• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultradilute self-bound quantum droplets in Bose–Bose mixtures at finite temperature*

    2021-01-21 02:09:04JiaWang王佳XiaJiLiu劉夏姬andHuiHu胡輝
    Chinese Physics B 2021年1期
    關鍵詞:王佳

    Jia Wang(王佳), Xia-Ji Liu(劉夏姬), and Hui Hu(胡輝)

    Centre for Quantum Technology Theory,Swinburne University of Technology,Melbourne,Victoria 3122,Australia

    Keywords: Bose–Einstein condensation,quantum droplet

    1. Introduction

    The recent observation of an ultradilute self-bound droplet-like state[1]in single-component dipolar Bose–Einstein condensates (BECs)[2–5]and binary Bose–Bose mixtures[6–11]opens an entirely new direction to better understand the fascinating concept of quantum droplets – autonomously isolated quantum systems equilibrated under zero pressure in free space.Quantum droplets such as helium nanodroplets have already been intensively investigated in condensed matter community over the past few decades.[12–14]However, an in-depth understanding of helium nano-droplets is still lacking,due to the strong inter-particle interactions and the limited techniques to control and characterize the nanodroplets. These limitations could be overcome for ultradilute Bose droplets, owing to the unprecedented controllability in cold-atom experiments.[15]For example, the inter-particle interactions in Bose droplets can be tuned at will by using Feshbach resonances[16]and their structure and collective excitations can be accurately measured through in-situ or time-offlight absorption imaging.[15]In particular, the realization of a weakly interacting Bose droplet now allows us to develop quantitative descriptions and makes it possible to have testable theoretical predictions.[17–36]

    In this respect, it is worth noting the seminal work by Petrov,[17]where the existence of a Bose droplet is proposed in binary Bose mixtures with attractive inter-species attractions.The mean-field collapse is surprisingly shown to be arrested by an effective repulsive force arising from Lee–Huang–Yang(LHY) quantum fluctuations.[38]This ground-breaking proposal is now successfully confirmed in several experimental setups, including the homonuclear39K–39K mixtures[6–9]and heteronuclear41K–87Rb[10]or23Na–87Rb mixtures.[11]Following Petrov’s pioneering idea,[17]numerous theoretical investigations have been recently carried out,[17–27,29–37]addressing various zero-temperature properties of Bose droplets.

    The finite-temperature properties of Bose droplets in both dipolar BECs and binary Bose mixtures, however, do not receive too much attention. Ultradilute droplets of dipolar bosons at finite temperature have recently been considered in the presence of an external harmonic trap.[28]For Bose droplets in binary mixtures, only the bulk properties (of an infinitely large droplet) at nonzero temperature are addressed most recently.[39,40]As the effective repulsive force provided by the LHY fluctuation term can be easily neutralized by thermal fluctuations,it is not a surprise to find that a Bose droplet in binary mixtures can be completely destabilized above a threshold temperature Tth.[39]

    The less interest in the finite temperature effect is probably due to the peculiar self-evaporation feature of quantum droplets. As a self-bound entity, the energy of elementary excitations of quantum droplets – either single-particle excitations or collective excitations – has to be bounded from above by the so-called particle-emission threshold,making the droplet essentially a low-temperature object. This is fairly evident in helium nano-droplets: once the nano-droplet is created, its temperature rapidly decreases to about 0.4 K in several milliseconds.[13]Afterward,however,the self-evaporation becomes not so efficient.[13]A Bose droplet in a binary mixture is similarly anticipated to be a low-temperature object.In particular, as predicted by Petrov from zero-temperature calculations,[17]for the number of particles in a certain range,there are no collective excitations below the particle-emission threshold. In other words, an excitation-forbidden region in the particle number exists. The Bose droplet then may automatically lose its thermal energy upon releasing the most energetic particles and reach exactly zero temperature.

    In this work, we would like to argue that the selfevaporation efficiency of Bose droplets at low temperature could be much reduced, as in helium nano-droplets.[13]As a result, the experimentally observed Bose droplets might have a small but nonzero temperature in the realistic timescale of experiments.[6–9]We theoretically determine the finite-temperature structure and collective excitations of selfbound spherical Bose droplets with a finite number of particles, based on time-independent and time-dependent extended Gross–Pitaevskii equations (GPEs),[17]respectively.We find a rich phase diagram at finite temperature. In particular,the excitation-forbidden,self-evaporation region of the Bose droplet,found earlier by Petrov using a zero-temperature theory,[17]turns out to shrink with increasing temperature and disappears eventually. We also predict that the surface modes and compressional sound modes of the Bose droplet become softened at the droplet-to-gas transition upon increasing temperature. Our results could be experimentally examined in binary Bose mixtures if efficient thermometry can be established at low temperatures.

    2. Extended Gross–Pitaevskii equation at finite temperature

    To address the finite-temperature properties of a finitesize Bose droplet, we consider the finite-temperature version of the extended GPE

    where Φ(x,t)can be treated as the wave-function of the Bose droplet with atomic mass m, μ is the chemical potential to be determined by the total number of particles N,and ?(n)is the local free energy functional(per unit volume V)depending on the local density n(x,t)=|Φ(x,t)|2.

    The extended GPE in the form of Eq.(1)was first used by Petrov in his seminal work as an effective phenomenological theory to describe the low-energy dynamics of an LHY droplet at zero temperature.[17]In the studies of helium nano-droplets,such a density-functional description is widely adopted.[12]For an overview,we refer to the review paper.[13]The microscopic derivation of the extended GPE Eq.(1)is difficult,due to an intrinsic in-consistency in Petrov’s theory of the LHY droplet: one needs to artificially remove a small imaginary part in the LHY energy functional, which is related to the instability of mean-field collapse.[17]This difficulty was recently overcome by the present authors,with the consideration of the inter-species pairing of two bosons in different hyperfine states.[33,34]As a result of the correct description for the ground state, the extended GPE can be microscopically derived. This was demonstrated in our recent work for the zerotemperature case under the local density approximation.[35]The generalization of the derivation to the nonzero temperature T /=0 case is straightforward. We can simply replace the ground-state energy functional ?(n)at zero temperature used in our previous work[35]with a finite-temperature energy function ?(n)for free energy.

    From the previous work for the finite-temperature bulk properties of the LHY droplet,[39]it is easy to show that the free energy functional per unit volume takes the form

    At zero temperature,where the last term in Eq.(13)is absent,Eq. (12) recovers the dimensionless extended GPE used earlier by Petrov.[17]The two temperature-dependent constants CTand BTare the functions of the ratio T/Tthonly and do not depend explicitly on the scattering lengths a and a12. Near the threshold temperature T ~Tth,both constants become significant, and we find that the LHY quantum-fluctuation term(∝|φ|5) in the free energy functional is largely compensated by the last thermal-fluctuation term. This eventually destabilizes a large Bose droplet at the threshold temperature Tth.[39]Let us now analyze how does this thermal destabilization occur for a Bose droplet with a finite(reduced)number of particles.

    2.1. Time-independent GPE for the density distribution φ0

    In this work, we solve the static GPE numerically via a gradient method, which improves the accuracy and efficiency from our previous work.[15,41,42]The details of our numerical method are described in Appendix A.

    2.2. Bogoliubov equations for collective excitations

    To study the collective excitations of the Bose droplet,we consider small fluctuation modes around the condensate wavefunction φ0(r)[15,32,42]

    It should be noted that the wave-functions u(x)=+φ0(r)and v(x)=-φ0(r)are the zero-energy solution(i.e.,ωj=0)of the Bogoliubov equations. This is precisely the condensate mode of the Bose droplet and therefore should be discarded. To numerically solve the Bogoliubov equations,we follow the technique by Hutchinson,Zaremba,and Griffin.[43]The details of the numerical implementation can be found in Ref. [42] and Appendix A.

    3. Results and discussion

    3.1. Collective excitations at a given temperature

    To start, let us briefly review the essential zerotemperature properties of a self-bound Bose droplet.[17]First,the chemical potential μ of the droplet has to be negative(μ <0), less than that of the surrounding vacuum (i.e., μvac=0).Otherwise, it is not energetically favorable for particles to be added into the droplet. For an infinitely large droplet, where the edge effect can be safely neglected,it is clear from the stationary GPE Eq.(16)that the condensate wave-function in the bulk is φ0=1 in the re-scale units and the chemical potential μ =-1/2. As we decrease the number of particles in the droplet,the wave-function φ0(r)will be smaller than unity and the chemical potential increases towards μ →0-. The droplet will eventually become unstable and experience a droplet-togas transition,when the zero-pressure condition for the droplet state is strongly violated at low density. The droplet-to-gas transition at the critical number of particles Nc?18.65 has been analyzed in detail by Petrov,[17]by considering the balance between the kinetic energy (i.e., from the Laplace operator -?2/2) and the interaction energy (i.e., ?(φ0)). The transition is clearly signaled by the softening of the breathing mode frequency ωl=0,n=0,which vanishes precisely at Nc.This is shown by blue circles in Fig.2(a),where we reproduce the lower panel of Fig. 1 in Ref. [17]. Petrov also predicted the existence of a metastable droplet state when the number of particles is slightly larger than the critical number, i.e.,Nc<N <Nm?22.55.[17]This metastable state has a positive total energy, i.e., -? <0 as shown in Fig. 2(a), so the particles in the droplet will eventually escape to the vacuum via tunneling through an energy barrier(created by the competing kinetic and interaction energies).

    Another interesting zero-temperature feature of the Bose droplet is the existence of an excitation-forbidden window in the number of particles,[17]as we mentioned earlier. In Fig.2(a),there is no collective excitation in the stable droplet state below a threshold number of particles, N <Nth?94.2.All collective excitations are accumulated right above the particle-emission threshold |μ|, forming an unbounded collective excitation continuum.[42]The bounded collective excitations are only possible at N >Nth, where the quadruple mode frequency ωl=2,n=0first becomes smaller than|μ|,[17]as shown by the red empty squares. At sufficiently large number of particles(i.e.,N ~104),the Bose droplet is able to acquire a series of the surface modes and compressional sound modes with well-defined dispersion relations,[17,42]as we shall see later.

    Fig. 2. The chemical potential -μ, free energy per particle -?/N,breathing mode frequency, and quadrupole mode frequency as a function of the number of particle at zero temperature(a)and at temperature T =0.6Tth (b). At zero temperature in (a), a metastable Bose droplet occurs when the number of particles decreases down to Nm ?22.55,when the free energy ? becomes positive(or-? becomes negative).

    At finite temperature, the collective excitation spectrum can dramatically change. In Fig.2(b),we report the excitation spectrum at T = 0.6Tth. It is readily seen that the dropletto-gas transition now occurs at a much larger critical number of particles, Nc(T =0.6Tth)?30.9, where the breathing mode frequency drops to zero. At the same time, the free energy ? is always negative, indicating that the metastable droplet state found at zero temperature does not exist anymore. The threshold number of particle for the excitationforbidden window also significantly decreases and we find that Nth(T =0.6Tth)?66.2. For N >66.2, the quadruple mode frequency ω20decreases with increasing number of particles,while the breathing mode frequency ω00continuously follows the particle-emission threshold |μ| at the number of particles considered in the figure.

    In Fig. 3, we show the excitation spectrum at an even higher temperature T = 0.8Tth. At this temperature, the excitation-forbidden window in the number of particles completely disappears. Both the breathing mode frequency and quadruple mode frequency appear to be bounded below the particle-emission threshold|μ|.

    Fig. 3. The chemical potential -μ, breathing mode frequency, and quadrupole mode frequency as a function of the number of particle at temperature T =0.8Tth.

    3.2. A finite-temperature phase diagram

    We have calculated the excitation spectrum at different reduced temperatures and consequently have obtained a finitetemperature phase diagram,as reported in Fig.4.This presents the main result of our work. Here,the critical number of particle Nc(black solid curve)is determined by extrapolating the breathing mode frequency ω00to zero, and the critical number Nm(red dashed curve) is obtained by tracing the position where the free energy becomes positive. The two curves crosses with each other at about 0.24Tth,above which the window for a metastable droplet state closes. It is interesting to note that the critical number of particles Ncshows a sensitive temperature dependence. It increases very rapidly once the temperature is above about 0.4Tth. Approaching the bulk threshold temperature Tth,a Bose droplet with any number of particles becomes thermally unstable, as we already show in the previous work.[39]

    On the other hand, the threshold number of particle Nth(blue dash-dotted curve) can be determined from the crossing point between the quadruple mode frequency ω20and the particle-emission threshold |μ|. It separates the phase space for a stable Bose droplet into two regimes: an excitationforbidden droplet regime without any bounded collective excitations below the particle-emission threshold and a standard droplet regime with at least one discrete collective excitation.With increasing temperature, we find that the Nth-curve terminates at about 0.73Tth(see, i.e., the solid circle symbol in the figure). Above this temperature, we always find standard Bose droplets, in which a small but nonzero temperature or entropy could be accommodated by the discrete bounded collective excitations. Therefore, the intriguing self-evaporation phenomenon predicted by Petrov, i.e., the emission of particles upon arbitrary excitations,[17]ceases to exist. The Bose droplets then fail to automatically reach zero temperature.

    Fig. 4. The phase diagram of a finite-size Bose droplet as functions of the reduced number of particles N (horizontal axis) and of the reduced temperature T/Tth (vertical axis). At high temperature and small number of particles, the system is in the gas-like phase, while at low temperature and large number of particles, it is in the droplet state. A metastable droplet state also occurs at low temperature and relatively small number of particle.

    3.3. The temperature-dependences of the density distribution and collective excitations

    Let us now consider an idealized experimental situation.Initially, a Bose droplet is nearly in thermal equilibrium at a nonzero temperature.It then gradually reduces its temperature by emitting a very small portion of the most energetic particles. This slow self-evaporation might be treated as an adiabatic process.By taking the in-situ or time-of-flight absorption imaging of the Bose droplet,we may then experimentally extract the temperature-dependences of the density distribution and collective excitations of the Bose droplet at a nearly constant number of particles.

    3.3.1. Large Bose droplets

    Fig. 6. Excitation frequencies ωln (l ≤9 and n ≤2) of a large self-bound Bose droplet (N =3000), as a function of the reduced temperature T/Tth.The red dashed curves show the surface modes ωl≥2,n=0 and the blue dashdotted curves show the compressional bulk modes.The lowest surface mode ω20 (i.e, quadruple mode) and the lowest bulk mode (breathing mode) are highlighted by the red open squares and blue open circles,respectively. The black thick curve shows the threshold-μ.

    3.3.2. Small Bose droplets

    Let us now consider a Bose droplet with small reduced number of particles,which is more amenable to be created in the current experimental setups.[6,8]In Fig. 7, we show the density distribution of a N=100 Bose droplet at two temperatures: T =0 (solid curve) and T =0.7Tth(dashed curve).Compared with a large Bose droplet in Fig.5,the density distribution of a small droplet shows a more appreciable temperature dependence. In particular,the center density can change up to several tens of percent(see the inset),as we increase the temperature towards the threshold. This pronounced temperature dependence could be related to the loss of the flat-top structure in the density distribution due to the reduced number of particles. A small Bose droplet appears to be more easier to be altered than a large droplet.

    Fig.7. The density distribution n(r)of a small self-bound Bose droplet(N =100) at zero temperature (blue solid curve) and at the temperature T =0.7Tth (red dashed curve). The inset shows the temperature dependence of the center density at r=0.

    In Fig.8,we report the temperature evolution of the collective excitation spectrum at N=100. At this number of particles and at zero temperature, only the lowest surface mode(i.e.,the quadruple mode ω20)is bounded below the particleemission threshold |μ|.[17]When we increase the temperature, the quadruple mode frequency decreases notably, presumably due to the increase of the droplet radius, since the droplet at this size acquires a more sensitive temperature dependence as we mentioned earlier. Interestingly, at about 0.7Tththe frequency of the lowest compression bulk mode,the breathing mode frequency, starts to fall off the particleemission threshold. It becomes increasingly softened towards the threshold temperature Tth. At an even higher temperature(i.e., T ~0.87Tth), more and more higher-order bulk modes fall off the the particle-emission threshold and become softened. This fall-off feature turns out to be very general,occurring also at smaller number of particles,as can be seen in the inset for the selected case of N=50.

    Fig. 8. Excitation frequencies ωln (l ≤9 and n ≤2) of a small selfbound Bose droplet(N=100),as a function of the reduced temperature T/Tth. The red dashed curves show the surface modes ωl≥2,n=0 and the blue dash-dotted curves show the compressional bulk modes. The lowest surface mode ω20 (i.e, quadruple mode) and the lowest bulk mode(breathing mode)are highlighted by the red open squares and blue open circles,respectively. The black thick curve shows the threshold-μ. At this number of particles,most of the excitation modes enter the collective excitation continuum with a frequency ωln ?-μ. The inset shows the excitation spectrum at an even smaller number of particles,N=50.

    The mode frequency softening, for both surface modes and compressional bulk modes in large and small Bose droplets,is therefore a characteristic feature of the thermallyinduced droplet-to-gas transition at finite temperature. The mode softening effectively removes the excitation-forbidden interval in the number of particles predicted by Petrov at zero temperature,[17]and opens the possibility to observe a small Bose droplet with non-zero temperature.

    4. Conclusions

    In summary,we have theoretically investigated the finitetemperature effects on the structure and collective excitations of an ultradilute quantum droplet in free space, formed in a binary Bose–Bose mixture with inter-species attractions near the mean-field collapse. Our calculations are based on the extended (time-dependent) Gross–Pitaevskii equation generalized to the finite-temperature case. The density distribution is determined by solving the static Gross–Pitaevskii equation,while the collective excitation spectrum is obtained by solving the coupled Bogoliubov equations.

    We have found a rich finite-temperature phase diagram as a function of the number of particles in the droplet. In particular,the critical number of particles at the droplet-to-gas transition is found to depend sensitively on the temperature. The excitation-forbidden interval predicted by Petrov is shown to shrink with increasing temperature and disappears completely at about 0.73Tth, where Tthis the threshold temperature for thermally destabilizing an infinitely large Bose droplet.Above the temperature 0.73Tth,there is at least one discrete collective mode below the particle-emission threshold,which may block the self-evaporation of the Bose droplet and allow a small but nonzero temperature.

    Our results could be experimentally examined, if we are able to overcome the difficulty of finding a useful thermometry to measure the temperature. Qualitatively, at the number of particles slightly below Nth(T =0)?94.2,the experimental observation of discrete quadrupole mode frequency or breathing mode frequency below the particle-emission threshold, i.e., ω20<|μ|or ω00<|μ|, would be a very strong evidence for the finite-temperature effect.

    Appendix A:Numerical method

    The B-spline basis has been extensively used in solving Schr¨oinger equations in two- and three-body problems with high accuracy.[45,46]The B-spline basis allows us to use an uneven grid, which might better represent the solution wavefunction.The B-spline basis also allows a higher order approximation of the derivative operator that appears in the kinetic energy term. The energy density functional ?/N then can be regarded as a non-linear function of coefficients cn,which can be minimized using the standard conjugate-gradient method via software package such as“minFunc”in Matlab.[47]

    猜你喜歡
    王佳
    王佳
    當代作家(2023年4期)2023-06-07 13:57:24
    “反詐警花”用愛勸阻200萬群眾受騙
    Phenomenon of Fossilization in English Learning, underling reasons and corresponding Strategies
    王佳、駱太均空間設計作品
    藝術評論(2018年8期)2018-12-28 09:10:54
    苔花也學牡丹開
    戲劇之家(2018年32期)2018-01-02 10:40:14
    幫助您我快樂
    “全職太太”被離婚面臨凈身出戶怎么辦?
    婦女生活(2017年10期)2017-10-10 03:58:33
    女兒得怪病“不食人間煙火”之后
    掉入“抑郁癥”陷阱的婚姻
    “防火防盜防閨蜜”,兩套房子離奇被抵押
    别揉我奶头 嗯啊视频| 男男h啪啪无遮挡| 精品久久久精品久久久| 国产精品一区www在线观看| 亚洲精品乱码久久久v下载方式| 在线观看一区二区三区激情| 久久女婷五月综合色啪小说 | 日本av手机在线免费观看| 国产精品一区www在线观看| 久久久a久久爽久久v久久| 久久久久久久久久久免费av| 亚洲欧美成人综合另类久久久| 成人特级av手机在线观看| 热99国产精品久久久久久7| 伊人久久国产一区二区| 国产精品一区二区三区四区免费观看| 少妇丰满av| 综合色丁香网| 蜜桃亚洲精品一区二区三区| 天天一区二区日本电影三级| 少妇被粗大猛烈的视频| 欧美一区二区亚洲| 国产精品久久久久久精品古装| 精品久久久久久久人妻蜜臀av| 大话2 男鬼变身卡| 亚洲国产欧美人成| 日韩一区二区三区影片| 国产毛片在线视频| 哪个播放器可以免费观看大片| 国产高清国产精品国产三级 | av专区在线播放| 免费观看在线日韩| 爱豆传媒免费全集在线观看| 亚洲国产精品成人久久小说| 国产伦精品一区二区三区四那| 寂寞人妻少妇视频99o| 国产成人91sexporn| 国产成人免费无遮挡视频| 午夜激情福利司机影院| 日韩在线高清观看一区二区三区| 日本与韩国留学比较| a级毛片免费高清观看在线播放| 亚洲精品日本国产第一区| 在线观看人妻少妇| 亚洲经典国产精华液单| 精品久久久久久电影网| 在线 av 中文字幕| a级一级毛片免费在线观看| 在线看a的网站| 97超视频在线观看视频| 下体分泌物呈黄色| 午夜免费男女啪啪视频观看| 国产乱人视频| 亚洲精品国产成人久久av| 久久精品夜色国产| 亚洲最大成人中文| 一区二区av电影网| 性色avwww在线观看| 中文在线观看免费www的网站| 最近中文字幕2019免费版| 一区二区av电影网| 精品久久久精品久久久| 亚洲三级黄色毛片| av网站免费在线观看视频| 777米奇影视久久| 日韩免费高清中文字幕av| 亚洲精品一区蜜桃| 日韩欧美 国产精品| 精品午夜福利在线看| 亚洲四区av| 国产色爽女视频免费观看| 午夜福利在线观看免费完整高清在| 亚洲av.av天堂| 一二三四中文在线观看免费高清| 精品99又大又爽又粗少妇毛片| 黄色配什么色好看| 日本色播在线视频| 综合色丁香网| 乱码一卡2卡4卡精品| 欧美最新免费一区二区三区| 国产一区亚洲一区在线观看| 热99国产精品久久久久久7| 男人添女人高潮全过程视频| 亚洲一区二区三区欧美精品 | 国产精品.久久久| 草草在线视频免费看| 亚洲高清免费不卡视频| 午夜精品一区二区三区免费看| 亚洲国产高清在线一区二区三| 国产一区亚洲一区在线观看| 亚洲精品成人av观看孕妇| 赤兔流量卡办理| 亚洲精品亚洲一区二区| 国产精品精品国产色婷婷| 婷婷色av中文字幕| av福利片在线观看| 国产国拍精品亚洲av在线观看| 在现免费观看毛片| 亚洲人成网站在线观看播放| 男女啪啪激烈高潮av片| 久久人人爽av亚洲精品天堂 | 黄色一级大片看看| 国产精品一及| 在线免费观看不下载黄p国产| av在线蜜桃| 久久久久久久久大av| 国产成人免费无遮挡视频| 新久久久久国产一级毛片| 人人妻人人澡人人爽人人夜夜| 亚洲欧美成人综合另类久久久| 18禁裸乳无遮挡免费网站照片| 男女那种视频在线观看| 亚洲激情五月婷婷啪啪| 嫩草影院新地址| 中文字幕制服av| 看十八女毛片水多多多| 国产国拍精品亚洲av在线观看| 免费黄色在线免费观看| 亚洲国产精品999| 成人黄色视频免费在线看| 亚洲色图综合在线观看| av在线老鸭窝| 边亲边吃奶的免费视频| 日韩制服骚丝袜av| 久久久久精品性色| 欧美一区二区亚洲| 最后的刺客免费高清国语| 97精品久久久久久久久久精品| a级毛色黄片| 国产69精品久久久久777片| 性色av一级| 欧美高清性xxxxhd video| a级一级毛片免费在线观看| 亚洲性久久影院| 色综合色国产| 亚洲av日韩在线播放| 欧美日韩视频精品一区| 高清日韩中文字幕在线| 日韩强制内射视频| 久久97久久精品| 亚洲成人一二三区av| 人妻制服诱惑在线中文字幕| 天堂俺去俺来也www色官网| 老师上课跳d突然被开到最大视频| 国产片特级美女逼逼视频| a级一级毛片免费在线观看| 国产免费福利视频在线观看| 亚洲一区二区三区欧美精品 | 青青草视频在线视频观看| 久久午夜福利片| 免费在线观看成人毛片| av黄色大香蕉| 少妇高潮的动态图| 成年女人看的毛片在线观看| 日韩欧美精品v在线| 久久久精品欧美日韩精品| 热99国产精品久久久久久7| 99久久精品一区二区三区| 色综合色国产| 91aial.com中文字幕在线观看| 美女国产视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品中文字幕在线视频 | 国产 一区精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 97在线人人人人妻| 日本免费在线观看一区| 亚洲国产欧美在线一区| av女优亚洲男人天堂| 亚洲精华国产精华液的使用体验| 日本与韩国留学比较| 丝袜美腿在线中文| 久久久久网色| 波多野结衣巨乳人妻| 日韩欧美 国产精品| 99九九线精品视频在线观看视频| 亚洲精品第二区| 久久久欧美国产精品| 制服丝袜香蕉在线| 国产亚洲91精品色在线| 下体分泌物呈黄色| 日韩欧美一区视频在线观看 | 国产色婷婷99| 日韩人妻高清精品专区| 亚洲最大成人av| 嫩草影院新地址| 中文字幕免费在线视频6| 人妻 亚洲 视频| 久久99精品国语久久久| 久久精品久久精品一区二区三区| 99热全是精品| 免费人成在线观看视频色| 亚洲欧美成人精品一区二区| 九草在线视频观看| 最近中文字幕2019免费版| 色网站视频免费| 身体一侧抽搐| 一边亲一边摸免费视频| 一本久久精品| 大又大粗又爽又黄少妇毛片口| av福利片在线观看| av国产免费在线观看| 国产免费视频播放在线视频| 在线亚洲精品国产二区图片欧美 | 免费电影在线观看免费观看| 婷婷色综合www| 色婷婷久久久亚洲欧美| 成人一区二区视频在线观看| 亚洲成色77777| 网址你懂的国产日韩在线| 亚洲欧美一区二区三区黑人 | 黄色视频在线播放观看不卡| 男人狂女人下面高潮的视频| 亚洲图色成人| 亚洲国产色片| 国产高清国产精品国产三级 | 99久国产av精品国产电影| 国产精品久久久久久久久免| 三级男女做爰猛烈吃奶摸视频| 国产精品三级大全| 少妇人妻精品综合一区二区| 中国美白少妇内射xxxbb| 国产女主播在线喷水免费视频网站| 久久久久久国产a免费观看| 亚洲精品中文字幕在线视频 | 成人无遮挡网站| 成人二区视频| 插逼视频在线观看| 国产精品人妻久久久影院| 国产人妻一区二区三区在| 国产成人一区二区在线| 成人国产av品久久久| 成人漫画全彩无遮挡| 美女高潮的动态| 欧美最新免费一区二区三区| 免费播放大片免费观看视频在线观看| 国产免费视频播放在线视频| av黄色大香蕉| 国产高潮美女av| 久久久成人免费电影| 在现免费观看毛片| 99re6热这里在线精品视频| 精华霜和精华液先用哪个| 日本爱情动作片www.在线观看| 真实男女啪啪啪动态图| 两个人的视频大全免费| 色哟哟·www| 狂野欧美激情性bbbbbb| 在线精品无人区一区二区三 | 日本猛色少妇xxxxx猛交久久| 秋霞在线观看毛片| 国产黄片美女视频| av免费在线看不卡| 精品一区二区三区视频在线| 免费看不卡的av| 国产真实伦视频高清在线观看| 亚洲色图综合在线观看| av在线app专区| 纵有疾风起免费观看全集完整版| 久久精品国产自在天天线| 久久6这里有精品| 精品亚洲乱码少妇综合久久| 一个人看视频在线观看www免费| 亚洲综合色惰| 国产成人aa在线观看| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av| 最近手机中文字幕大全| 国产精品人妻久久久久久| 亚洲熟女精品中文字幕| 欧美成人a在线观看| 亚洲精品一区蜜桃| 成年女人看的毛片在线观看| 免费大片18禁| 国产91av在线免费观看| 插逼视频在线观看| 舔av片在线| 亚洲欧美日韩另类电影网站 | 国产精品99久久99久久久不卡 | 国产伦精品一区二区三区四那| 欧美精品人与动牲交sv欧美| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 中文天堂在线官网| 我要看日韩黄色一级片| 日本黄色片子视频| 内射极品少妇av片p| 中文天堂在线官网| 国产精品爽爽va在线观看网站| 国产亚洲精品久久久com| 中文字幕免费在线视频6| 白带黄色成豆腐渣| 日韩不卡一区二区三区视频在线| 日本爱情动作片www.在线观看| 男人狂女人下面高潮的视频| .国产精品久久| 亚洲自偷自拍三级| 国内精品宾馆在线| 午夜精品一区二区三区免费看| 在线观看av片永久免费下载| 久久精品综合一区二区三区| 国产人妻一区二区三区在| 尾随美女入室| www.色视频.com| 久久精品综合一区二区三区| 色视频www国产| 欧美日本视频| 2021天堂中文幕一二区在线观| 69av精品久久久久久| 日本一本二区三区精品| 国产亚洲5aaaaa淫片| 国产免费视频播放在线视频| 久久久精品免费免费高清| 精品国产三级普通话版| av女优亚洲男人天堂| 亚洲精品一二三| 日韩三级伦理在线观看| 韩国高清视频一区二区三区| 色综合色国产| 亚洲一级一片aⅴ在线观看| 午夜福利视频1000在线观看| 中文字幕久久专区| freevideosex欧美| 一级二级三级毛片免费看| 国产亚洲一区二区精品| 成人亚洲欧美一区二区av| 又大又黄又爽视频免费| 午夜福利视频1000在线观看| 国产精品麻豆人妻色哟哟久久| 交换朋友夫妻互换小说| 黄色怎么调成土黄色| 别揉我奶头 嗯啊视频| 美女脱内裤让男人舔精品视频| 久久99热这里只有精品18| 亚洲av免费高清在线观看| 欧美一级a爱片免费观看看| 亚洲成人精品中文字幕电影| 一级黄片播放器| 日韩国内少妇激情av| 男的添女的下面高潮视频| 亚洲在久久综合| 国产亚洲5aaaaa淫片| 国产亚洲精品久久久com| 白带黄色成豆腐渣| 深爱激情五月婷婷| 久久久久久久亚洲中文字幕| 少妇人妻一区二区三区视频| 人妻少妇偷人精品九色| 亚洲性久久影院| 国产欧美另类精品又又久久亚洲欧美| 97精品久久久久久久久久精品| av天堂中文字幕网| 久久久精品94久久精品| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 毛片一级片免费看久久久久| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产色片| 欧美+日韩+精品| 一区二区av电影网| 国产精品嫩草影院av在线观看| 免费av观看视频| 中国三级夫妇交换| 午夜激情福利司机影院| 成人免费观看视频高清| 大片电影免费在线观看免费| 久久精品夜色国产| 女人久久www免费人成看片| 亚洲精品乱久久久久久| 免费在线观看成人毛片| 国产高清不卡午夜福利| 久久影院123| 美女视频免费永久观看网站| 亚洲成人av在线免费| 在线观看国产h片| 精品亚洲乱码少妇综合久久| 91久久精品电影网| 国产在视频线精品| 成人毛片60女人毛片免费| 男人爽女人下面视频在线观看| 国产免费福利视频在线观看| 亚洲欧美一区二区三区国产| 2021天堂中文幕一二区在线观| 色视频www国产| 91aial.com中文字幕在线观看| 亚洲精品中文字幕在线视频 | 成人亚洲精品一区在线观看 | 中文乱码字字幕精品一区二区三区| 国产免费一级a男人的天堂| 麻豆成人午夜福利视频| 神马国产精品三级电影在线观看| 建设人人有责人人尽责人人享有的 | 高清毛片免费看| www.色视频.com| 最近最新中文字幕大全电影3| 亚洲av.av天堂| 国产一区有黄有色的免费视频| 中国三级夫妇交换| 成年女人在线观看亚洲视频 | 久久鲁丝午夜福利片| 国产成人免费无遮挡视频| 久久久久久久久久成人| 久久精品综合一区二区三区| 精品久久久噜噜| 亚洲精品成人久久久久久| 成人亚洲精品av一区二区| 99热国产这里只有精品6| 亚洲人成网站在线播| 免费播放大片免费观看视频在线观看| 国产综合懂色| 夫妻午夜视频| 欧美日本视频| 欧美国产精品一级二级三级 | 一本一本综合久久| 久久久久久九九精品二区国产| 亚洲精品第二区| 黄片无遮挡物在线观看| 中文字幕制服av| 久久久成人免费电影| 免费黄频网站在线观看国产| 亚洲精品成人久久久久久| 天堂俺去俺来也www色官网| 国产精品一区二区性色av| 久久国内精品自在自线图片| 男女边摸边吃奶| 麻豆精品久久久久久蜜桃| av播播在线观看一区| 中文字幕亚洲精品专区| 日日撸夜夜添| 男女无遮挡免费网站观看| 一级毛片电影观看| 不卡视频在线观看欧美| 日日摸夜夜添夜夜爱| 91狼人影院| 亚洲最大成人av| 精品视频人人做人人爽| 少妇人妻 视频| 麻豆精品久久久久久蜜桃| 91aial.com中文字幕在线观看| 中文字幕免费在线视频6| 亚洲av.av天堂| 午夜精品一区二区三区免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 在线亚洲精品国产二区图片欧美 | 日韩强制内射视频| av黄色大香蕉| 精品国产三级普通话版| 一级av片app| 2022亚洲国产成人精品| 国产亚洲av嫩草精品影院| www.av在线官网国产| 舔av片在线| 日韩欧美一区视频在线观看 | .国产精品久久| 国产亚洲av嫩草精品影院| 日韩一本色道免费dvd| 亚洲精品成人av观看孕妇| av免费观看日本| 高清在线视频一区二区三区| 国产黄a三级三级三级人| av在线亚洲专区| 欧美激情在线99| 日本免费在线观看一区| 麻豆成人午夜福利视频| 国产精品福利在线免费观看| 久久精品国产鲁丝片午夜精品| 午夜激情久久久久久久| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 全区人妻精品视频| 亚洲欧美一区二区三区国产| 国产一区二区在线观看日韩| 国产成人精品一,二区| 国产亚洲午夜精品一区二区久久 | 美女cb高潮喷水在线观看| 国产乱人视频| 国产91av在线免费观看| 国产亚洲91精品色在线| 伦精品一区二区三区| 一区二区三区免费毛片| 精品人妻偷拍中文字幕| 亚洲国产成人一精品久久久| 亚洲av.av天堂| 成人午夜精彩视频在线观看| 欧美另类一区| 亚洲色图av天堂| 欧美激情久久久久久爽电影| 一本久久精品| 午夜福利在线在线| 久久精品国产a三级三级三级| 国产国拍精品亚洲av在线观看| 亚洲无线观看免费| 最后的刺客免费高清国语| 中文字幕av成人在线电影| 特大巨黑吊av在线直播| 亚洲av福利一区| kizo精华| 少妇猛男粗大的猛烈进出视频 | 亚洲成人一二三区av| 亚洲av男天堂| 欧美高清成人免费视频www| 色视频在线一区二区三区| 九九在线视频观看精品| 久久人人爽人人片av| 亚洲av成人精品一二三区| 日韩电影二区| 久久99热这里只频精品6学生| 插逼视频在线观看| 国产精品国产三级国产专区5o| 国产精品秋霞免费鲁丝片| av专区在线播放| 国产av国产精品国产| 你懂的网址亚洲精品在线观看| 免费在线观看成人毛片| 亚洲综合色惰| 熟女av电影| 欧美成人一区二区免费高清观看| 亚洲精品自拍成人| 99久久人妻综合| 亚洲内射少妇av| 人妻制服诱惑在线中文字幕| 在线 av 中文字幕| 五月伊人婷婷丁香| 国产淫语在线视频| 久久久久久久精品精品| 国内精品美女久久久久久| 婷婷色av中文字幕| 亚洲av福利一区| 国产成人freesex在线| 国产精品熟女久久久久浪| 只有这里有精品99| 精品99又大又爽又粗少妇毛片| 日韩制服骚丝袜av| 建设人人有责人人尽责人人享有的 | 国产精品一区二区性色av| 日韩欧美精品免费久久| 亚洲色图av天堂| 六月丁香七月| 一个人看的www免费观看视频| 在线观看免费高清a一片| 亚洲经典国产精华液单| 97热精品久久久久久| 在线天堂最新版资源| 日本欧美国产在线视频| 自拍偷自拍亚洲精品老妇| 尤物成人国产欧美一区二区三区| 亚洲国产欧美人成| 亚洲av二区三区四区| 亚洲精品成人av观看孕妇| 久久久久久久久大av| 日日摸夜夜添夜夜添av毛片| 最后的刺客免费高清国语| 2021天堂中文幕一二区在线观| 国产色爽女视频免费观看| 天美传媒精品一区二区| 午夜福利在线观看免费完整高清在| 一级av片app| 啦啦啦在线观看免费高清www| 亚洲在久久综合| 麻豆成人午夜福利视频| 日韩不卡一区二区三区视频在线| 国产又色又爽无遮挡免| 亚洲精品国产av成人精品| 蜜臀久久99精品久久宅男| 观看免费一级毛片| 国产黄片视频在线免费观看| 亚洲av欧美aⅴ国产| 别揉我奶头 嗯啊视频| 在线观看国产h片| 天堂中文最新版在线下载 | 亚洲精品乱码久久久久久按摩| 日日啪夜夜爽| 午夜亚洲福利在线播放| av网站免费在线观看视频| 免费看av在线观看网站| 日韩中字成人| 人妻系列 视频| 精品一区二区三卡| 九色成人免费人妻av| 亚洲在久久综合| 丰满少妇做爰视频| 国产永久视频网站| 婷婷色av中文字幕| 日日撸夜夜添| 久久这里有精品视频免费| 国产综合精华液| 成人免费观看视频高清| 好男人在线观看高清免费视频| 亚洲精品久久久久久婷婷小说| 久久久久久久国产电影| 国产亚洲91精品色在线| 亚洲在久久综合| 99久国产av精品国产电影| 国产精品福利在线免费观看| 老师上课跳d突然被开到最大视频| 久久精品综合一区二区三区| 免费大片黄手机在线观看| 成人无遮挡网站| 精品人妻偷拍中文字幕| 亚洲成人一二三区av| 精品久久久久久电影网| 亚洲三级黄色毛片| 亚洲最大成人av| 黄色日韩在线| 国产视频内射| 亚洲国产欧美在线一区| 黄色日韩在线| 国产一级毛片在线| 男女国产视频网站| 国产成人精品久久久久久| 丝瓜视频免费看黄片| 高清av免费在线| 伦精品一区二区三区| av国产久精品久网站免费入址| 天堂中文最新版在线下载 |