bose droplets, in which a small but nonzero temperature or entropy could be accommodated by the discrete bounded collective excitations. Therefore, the intriguing self-evaporation phenomenon predicted by Petrov, i.e., the emission of particles upon arbitrary excitations,[17]ceases to exist. The Bose droplets then fail to automatically reach zero temperature.

    Fig. 4. The phase diagram of a finite-size Bose droplet as functions of the reduced number of particles N (horizontal axis) and of the reduced temperature T/Tth (vertical axis). At high temperature and small number of particles, the system is in the gas-like phase, while at low temperature and large number of particles, it is in the droplet state. A metastable droplet state also occurs at low temperature and relatively small number of particle.

    3.3. The temperature-dependences of the density distribution and collective excitations

    Let us now consider an idealized experimental situation.Initially, a Bose droplet is nearly in thermal equilibrium at a nonzero temperature.It then gradually reduces its temperature by emitting a very small portion of the most energetic particles. This slow self-evaporation might be treated as an adiabatic process.By taking the in-situ or time-of-flight absorption imaging of the Bose droplet,we may then experimentally extract the temperature-dependences of the density distribution and collective excitations of the Bose droplet at a nearly constant number of particles.

    3.3.1. Large Bose droplets

    Fig. 6. Excitation frequencies ωln (l ≤9 and n ≤2) of a large self-bound Bose droplet (N =3000), as a function of the reduced temperature T/Tth.The red dashed curves show the surface modes ωl≥2,n=0 and the blue dashdotted curves show the compressional bulk modes.The lowest surface mode ω20 (i.e, quadruple mode) and the lowest bulk mode (breathing mode) are highlighted by the red open squares and blue open circles,respectively. The black thick curve shows the threshold-μ.

    3.3.2. Small Bose droplets

    Let us now consider a Bose droplet with small reduced number of particles,which is more amenable to be created in the current experimental setups.[6,8]In Fig. 7, we show the density distribution of a N=100 Bose droplet at two temperatures: T =0 (solid curve) and T =0.7Tth(dashed curve).Compared with a large Bose droplet in Fig.5,the density distribution of a small droplet shows a more appreciable temperature dependence. In particular,the center density can change up to several tens of percent(see the inset),as we increase the temperature towards the threshold. This pronounced temperature dependence could be related to the loss of the flat-top structure in the density distribution due to the reduced number of particles. A small Bose droplet appears to be more easier to be altered than a large droplet.

    Fig.7. The density distribution n(r)of a small self-bound Bose droplet(N =100) at zero temperature (blue solid curve) and at the temperature T =0.7Tth (red dashed curve). The inset shows the temperature dependence of the center density at r=0.

    In Fig.8,we report the temperature evolution of the collective excitation spectrum at N=100. At this number of particles and at zero temperature, only the lowest surface mode(i.e.,the quadruple mode ω20)is bounded below the particleemission threshold |μ|.[17]When we increase the temperature, the quadruple mode frequency decreases notably, presumably due to the increase of the droplet radius, since the droplet at this size acquires a more sensitive temperature dependence as we mentioned earlier. Interestingly, at about 0.7Tththe frequency of the lowest compression bulk mode,the breathing mode frequency, starts to fall off the particleemission threshold. It becomes increasingly softened towards the threshold temperature Tth. At an even higher temperature(i.e., T ~0.87Tth), more and more higher-order bulk modes fall off the the particle-emission threshold and become softened. This fall-off feature turns out to be very general,occurring also at smaller number of particles,as can be seen in the inset for the selected case of N=50.

    Fig. 8. Excitation frequencies ωln (l ≤9 and n ≤2) of a small selfbound Bose droplet(N=100),as a function of the reduced temperature T/Tth. The red dashed curves show the surface modes ωl≥2,n=0 and the blue dash-dotted curves show the compressional bulk modes. The lowest surface mode ω20 (i.e, quadruple mode) and the lowest bulk mode(breathing mode)are highlighted by the red open squares and blue open circles,respectively. The black thick curve shows the threshold-μ. At this number of particles,most of the excitation modes enter the collective excitation continuum with a frequency ωln ?-μ. The inset shows the excitation spectrum at an even smaller number of particles,N=50.

    The mode frequency softening, for both surface modes and compressional bulk modes in large and small Bose droplets,is therefore a characteristic feature of the thermallyinduced droplet-to-gas transition at finite temperature. The mode softening effectively removes the excitation-forbidden interval in the number of particles predicted by Petrov at zero temperature,[17]and opens the possibility to observe a small Bose droplet with non-zero temperature.

    4. Conclusions

    In summary,we have theoretically investigated the finitetemperature effects on the structure and collective excitations of an ultradilute quantum droplet in free space, formed in a binary Bose–Bose mixture with inter-species attractions near the mean-field collapse. Our calculations are based on the extended (time-dependent) Gross–Pitaevskii equation generalized to the finite-temperature case. The density distribution is determined by solving the static Gross–Pitaevskii equation,while the collective excitation spectrum is obtained by solving the coupled Bogoliubov equations.

    We have found a rich finite-temperature phase diagram as a function of the number of particles in the droplet. In particular,the critical number of particles at the droplet-to-gas transition is found to depend sensitively on the temperature. The excitation-forbidden interval predicted by Petrov is shown to shrink with increasing temperature and disappears completely at about 0.73Tth, where Tthis the threshold temperature for thermally destabilizing an infinitely large Bose droplet.Above the temperature 0.73Tth,there is at least one discrete collective mode below the particle-emission threshold,which may block the self-evaporation of the Bose droplet and allow a small but nonzero temperature.

    Our results could be experimentally examined, if we are able to overcome the difficulty of finding a useful thermometry to measure the temperature. Qualitatively, at the number of particles slightly below Nth(T =0)?94.2,the experimental observation of discrete quadrupole mode frequency or breathing mode frequency below the particle-emission threshold, i.e., ω20<|μ|or ω00<|μ|, would be a very strong evidence for the finite-temperature effect.

    Appendix A:Numerical method

    The B-spline basis has been extensively used in solving Schr¨oinger equations in two- and three-body problems with high accuracy.[45,46]The B-spline basis allows us to use an uneven grid, which might better represent the solution wavefunction.The B-spline basis also allows a higher order approximation of the derivative operator that appears in the kinetic energy term. The energy density functional ?/N then can be regarded as a non-linear function of coefficients cn,which can be minimized using the standard conjugate-gradient method via software package such as“minFunc”in Matlab.[47]

    猜你喜歡
    王佳
    王佳
    當代作家(2023年4期)2023-06-07 13:57:24
    “反詐警花”用愛勸阻200萬群眾受騙
    Phenomenon of Fossilization in English Learning, underling reasons and corresponding Strategies
    王佳、駱太均空間設計作品
    藝術評論(2018年8期)2018-12-28 09:10:54
    苔花也學牡丹開
    戲劇之家(2018年32期)2018-01-02 10:40:14
    幫助您我快樂
    “全職太太”被離婚面臨凈身出戶怎么辦?
    婦女生活(2017年10期)2017-10-10 03:58:33
    女兒得怪病“不食人間煙火”之后
    掉入“抑郁癥”陷阱的婚姻
    “防火防盜防閨蜜”,兩套房子離奇被抵押
    欧美高清成人免费视频www| 亚洲精品一区av在线观看| 中文资源天堂在线| 国产精品99久久99久久久不卡| 妹子高潮喷水视频| 日韩成人在线观看一区二区三区| 精品高清国产在线一区| 久久精品国产亚洲av高清一级| 日韩三级视频一区二区三区| 天堂√8在线中文| 嫩草影院精品99| videosex国产| 亚洲av电影在线进入| 51午夜福利影视在线观看| 久久午夜亚洲精品久久| 久久久久久亚洲精品国产蜜桃av| 欧美中文日本在线观看视频| 午夜成年电影在线免费观看| 99精品久久久久人妻精品| 色尼玛亚洲综合影院| 成人欧美大片| 99精品在免费线老司机午夜| 欧美不卡视频在线免费观看 | 久久久久亚洲av毛片大全| 国产男靠女视频免费网站| 在线视频色国产色| 此物有八面人人有两片| 欧美成人午夜精品| 亚洲一区二区三区色噜噜| 神马国产精品三级电影在线观看 | 很黄的视频免费| 亚洲av电影不卡..在线观看| 亚洲欧洲精品一区二区精品久久久| 看免费av毛片| 中文字幕av在线有码专区| 99国产精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产黄片美女视频| 一进一出好大好爽视频| 一本一本综合久久| 国产成人av激情在线播放| 精品少妇一区二区三区视频日本电影| 欧美午夜高清在线| 桃红色精品国产亚洲av| 久久久久久久久免费视频了| 国产精品久久久久久久电影 | 免费看a级黄色片| 亚洲无线在线观看| 可以免费在线观看a视频的电影网站| 欧美乱码精品一区二区三区| 一级a爱片免费观看的视频| 国产精品精品国产色婷婷| 狂野欧美白嫩少妇大欣赏| 亚洲精品av麻豆狂野| 人妻夜夜爽99麻豆av| 免费电影在线观看免费观看| 亚洲色图 男人天堂 中文字幕| 国产又黄又爽又无遮挡在线| 国产精品亚洲一级av第二区| 宅男免费午夜| 别揉我奶头~嗯~啊~动态视频| 日韩大尺度精品在线看网址| 日韩精品青青久久久久久| 视频区欧美日本亚洲| 女警被强在线播放| 久久精品亚洲精品国产色婷小说| 国产在线观看jvid| 久久精品91无色码中文字幕| 午夜精品一区二区三区免费看| 精品国产亚洲在线| 国产精品日韩av在线免费观看| 在线观看日韩欧美| 久久 成人 亚洲| 999久久久国产精品视频| 九色成人免费人妻av| 欧美日韩一级在线毛片| 国产午夜精品论理片| 日本一区二区免费在线视频| 看黄色毛片网站| 老司机靠b影院| 黄色视频不卡| 成年免费大片在线观看| 91九色精品人成在线观看| 国产亚洲精品第一综合不卡| 人成视频在线观看免费观看| 最近最新中文字幕大全电影3| 久久香蕉精品热| 久久精品国产清高在天天线| 麻豆国产av国片精品| 一级毛片女人18水好多| 午夜免费成人在线视频| 日韩av在线大香蕉| 国产av一区在线观看免费| 中文亚洲av片在线观看爽| 亚洲激情在线av| 在线观看午夜福利视频| 欧美丝袜亚洲另类 | 国产成人精品久久二区二区91| 桃红色精品国产亚洲av| 操出白浆在线播放| 制服诱惑二区| a在线观看视频网站| 国产97色在线日韩免费| 看免费av毛片| 亚洲色图av天堂| 日韩欧美国产一区二区入口| 少妇被粗大的猛进出69影院| 欧美性猛交黑人性爽| 亚洲精华国产精华精| aaaaa片日本免费| 高潮久久久久久久久久久不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久久亚洲精品蜜臀av| АⅤ资源中文在线天堂| 国产视频内射| 精品少妇一区二区三区视频日本电影| 欧美日韩中文字幕国产精品一区二区三区| 99热6这里只有精品| 久久久久免费精品人妻一区二区| 一区福利在线观看| 午夜精品久久久久久毛片777| 色综合婷婷激情| 久久人人精品亚洲av| 久久精品国产亚洲av高清一级| 国产精品永久免费网站| 好男人电影高清在线观看| 久久久精品欧美日韩精品| 少妇的丰满在线观看| 老司机在亚洲福利影院| 女生性感内裤真人,穿戴方法视频| 无人区码免费观看不卡| 欧美不卡视频在线免费观看 | 精品高清国产在线一区| 久久这里只有精品中国| 精品熟女少妇八av免费久了| 婷婷亚洲欧美| 哪里可以看免费的av片| 可以免费在线观看a视频的电影网站| 国产精品99久久99久久久不卡| 亚洲,欧美精品.| 可以在线观看的亚洲视频| 国产午夜精品论理片| 一区福利在线观看| 黄色片一级片一级黄色片| 国产成+人综合+亚洲专区| 国产高清激情床上av| 禁无遮挡网站| 不卡av一区二区三区| 国产精品av视频在线免费观看| 桃红色精品国产亚洲av| 久久精品亚洲精品国产色婷小说| 88av欧美| 成年女人毛片免费观看观看9| 国产精品1区2区在线观看.| 欧美黑人欧美精品刺激| 免费在线观看亚洲国产| 在线观看免费视频日本深夜| 露出奶头的视频| 成熟少妇高潮喷水视频| 欧美成人午夜精品| 日本免费a在线| 日本三级黄在线观看| 麻豆久久精品国产亚洲av| 亚洲人成77777在线视频| 色综合欧美亚洲国产小说| 黑人巨大精品欧美一区二区mp4| 变态另类丝袜制服| 最新在线观看一区二区三区| 国产午夜福利久久久久久| 露出奶头的视频| 欧美中文综合在线视频| 中文亚洲av片在线观看爽| 久久天堂一区二区三区四区| 国产高清激情床上av| 欧美黑人欧美精品刺激| 亚洲五月天丁香| 日韩欧美在线二视频| 99国产精品一区二区三区| 亚洲全国av大片| 精品乱码久久久久久99久播| 无人区码免费观看不卡| 中文亚洲av片在线观看爽| 琪琪午夜伦伦电影理论片6080| 老司机午夜福利在线观看视频| 中文亚洲av片在线观看爽| 露出奶头的视频| 国产精品 欧美亚洲| 久久婷婷成人综合色麻豆| 91av网站免费观看| 国产av一区在线观看免费| 亚洲专区中文字幕在线| 精品久久久久久久末码| 久久久久久久久中文| 在线视频色国产色| 在线观看免费日韩欧美大片| 欧美精品啪啪一区二区三区| 久久久久久久午夜电影| 久久久久国产一级毛片高清牌| 日韩中文字幕欧美一区二区| 听说在线观看完整版免费高清| 欧美国产日韩亚洲一区| 欧美日本亚洲视频在线播放| 日本一二三区视频观看| 超碰成人久久| or卡值多少钱| 午夜精品一区二区三区免费看| 精品久久久久久,| 久久久久九九精品影院| 欧美日本视频| 天堂动漫精品| 日韩欧美在线二视频| 亚洲全国av大片| 老鸭窝网址在线观看| 啦啦啦韩国在线观看视频| 黄色丝袜av网址大全| 欧美激情久久久久久爽电影| 19禁男女啪啪无遮挡网站| 精品日产1卡2卡| 午夜视频精品福利| 俺也久久电影网| 一区二区三区国产精品乱码| 日本 av在线| 99精品久久久久人妻精品| 亚洲午夜精品一区,二区,三区| 亚洲av成人av| 在线播放国产精品三级| av国产免费在线观看| 一本一本综合久久| 日本成人三级电影网站| 九九热线精品视视频播放| 午夜福利成人在线免费观看| 国产精品影院久久| 99精品久久久久人妻精品| 手机成人av网站| 久久香蕉国产精品| 精品久久久久久久久久免费视频| 男女做爰动态图高潮gif福利片| 国产成人aa在线观看| 欧美精品亚洲一区二区| 99国产综合亚洲精品| 最新美女视频免费是黄的| 亚洲欧美日韩无卡精品| 无人区码免费观看不卡| 999精品在线视频| 岛国在线免费视频观看| 搡老熟女国产l中国老女人| 精品乱码久久久久久99久播| 日本在线视频免费播放| 精品久久久久久,| 亚洲欧美日韩高清专用| 国产视频一区二区在线看| 听说在线观看完整版免费高清| 日本一本二区三区精品| 国产精品久久久人人做人人爽| e午夜精品久久久久久久| 日韩中文字幕欧美一区二区| 男女视频在线观看网站免费 | 欧美成人性av电影在线观看| 人人妻人人看人人澡| 一进一出好大好爽视频| 女人被狂操c到高潮| 国产高清视频在线播放一区| 午夜福利视频1000在线观看| 一二三四在线观看免费中文在| 舔av片在线| 久久热在线av| 少妇人妻一区二区三区视频| xxxwww97欧美| 嫩草影视91久久| 亚洲精品久久国产高清桃花| 欧美不卡视频在线免费观看 | 欧美精品亚洲一区二区| av视频在线观看入口| 在线国产一区二区在线| 老汉色av国产亚洲站长工具| 观看免费一级毛片| 一进一出好大好爽视频| 老司机福利观看| 日韩欧美国产一区二区入口| 麻豆成人午夜福利视频| 久久精品91蜜桃| av视频在线观看入口| 在线国产一区二区在线| 琪琪午夜伦伦电影理论片6080| 91大片在线观看| 国产又色又爽无遮挡免费看| 99久久精品国产亚洲精品| 亚洲中文字幕一区二区三区有码在线看 | 51午夜福利影视在线观看| 精品久久久久久久人妻蜜臀av| 在线永久观看黄色视频| 成年女人毛片免费观看观看9| 18禁观看日本| 99在线视频只有这里精品首页| 亚洲欧美精品综合一区二区三区| 欧美在线一区亚洲| 成人高潮视频无遮挡免费网站| 露出奶头的视频| 夜夜躁狠狠躁天天躁| 国产av一区二区精品久久| 欧美3d第一页| 亚洲成人精品中文字幕电影| 日本撒尿小便嘘嘘汇集6| 久久精品91蜜桃| 老鸭窝网址在线观看| 看免费av毛片| 男人舔奶头视频| 亚洲精品国产精品久久久不卡| av片东京热男人的天堂| 老司机在亚洲福利影院| 中文字幕熟女人妻在线| 男男h啪啪无遮挡| 久久久久久久久久黄片| 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久成人aⅴ小说| 免费看日本二区| 国产av在哪里看| 国产精品美女特级片免费视频播放器 | 国产99白浆流出| 国产精品久久视频播放| 亚洲专区国产一区二区| 午夜福利在线观看吧| 亚洲欧美日韩东京热| 淫秽高清视频在线观看| 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 99国产精品99久久久久| 欧美一区二区国产精品久久精品 | 国产蜜桃级精品一区二区三区| 精品久久蜜臀av无| 中文字幕人成人乱码亚洲影| 校园春色视频在线观看| 美女免费视频网站| 色av中文字幕| 五月伊人婷婷丁香| 亚洲欧美精品综合久久99| 国产野战对白在线观看| 欧美黄色淫秽网站| 天天躁狠狠躁夜夜躁狠狠躁| 中出人妻视频一区二区| 国产一区二区在线观看日韩 | 制服丝袜大香蕉在线| 国产成人精品久久二区二区免费| 国产一区二区三区在线臀色熟女| 亚洲国产欧美网| av有码第一页| 国产片内射在线| 伊人久久大香线蕉亚洲五| 极品教师在线免费播放| 国产久久久一区二区三区| 一进一出抽搐gif免费好疼| 国产一区二区在线av高清观看| 精品日产1卡2卡| 成人国产一区最新在线观看| 高清毛片免费观看视频网站| 男男h啪啪无遮挡| 日韩 欧美 亚洲 中文字幕| 一个人观看的视频www高清免费观看 | aaaaa片日本免费| 国产三级中文精品| 亚洲成a人片在线一区二区| 久久精品人妻少妇| 99久久精品国产亚洲精品| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 亚洲全国av大片| 日本一区二区免费在线视频| 亚洲精品在线观看二区| 国产69精品久久久久777片 | 亚洲九九香蕉| 天天一区二区日本电影三级| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 日本 欧美在线| 亚洲欧美精品综合一区二区三区| 久久久久九九精品影院| 老汉色∧v一级毛片| 好男人在线观看高清免费视频| 身体一侧抽搐| 可以在线观看的亚洲视频| 午夜福利高清视频| 在线看三级毛片| 久久欧美精品欧美久久欧美| 又粗又爽又猛毛片免费看| 国产麻豆成人av免费视频| 亚洲全国av大片| 午夜老司机福利片| 亚洲成人精品中文字幕电影| 欧美极品一区二区三区四区| 国产精品av视频在线免费观看| 成人18禁在线播放| 丰满人妻一区二区三区视频av | 色精品久久人妻99蜜桃| 亚洲成人免费电影在线观看| 欧美色视频一区免费| 一进一出抽搐gif免费好疼| av福利片在线| 日本五十路高清| 亚洲成a人片在线一区二区| 久久久国产欧美日韩av| 色综合欧美亚洲国产小说| av欧美777| 亚洲第一电影网av| 88av欧美| 一区二区三区国产精品乱码| 少妇裸体淫交视频免费看高清 | 五月玫瑰六月丁香| 久久 成人 亚洲| 精品久久久久久久毛片微露脸| 久久精品国产综合久久久| 极品教师在线免费播放| 国产精品国产高清国产av| 人成视频在线观看免费观看| 亚洲成人免费电影在线观看| 在线观看日韩欧美| 日本五十路高清| 老司机午夜福利在线观看视频| 色噜噜av男人的天堂激情| 法律面前人人平等表现在哪些方面| 色综合亚洲欧美另类图片| 黑人欧美特级aaaaaa片| 变态另类丝袜制服| 女人爽到高潮嗷嗷叫在线视频| 国产黄色小视频在线观看| 欧美精品啪啪一区二区三区| 日韩高清综合在线| 国产高清视频在线播放一区| 亚洲成a人片在线一区二区| 亚洲国产精品sss在线观看| 校园春色视频在线观看| 亚洲精品国产精品久久久不卡| 天堂av国产一区二区熟女人妻 | xxx96com| 亚洲av日韩精品久久久久久密| 91在线观看av| 夜夜爽天天搞| 色哟哟哟哟哟哟| 国产成人aa在线观看| 欧美日本亚洲视频在线播放| 欧美中文综合在线视频| 五月玫瑰六月丁香| netflix在线观看网站| 国产亚洲精品久久久久5区| 国内精品一区二区在线观看| 一本久久中文字幕| 国内少妇人妻偷人精品xxx网站 | 国产97色在线日韩免费| 男人舔女人下体高潮全视频| 国产高清videossex| 巨乳人妻的诱惑在线观看| 99热6这里只有精品| 国产精品久久久av美女十八| 精品久久久久久久久久久久久| 男女床上黄色一级片免费看| 午夜日韩欧美国产| 69av精品久久久久久| 午夜两性在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜影院日韩av| 国产精品久久电影中文字幕| 亚洲精品色激情综合| 成人精品一区二区免费| 岛国在线免费视频观看| 精品国产亚洲在线| aaaaa片日本免费| 国产又色又爽无遮挡免费看| 精品一区二区三区av网在线观看| 午夜福利免费观看在线| 曰老女人黄片| 成年人黄色毛片网站| 日韩欧美国产一区二区入口| 一卡2卡三卡四卡精品乱码亚洲| 国产91精品成人一区二区三区| 免费观看精品视频网站| 国内毛片毛片毛片毛片毛片| 777久久人妻少妇嫩草av网站| 亚洲成av人片免费观看| 国产精品影院久久| 午夜成年电影在线免费观看| 日韩三级视频一区二区三区| 老司机深夜福利视频在线观看| 亚洲国产欧美一区二区综合| 国产高清视频在线播放一区| 欧美一级毛片孕妇| 欧美黄色片欧美黄色片| 亚洲成av人片在线播放无| cao死你这个sao货| 免费在线观看影片大全网站| 性欧美人与动物交配| 少妇被粗大的猛进出69影院| 麻豆一二三区av精品| 最近最新中文字幕大全免费视频| 999久久久精品免费观看国产| 很黄的视频免费| 亚洲片人在线观看| 成人一区二区视频在线观看| 男女之事视频高清在线观看| 全区人妻精品视频| 99久久精品国产亚洲精品| 久久亚洲精品不卡| 国产精品电影一区二区三区| а√天堂www在线а√下载| 夜夜看夜夜爽夜夜摸| 狂野欧美白嫩少妇大欣赏| 日韩 欧美 亚洲 中文字幕| 久久久久久久久免费视频了| 国产精品自产拍在线观看55亚洲| 国产乱人伦免费视频| 午夜精品久久久久久毛片777| 欧美av亚洲av综合av国产av| 中文在线观看免费www的网站 | 成年版毛片免费区| 久99久视频精品免费| 欧美在线黄色| 精品国内亚洲2022精品成人| 51午夜福利影视在线观看| 亚洲 欧美 日韩 在线 免费| 久久久久性生活片| 午夜免费观看网址| 欧美乱码精品一区二区三区| a在线观看视频网站| 婷婷精品国产亚洲av在线| 午夜成年电影在线免费观看| 久久精品综合一区二区三区| 国产乱人伦免费视频| 日韩有码中文字幕| 男人舔女人下体高潮全视频| 日日夜夜操网爽| 日日干狠狠操夜夜爽| 三级国产精品欧美在线观看 | 少妇熟女aⅴ在线视频| a在线观看视频网站| 亚洲真实伦在线观看| 天堂影院成人在线观看| 久久久精品欧美日韩精品| 一级黄色大片毛片| 热99re8久久精品国产| 婷婷六月久久综合丁香| 国产激情欧美一区二区| 色播亚洲综合网| 日本免费一区二区三区高清不卡| 欧美中文综合在线视频| videosex国产| 在线a可以看的网站| 午夜老司机福利片| 一进一出好大好爽视频| 欧美乱码精品一区二区三区| 嫁个100分男人电影在线观看| 人人妻,人人澡人人爽秒播| 天堂影院成人在线观看| 国产精品av久久久久免费| 午夜激情av网站| 99久久国产精品久久久| 他把我摸到了高潮在线观看| 欧美乱码精品一区二区三区| 91国产中文字幕| 美女大奶头视频| 免费观看精品视频网站| 国产精品久久久久久人妻精品电影| 12—13女人毛片做爰片一| 欧美极品一区二区三区四区| 国产亚洲欧美在线一区二区| 国产精品乱码一区二三区的特点| 中亚洲国语对白在线视频| 亚洲国产高清在线一区二区三| 久久精品91无色码中文字幕| 老司机在亚洲福利影院| 国产亚洲精品久久久久5区| 国产精品国产高清国产av| 俺也久久电影网| 国产99白浆流出| 国产欧美日韩一区二区精品| 男人舔奶头视频| 欧美一级毛片孕妇| 久久中文看片网| 一级毛片精品| 国产黄a三级三级三级人| 亚洲国产欧美网| 国产伦人伦偷精品视频| 久久精品亚洲精品国产色婷小说| а√天堂www在线а√下载| 一边摸一边做爽爽视频免费| 欧美3d第一页| 九色成人免费人妻av| 国产精品1区2区在线观看.| xxxwww97欧美| 亚洲国产欧洲综合997久久,| 曰老女人黄片| 日本撒尿小便嘘嘘汇集6| 男女床上黄色一级片免费看| 成人国产综合亚洲| 精品无人区乱码1区二区| 久久久久久久久久黄片| 久久久久国产精品人妻aⅴ院| bbb黄色大片| 免费电影在线观看免费观看| 不卡av一区二区三区| 一进一出抽搐动态| 免费av毛片视频| 一本大道久久a久久精品| 欧美人与性动交α欧美精品济南到| 婷婷六月久久综合丁香| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩一区二区精品| 久久精品国产亚洲av香蕉五月| 国产亚洲精品一区二区www| 一进一出抽搐动态| 国产精品,欧美在线| 岛国在线观看网站| 老司机午夜十八禁免费视频| 天堂动漫精品| 亚洲精品一卡2卡三卡4卡5卡| 国产97色在线日韩免费| 国产黄a三级三级三级人| 亚洲国产精品合色在线|