• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Existence of the Solution for Stochastic Generalized Coupled Differential Riccati Equation

    2021-01-07 01:23:44MAHeping馬和平HUChaozhu胡超竹
    應用數(shù)學 2021年1期
    關鍵詞:和平

    MA Heping(馬和平),HU Chaozhu(胡超竹)

    (School of Science,Hubei University of Technology,Wuhan 430068,China)

    Abstract: By means of the singular value decomposition,the existence of solution are obtained for the stochastic generalized coupled differential Riccati equation.As an application,we apply the existence results to consider the optimal control of Markovian jump linear stochastic singular system,and obtain the desired explicit representation of the optimal controllers for the optimal control problem with the finite horizon.

    Key words: Existence; Stochastic generalized coupled differential Riccati equation;Optimal control; Stochastic singular system

    1.Introduction

    In many control problem,both in deterministic and in stochastic framework,a crucial role is played by a class of nonlinear matrix differential equations.One of the most intensely studied nonlinear matrix equations arising in mathematics and engineering is the Riccati equation.This equation,in one form or another,has an important role in optimal control problems,multi-variable and large scale systems,scattering theory,estimation,detection,transportation,and radiative transfer.[16]It is known that the boundedness of the solution of the matrix Riccati differential equation (MRDE) with a terminal boundary condition is equivalent to the no-conjugate point to the final time.The solution of this equation is difficult to obtain from two points of view.One is that it is nonlinear,and the other is that it is in matrix form.Readers may refer to [3,5,6,8,10,11,15] for more details.

    In realities,the uncertainties are unavoidable.So over the past decades stochastic modeling has played an important role in many branches of science and engineering.The study of systems with stochastic disturbance has gained growing interest over the past few decades,and many research topics on stochastic systems have been investigated(for example,[1,13,17,18] and references therein).For the nonsingular stochastic system without Markovian jump parameter,SUN,LI and YONG[12]have studied the open-loop and closed-loop solvabilities for a general class of stochastic linear quadratic(LQ)problems with deterministic coefficients.Their results bring new insights into the internal structure of the LQ problem and explain the fundamental reason why the weighting matrices in the cost functional could be indefinite.Rami,CHEN and Moore[16]give a equation called generalized differential Riccati equation(GDRE),via general necessary and sufficient conditions for the solvability of GDRE.Rami,Moore and ZHOU[17]solve an outstanding open problem,which identifies an appropriate Riccati-type equation,also called generalized differential Riccati equation,whose solvability is equivalent to the solvability of the indefinite stochastic LQ problem.By introducing a notion of subsolution for the SRE,DU[4]derives several novel sufficient conditions for the existence and uniqueness of the solution to the SRE.On the other hand,LI and ZHOU[7]successfully extend the state space system to the system with Markov parameter.A system of coupled generalized differential Riccati equations (CGDREs) is introduced to cope with the indefinite stochastic LQ control problem with Markov parameter.Specifically,they proved that the solvability condition of the CGDREs is sufficient for the well-posedness of the stochastic LQ problem.

    The singular system contains the state-space form as a special case and thus can represent a much wider class of systems than its state-space counterpart.Singular system is an important class of systems in terms of theoretical and practical significance,and it has received great attention during the past few decades.WANG and LIU[14]consider the linear quadratic optimal control of stochastic singular systems without Markovian jump parameter.They established the existence and uniqueness of the impulse-free solution of nonregular stochastic singular system,and then gave the sufficient conditions for the optimal control problem.ZHANG and XING[19]studied the problems of stability and optimal control for a class of stochastic singular systems.They obtained some new results about mean-square admissibility and investigated finite-time horizon and infinite-time horizon LQ control problems for the stochastic singular system.ZHANG,LIN and XUE[20]concerned with the finite horizon linear quadratic Pareto optimal control problem of stochastic singular systems.By means of the square completion technique,they established a new kind of generalized differential Riccati equations(GDREs)and presented the existence condition of the solution of the GDREs.

    For the stochastic singular system with Markov parameter,a problem is how to guarantee existence of the impulse-free solution to the stochastic singular systems with Markovian jumps,and how to establish the existence of a finite set of stochastic generalized coupled differential Riccati equations (SGCDREs).If those problems are solved,naturally,we will ask that can we study well-posed of a finite set of generalized coupled differential Riccati equations? Being directly inspired by those reasons,the purpose of this work is to study the existence of the stochastic generalized coupled differential Riccati equation and application to LQ optimal control for Markov jump linear stochastic singular systems.

    The paper is organized as follows.In Section 2,we summarize some basic assumptions,definitions and some useful Lemmas.In Section 3,we establish the existence of the solution for stochastic generalized coupled differential Riccati equation (SGCDRE).In Section 4,as an application,we apply the existence results to consider the optimal control of Markovian jump linear stochastic singular system,and obtain the desired explicit representation of the optimal controllers for the optimal control problem with the finite horizon.

    NotationRndenotes the n-dimensional Euclidean space ,Rm×nis the set of all m×n real matrices and R+:=(0,∞).For symmetric matrices P,the notation P ?0(respectively,P?0) means that matrix P is positive definite(respectively,positive semi-definite).I is an identity matrix of appropriate dimensions.The superscripts ATand A-1stand for the transpose and the inverse of a matrix A,‖x‖ is the Euclidean norm of the vector x.

    2.Preliminaries

    In this section,consider the following linear stochastic singular systems with Markovian jumps,modeled by

    where x(t) ∈Rnis the system state vector,u(t) ∈Rmis the control input,and ω(t) is a one-dimensional standard Brownian motion that is defined on the given complete probability space (Ω,F(xiàn),(Ft)0≤t≤T,P).Define the set of all admissible controls Uad=(0,T;Rm).The coefficient matrices A(t,rt),C(t,rt)∈L∞(0,T;Rn×n)and B(t,rt),D(t,rt)∈L∞(0,T;Rn×m),and E ∈Rn×nis a singular constant matrix and we assume that rank(E) = r <n.x0∈Rnis the compatible initial condition which is deterministic.This form process r(t) is a continuous-time discrete-state Markov process taking values in a finite set S = {1,2,...,N}with transition probability matrix P :={pij} given by

    where Δ >0.Here λij≥0 is the form transition rate from i to j (ij),and

    Let the initial values x0and r0be independent random variables; x0is also independent of the σ-algebra generated by {r(t),t ∈(0,T]}.When the system operates in the ith mode(r(t) = i),for simplicity,let

    Subject to (2.1)-(2.3),we consider the minimization of

    where Ξ denotes expectation,L(r(T))∈L∞(0,T;Rn×n),Qi(t)∈L∞(0,T;Rn×n),and Ri(t)∈L∞(0,T;Rm×m),i ∈S,are symmetric matrices,and Li(t)∈L∞(0,T;Rn×m).For simplicity,we denotes Θ as follows,

    in order to meet the demands of subsequent proof,we assume L(r(T)) ?0 and Θ ?0.For the existence of the impulse-free solution to the stochastic singular systems with Markovian jumps (2.1),we impose the following assumptions:

    Definition 2.2[9]Let a matrix K ∈Rm×nbe given.Then the matrix K?is called the Moore-Penrose pseudoinverse of K if there exists a unique matrix K?∈Rn×msuch that

    Lemma 2.1[18](Variation of constants formula) For any ζ ∈(Ω;Rn),the equation

    admits a unique solution X(·),which is represented by the following:

    where Φ(·) is the unique solution of the following matrix-valued stochastic differential equation:

    where A(·),C(·)∈L∞(0,T;Rn×n),b(·),σ(·)∈L2(0,T;Rn).

    Theorem 2.1If the assumptions H(2.1) and H(2.2) hold,then the system (2.1) has a solution on [0,T],?i ∈S,in which there is no impulse.

    ProofDue to the constant-rank condition of matrix E,we can consider the singular value decomposition.Under the assumption H(2.2),there exist two orthogonal matrices Mi∈Rn×n,Ni∈Rn×n,?i ∈S such that

    where Σris a nonsingular diagonal constant matrix and Ci1(t) ∈Rr×r,Ci2(t) ∈Rr×(n-r),Di1(t)∈Rr×m.Accordingly,define

    where Ai1(t) ∈Rr×r,Ai2(t) ∈Rr×(n-r),Ai3(t) ∈R(n-r)×r,Ai4(t) ∈R(n-r)×(n-r),Bi1(t) ∈Rr×m,Bi2(t)∈R(n-r)×mand let

    where ζ1(t) ∈Rr,ζ2(t) ∈Rn-r.By above transformations,the system (2.1) can be transformed into

    On the other hand,under the assumption H(2.1),the rank relation

    holds.In general,the matrix rank(Ai4(t) Bi2(t)) does not have the full row rank,so there exists a nonsingular matrix Ui(t),?i ∈S,such that

    Obviously,the system (2.12) is equivalent to the system (2.11).Sincehas full-row rank,then there exists a nonsingular matrix Vi(t),?i ∈S such that

    Without loss of generality,we assume thathas full-row rank.Otherwise,we can exchange some columns offor some columns ofand then make the same exchanges betweenandLet=uT(t)),wherethen the system (2.12) is equivalently transformed into

    The first equation of (2.13) is an ordinary stochastic differential equation,in which ζ1(t)is the state vector andis the control vector.According to Lemma 2.1,the first equation of (2.13) has a solution ζ1(t) on [0,T] under the initial condition ζ1(0) = (0)Mx0.Accordingly,=-exists.Thus,the system (2.13) has a impulse-free solution on [0,T],which implies that the system (2.1) has a impulse-free solution on [0,T].This completes the proof.

    Remark 2.2When Di(t)≡0,S={1},the result is the same as that of [20].

    Remark 2.3When the diffusion term has finite state variables and control inputs,the discussion is similar.

    3.Existence of the Solution for SGCDRE

    In this section,we establish the existence of the solution for a set of stochastic generalized coupled differential Riccati equations.And we impose the following assumptions:

    H(3.1) Ai3(t)≡0 and the matrix Bi(t),?t ∈[0,T] is full of column rank.

    H(3.2) τi+τj0,where τiand τjare arbitrary eigenvalues of Ai4(t),?t ∈[0,T].

    Theorem 3.1Assume that H(3.1) and H(3.2) hold,consider L(r(T))?0,Θ ?0,and Ri(t)?0,there exists a solution Pi(t)∈Rn×n,?i ∈S,satisfying

    for each i ∈S,t ∈[0,T].

    For notational simplicity,we define

    As in (3.1),for finite T ∈R+arbitrarily fixed,the set of SGCDRE is defined as

    ProofWe follows the matrix decomposition method of theorem 2.1,then there exist two orthogonal matrices Mi∈Rn×n,Ni∈Rn×n,?i ∈S such that

    where Pi1(t),Pi2(t),Pi3(t),Pi4(t),Qi1(t),Qi2(t),Qi3(t),Li1(t),Li2(t),L(r(T))11,L(r(T))12,L(r(T))22are all matrices with appropriate dimensions.By means of the relation (2.5),it is easy to obtain that the Moore-Penrose pseudo inverse of E is

    We directly use the transformations (2.5)-(2.9) and (3.6)-(3.10) to SGCDRE (3.1).Then the first eqation of (3.1) can be partitioned into

    By the equation(3.1),we get ΣrPi1(t)=(ΣrPi1(t))Tand Pi2(t)=0.Then,from the equation(3.11),we obtain three equations as follows:

    By the assumption H(3.1) to be seen,Ai3(t) ≡0 and the matrix Bi(t) is full of column rank,without loss of generality,we can assume that Bi2(t)≡0,?t ∈[0,T].Then the equation(3.12) can be rewritten as

    By the conditions of the theorem 3.1,using the transformations (3.7) and (3.8),we can get that

    where Ni=(Ni1Ni2),Ni1is full-column rank with appropriate dimension.Having a careful observation to the system(3.13),we can know that the equation(3.13a)has a solution ΣrPi1(t)on [0,T] with ΣrPi1(t) ?0,?t ∈[0,T],guaranteed by [6],then substituting it into (3.13b),we could get the solution Pi3(t).By the assumption H(3.2),we can use the similar method in[30] to deal with the equation (3.13c),so we can get a solution Pi4(t) to the equation (3.13c).

    From what has been discussed above,the theorem is proved.

    Remark 3.1In particular,when Di(t) ≡0,Li(t) ≡0,and S = {1} in Theorem 3.1,we can see that the result can not be reduced to the result in [20].So (3.1) can be regarded as an extension of the GDRE in [20].

    4.Application to Optimal Control

    In Section 2,we know the system (2.1) has a no-impulse solution on [0,T],?i ∈S.In this section,we apply the above existence results to study the optimal control of Markovian jump linear stochastic singular system,and obtain the desired explicit representation of the optimal controllers for the optimal control problem with the finite horizon.First of all,We now give basic definitions and Lemmas before continuing our discussion,which will be used in the derivations of the main theorem.

    The objective of the optimal control in this paper is to find the optimal control u*(·)∈Uadthat minimizes the performance index J(0,x0,r(0),u,T).The optimal valued function is defined as

    Definition 4.1The optimization problem is called well-posed if

    -∞<V(0,x0)<+∞,?x0∈Rn.

    A well-posed problem is called attainable (with respect to x0) if there is a control u*(·) that achieves V(0,x0).In this case,the control u*(·) is called optimal (with respect to x0).

    Lemma 4.1[16](Generalized It?o’s formula) Let x(t) satisfy

    dx(t)=b(t,x(t),r(t))dt+σ(t,x(t),r(t))dω(t),

    and φ(·,·,i)∈C2([0,∞)×Rn),?i ∈S,be given.Then

    where

    Lemma 4.2Let f be a differentiable function such that f(t,x,i)=xT(t)ETPi(t)x(t),where Pi(t) ∈Rn×nsatisfies the SGCDRE given by (3.1).Then,for the system (2.1) with u ∈Uad,the generalized It?o’s formula (4.1) can be written as

    ProofBy the condition that ETPi(t)=(t)E,we can apply generalized It?o’s formula to xT(t)ETPi(t)x(t),

    where [···] does not affect the calculation result and can be omitted.Applying (3.1) to the above equation,we get (4.2).This complete the proof.

    Lemma 4.3For arbitrary u ∈Uad,the cost functional defined in (2.4) is given by

    where Γi(t)=:=(Mi(t)x(t)+Ri(t)u(t))TΓi(t)(Mi(t)x(t)+Ri(t)u(t)),with Pi(t) satisfying (3.1).

    ProofFrom (2.4) we have that

    Now,from Lemma 4.2,setting s=0 and t=T in (4.2),we get that

    where y =Mi(t)x(t) and ω =Ri(t)u(t),which completes the proof.

    Theorem 4.1Assume the SGCDRE admits a solution Pi(t)∈Rn×non t ∈[0,T],and the finite horizon LQ optimal control problem (2.1),(2.4) is well-posed.Then,the optimal control in the admissible class Uadis given by

    where Ki(t)=(t)Mi(t),i ∈S.Furthermore the minimum cost is given by

    ProofThe proof is immediate from Lemma 4.3.

    Remark 4.1Compared with[2]and[20],although the method adopted here,to prove the sufficiency of solvability of SDCDRE for the well posedness of LQ problem,is the same,under the condition that Ri(t) ?0,we get a different result in the case of linear stochastic singular systems with Markovian jumps.Unlike the standard stochastic system,the optimal control of stochastic singular systems with Markovian jumps is not unique.

    猜你喜歡
    和平
    和平之路
    和平萬歲
    青年歌聲(2020年9期)2020-09-27 07:57:12
    和平分手
    意林(2017年24期)2018-01-02 23:55:39
    Toward a History of Cross-Cultural Written Symbols
    和平之花綻放
    黃河之聲(2016年12期)2016-11-07 01:02:19
    博弈·和平
    特別文摘(2016年18期)2016-09-26 16:42:36
    和平的宣示
    太空探索(2015年10期)2015-07-18 10:59:20
    期盼和平
    珍惜脆弱的和平
    太空探索(2014年9期)2014-07-10 13:06:26
    和平
    小說月刊(2014年2期)2014-04-18 14:06:40
    国产精品久久久久久精品古装| 大陆偷拍与自拍| 尾随美女入室| av天堂久久9| videos熟女内射| 一级毛片 在线播放| av线在线观看网站| 99精品久久久久人妻精品| 精品久久久久久久毛片微露脸 | av电影中文网址| 久久久久视频综合| 日韩人妻精品一区2区三区| 国产又色又爽无遮挡免| 黄片小视频在线播放| 啦啦啦视频在线资源免费观看| 夫妻性生交免费视频一级片| 又黄又粗又硬又大视频| 国产福利在线免费观看视频| 曰老女人黄片| 亚洲人成电影观看| 飞空精品影院首页| 视频区图区小说| 亚洲图色成人| 久久久久久久国产电影| 99热全是精品| 中国国产av一级| 18禁黄网站禁片午夜丰满| 免费观看av网站的网址| 亚洲视频免费观看视频| 国产91精品成人一区二区三区 | 中文字幕亚洲精品专区| 极品人妻少妇av视频| 欧美精品高潮呻吟av久久| svipshipincom国产片| 男女床上黄色一级片免费看| 国产成人免费无遮挡视频| 美女脱内裤让男人舔精品视频| 久久精品亚洲熟妇少妇任你| 国产精品 国内视频| 性色av一级| 国产一区二区在线观看av| av欧美777| 人人妻人人添人人爽欧美一区卜| 女性生殖器流出的白浆| 2021少妇久久久久久久久久久| 久久99一区二区三区| 秋霞在线观看毛片| 亚洲人成电影免费在线| 国产精品麻豆人妻色哟哟久久| 国产激情久久老熟女| 亚洲成av片中文字幕在线观看| 热re99久久国产66热| 99九九在线精品视频| 超碰成人久久| 欧美人与性动交α欧美软件| 人成视频在线观看免费观看| 韩国高清视频一区二区三区| 国产成人av教育| 亚洲精品久久成人aⅴ小说| 久久久久久久久免费视频了| 亚洲人成77777在线视频| 国产免费视频播放在线视频| 91精品国产国语对白视频| 高潮久久久久久久久久久不卡| 精品久久久久久久毛片微露脸 | 日韩av不卡免费在线播放| 国产精品国产av在线观看| 国产精品久久久人人做人人爽| 国产又爽黄色视频| 免费少妇av软件| 国产精品欧美亚洲77777| 午夜福利,免费看| 一区二区三区乱码不卡18| 亚洲国产欧美一区二区综合| 每晚都被弄得嗷嗷叫到高潮| 爱豆传媒免费全集在线观看| 欧美激情 高清一区二区三区| 9191精品国产免费久久| 一级,二级,三级黄色视频| 亚洲精品国产av蜜桃| 一边亲一边摸免费视频| 老汉色av国产亚洲站长工具| 精品国产国语对白av| 18在线观看网站| 亚洲少妇的诱惑av| 亚洲国产精品一区三区| 99国产综合亚洲精品| 免费看av在线观看网站| 爱豆传媒免费全集在线观看| 午夜福利,免费看| 老司机深夜福利视频在线观看 | 色94色欧美一区二区| 又紧又爽又黄一区二区| e午夜精品久久久久久久| 国产av一区二区精品久久| 国产1区2区3区精品| 婷婷色麻豆天堂久久| 国产亚洲av片在线观看秒播厂| 国产一区二区 视频在线| 男女免费视频国产| 国产成人影院久久av| 亚洲av在线观看美女高潮| 久久影院123| 精品免费久久久久久久清纯 | 天堂8中文在线网| 亚洲一码二码三码区别大吗| 免费看av在线观看网站| 亚洲国产中文字幕在线视频| 免费高清在线观看日韩| 久久久久国产精品人妻一区二区| 在线av久久热| 美女高潮到喷水免费观看| 久久人妻福利社区极品人妻图片 | 欧美日韩视频高清一区二区三区二| 成年女人毛片免费观看观看9 | 亚洲精品美女久久久久99蜜臀 | 欧美日韩综合久久久久久| 悠悠久久av| 精品一区在线观看国产| 99国产精品一区二区蜜桃av | 午夜福利影视在线免费观看| 麻豆国产av国片精品| 久久天堂一区二区三区四区| 777久久人妻少妇嫩草av网站| 女人被躁到高潮嗷嗷叫费观| 欧美av亚洲av综合av国产av| 丝袜在线中文字幕| 久久精品久久久久久久性| 一二三四在线观看免费中文在| 久久久久网色| 亚洲欧美一区二区三区国产| 成人影院久久| a级毛片在线看网站| 精品一品国产午夜福利视频| 高清不卡的av网站| 国产色视频综合| 欧美老熟妇乱子伦牲交| 一级a爱视频在线免费观看| 啦啦啦在线观看免费高清www| 大陆偷拍与自拍| av天堂在线播放| 精品卡一卡二卡四卡免费| 日韩伦理黄色片| 捣出白浆h1v1| 纯流量卡能插随身wifi吗| 黄片播放在线免费| 国产精品偷伦视频观看了| a级片在线免费高清观看视频| www日本在线高清视频| 日本vs欧美在线观看视频| 午夜福利在线免费观看网站| 天天躁夜夜躁狠狠躁躁| 久久 成人 亚洲| 欧美日韩av久久| 好男人视频免费观看在线| 各种免费的搞黄视频| 少妇裸体淫交视频免费看高清 | 久久人妻熟女aⅴ| 中文字幕制服av| 啦啦啦中文免费视频观看日本| 亚洲美女黄色视频免费看| 亚洲第一青青草原| 亚洲欧美日韩另类电影网站| av一本久久久久| 国产成人影院久久av| 久久亚洲国产成人精品v| 国产视频一区二区在线看| 男女国产视频网站| 国产精品国产三级专区第一集| a级片在线免费高清观看视频| 精品国产超薄肉色丝袜足j| 我的亚洲天堂| 日本色播在线视频| 91精品三级在线观看| 黄色 视频免费看| 人人澡人人妻人| 婷婷色综合大香蕉| 中文精品一卡2卡3卡4更新| 人人澡人人妻人| 操出白浆在线播放| 老熟女久久久| 国产精品亚洲av一区麻豆| 亚洲精品国产色婷婷电影| 看免费av毛片| 高清欧美精品videossex| 一区二区三区四区激情视频| 亚洲五月婷婷丁香| 人人妻人人爽人人添夜夜欢视频| 妹子高潮喷水视频| av在线播放精品| 国产精品秋霞免费鲁丝片| 叶爱在线成人免费视频播放| 亚洲国产精品国产精品| 午夜91福利影院| 熟女少妇亚洲综合色aaa.| 亚洲人成电影观看| 欧美日本中文国产一区发布| 亚洲av综合色区一区| 99国产精品99久久久久| 亚洲欧美成人综合另类久久久| 久久女婷五月综合色啪小说| 久久久精品区二区三区| 国产亚洲一区二区精品| 宅男免费午夜| 美女高潮到喷水免费观看| 国产精品国产av在线观看| 老汉色∧v一级毛片| 国产免费一区二区三区四区乱码| 爱豆传媒免费全集在线观看| 男女边摸边吃奶| 亚洲精品美女久久久久99蜜臀 | 99热全是精品| 精品少妇久久久久久888优播| 午夜老司机福利片| 久久人妻福利社区极品人妻图片 | 国产极品粉嫩免费观看在线| 天天躁夜夜躁狠狠久久av| 一级片'在线观看视频| 国产成人免费无遮挡视频| 最新在线观看一区二区三区 | 精品国产乱码久久久久久小说| 国产熟女欧美一区二区| 午夜免费男女啪啪视频观看| 久久久久久久大尺度免费视频| 夜夜骑夜夜射夜夜干| 美女福利国产在线| 欧美 日韩 精品 国产| 亚洲男人天堂网一区| 天天操日日干夜夜撸| 国产精品成人在线| 亚洲美女黄色视频免费看| 国产麻豆69| xxx大片免费视频| 9191精品国产免费久久| 天堂8中文在线网| 欧美日韩亚洲国产一区二区在线观看 | 一级a爱视频在线免费观看| 亚洲成人手机| 制服人妻中文乱码| 操美女的视频在线观看| 大香蕉久久成人网| 国产成人精品久久久久久| 十八禁网站网址无遮挡| 久久这里只有精品19| 在现免费观看毛片| 无遮挡黄片免费观看| 国产女主播在线喷水免费视频网站| 国产视频首页在线观看| 999久久久国产精品视频| 51午夜福利影视在线观看| 成人影院久久| 中文字幕亚洲精品专区| 国产免费又黄又爽又色| 一级片免费观看大全| 欧美少妇被猛烈插入视频| 97精品久久久久久久久久精品| 国产成人系列免费观看| 美女大奶头黄色视频| 久久国产精品人妻蜜桃| 黄网站色视频无遮挡免费观看| kizo精华| 欧美人与性动交α欧美精品济南到| 亚洲欧洲精品一区二区精品久久久| 天天躁日日躁夜夜躁夜夜| 成年av动漫网址| 天天添夜夜摸| 爱豆传媒免费全集在线观看| 91九色精品人成在线观看| 日韩电影二区| 国产一区二区三区av在线| 一本久久精品| 免费在线观看完整版高清| 欧美日韩福利视频一区二区| 99久久99久久久精品蜜桃| 一二三四在线观看免费中文在| 亚洲精品美女久久久久99蜜臀 | 悠悠久久av| 香蕉丝袜av| 国产成人91sexporn| a 毛片基地| 久久精品国产亚洲av涩爱| 一本色道久久久久久精品综合| 亚洲精品国产区一区二| 亚洲国产精品999| 免费看十八禁软件| 黄片播放在线免费| 国产1区2区3区精品| 亚洲 国产 在线| 满18在线观看网站| 国产精品一区二区在线不卡| 亚洲国产欧美日韩在线播放| 国产高清不卡午夜福利| 色婷婷av一区二区三区视频| 少妇 在线观看| 19禁男女啪啪无遮挡网站| 18禁裸乳无遮挡动漫免费视频| 九色亚洲精品在线播放| 久久精品国产亚洲av涩爱| 最黄视频免费看| 天天躁日日躁夜夜躁夜夜| 青春草视频在线免费观看| 伊人亚洲综合成人网| 国产高清videossex| 国产精品熟女久久久久浪| 国产av一区二区精品久久| 日本一区二区免费在线视频| 侵犯人妻中文字幕一二三四区| 叶爱在线成人免费视频播放| 丰满迷人的少妇在线观看| 亚洲国产欧美日韩在线播放| 人成视频在线观看免费观看| 亚洲国产精品一区三区| 亚洲av在线观看美女高潮| 亚洲国产欧美一区二区综合| 大片免费播放器 马上看| 91麻豆精品激情在线观看国产 | 精品国产乱码久久久久久男人| 久久国产精品人妻蜜桃| 亚洲国产精品国产精品| 国产成人精品久久久久久| 亚洲av电影在线观看一区二区三区| 国产日韩欧美亚洲二区| 电影成人av| 亚洲欧洲精品一区二区精品久久久| 精品亚洲乱码少妇综合久久| 在线观看免费日韩欧美大片| 久久99热这里只频精品6学生| 欧美激情高清一区二区三区| 天天躁夜夜躁狠狠久久av| 爱豆传媒免费全集在线观看| 美女国产高潮福利片在线看| 黄片小视频在线播放| 各种免费的搞黄视频| 亚洲熟女毛片儿| 交换朋友夫妻互换小说| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 18禁裸乳无遮挡动漫免费视频| 三上悠亚av全集在线观看| 国产免费福利视频在线观看| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 久久精品国产亚洲av高清一级| 国产免费视频播放在线视频| 1024香蕉在线观看| 亚洲免费av在线视频| 欧美亚洲日本最大视频资源| 老司机影院毛片| 丰满人妻熟妇乱又伦精品不卡| 欧美 日韩 精品 国产| 欧美激情 高清一区二区三区| 别揉我奶头~嗯~啊~动态视频 | svipshipincom国产片| 十八禁高潮呻吟视频| 欧美日韩成人在线一区二区| 久久99热这里只频精品6学生| 精品一区二区三卡| 亚洲熟女精品中文字幕| 亚洲色图综合在线观看| 日韩欧美一区视频在线观看| 国产精品偷伦视频观看了| 91九色精品人成在线观看| 无遮挡黄片免费观看| 成人手机av| 一区二区三区四区激情视频| 免费看不卡的av| 久久久久视频综合| 欧美成人精品欧美一级黄| 国产福利在线免费观看视频| 中文字幕高清在线视频| 欧美在线黄色| 欧美黄色淫秽网站| 黄色 视频免费看| 肉色欧美久久久久久久蜜桃| 国产av国产精品国产| 一个人免费看片子| 久久久久久久久久久久大奶| 色播在线永久视频| av视频免费观看在线观看| 日本色播在线视频| 又紧又爽又黄一区二区| 日韩熟女老妇一区二区性免费视频| 国产日韩一区二区三区精品不卡| 国产成人系列免费观看| 人人妻人人澡人人看| 亚洲专区国产一区二区| 国产福利在线免费观看视频| 中文字幕高清在线视频| 一区二区日韩欧美中文字幕| e午夜精品久久久久久久| 久久久久久免费高清国产稀缺| 亚洲人成77777在线视频| 极品人妻少妇av视频| 丝袜脚勾引网站| 香蕉丝袜av| 午夜福利视频精品| 精品一区二区三卡| 女人精品久久久久毛片| 免费在线观看影片大全网站 | 欧美日韩视频高清一区二区三区二| 国产真人三级小视频在线观看| 国产黄色免费在线视频| 人人澡人人妻人| 免费少妇av软件| 亚洲国产av影院在线观看| 纯流量卡能插随身wifi吗| 欧美日韩成人在线一区二区| 五月天丁香电影| 久久av网站| 在线观看免费午夜福利视频| 丰满饥渴人妻一区二区三| 欧美精品一区二区大全| 天天躁日日躁夜夜躁夜夜| 人人妻人人爽人人添夜夜欢视频| 亚洲精品国产一区二区精华液| 国产野战对白在线观看| 免费观看av网站的网址| 日日爽夜夜爽网站| av在线老鸭窝| 欧美成狂野欧美在线观看| av天堂久久9| 亚洲av在线观看美女高潮| 观看av在线不卡| 一边摸一边做爽爽视频免费| 性高湖久久久久久久久免费观看| 亚洲天堂av无毛| 97精品久久久久久久久久精品| 久久人妻熟女aⅴ| 天天躁日日躁夜夜躁夜夜| 国产三级黄色录像| av在线播放精品| 极品少妇高潮喷水抽搐| 超色免费av| 男人爽女人下面视频在线观看| 大陆偷拍与自拍| 丝袜脚勾引网站| 岛国毛片在线播放| 50天的宝宝边吃奶边哭怎么回事| 免费看不卡的av| 一级毛片电影观看| 男女午夜视频在线观看| av福利片在线| 国产一级毛片在线| 亚洲av电影在线进入| 男女高潮啪啪啪动态图| 国产野战对白在线观看| 性少妇av在线| 国产视频一区二区在线看| 丝袜人妻中文字幕| 亚洲欧美精品综合一区二区三区| 大话2 男鬼变身卡| 亚洲欧美清纯卡通| 人人妻人人澡人人爽人人夜夜| 国产av国产精品国产| 欧美老熟妇乱子伦牲交| 制服人妻中文乱码| 国产午夜精品一二区理论片| 热99久久久久精品小说推荐| av国产精品久久久久影院| 一边摸一边抽搐一进一出视频| 久久久久久亚洲精品国产蜜桃av| 亚洲图色成人| 满18在线观看网站| 亚洲,一卡二卡三卡| 人人妻人人爽人人添夜夜欢视频| 搡老乐熟女国产| 久久久精品免费免费高清| 啦啦啦在线观看免费高清www| 免费少妇av软件| 成年女人毛片免费观看观看9 | 飞空精品影院首页| 日本午夜av视频| 亚洲av综合色区一区| 99国产精品一区二区蜜桃av | 蜜桃在线观看..| 激情五月婷婷亚洲| 成人午夜精彩视频在线观看| 一边亲一边摸免费视频| 亚洲精品中文字幕在线视频| 成人黄色视频免费在线看| 性色av一级| 一区在线观看完整版| 中文字幕亚洲精品专区| 中文欧美无线码| 一级黄色大片毛片| 亚洲精品久久久久久婷婷小说| 亚洲三区欧美一区| 免费人妻精品一区二区三区视频| 一级黄片播放器| 久久99精品国语久久久| 国产精品一区二区精品视频观看| 国产精品久久久久久人妻精品电影 | 99国产精品99久久久久| 亚洲中文av在线| 真人做人爱边吃奶动态| 国产男女超爽视频在线观看| 国语对白做爰xxxⅹ性视频网站| 欧美日韩综合久久久久久| 久久精品国产综合久久久| 精品久久久久久久毛片微露脸 | 亚洲欧洲精品一区二区精品久久久| 亚洲人成网站在线观看播放| 成人影院久久| 欧美黄色片欧美黄色片| 黄色怎么调成土黄色| 黄色视频不卡| 久久 成人 亚洲| 久久鲁丝午夜福利片| 久久ye,这里只有精品| 宅男免费午夜| 久久热在线av| 亚洲男人天堂网一区| 国产成人av激情在线播放| 欧美黑人欧美精品刺激| 人人澡人人妻人| 日韩,欧美,国产一区二区三区| 黄色毛片三级朝国网站| av有码第一页| 91精品伊人久久大香线蕉| 免费高清在线观看日韩| 午夜福利影视在线免费观看| 久久国产精品大桥未久av| 高清欧美精品videossex| 精品免费久久久久久久清纯 | 日韩视频在线欧美| 国产精品免费大片| 80岁老熟妇乱子伦牲交| 大码成人一级视频| 精品视频人人做人人爽| 欧美另类一区| 午夜免费男女啪啪视频观看| 两个人看的免费小视频| 国产不卡av网站在线观看| 国产一区二区在线观看av| 亚洲精品成人av观看孕妇| 1024视频免费在线观看| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 成人影院久久| 精品少妇黑人巨大在线播放| 国产成人免费无遮挡视频| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区久久| 男女床上黄色一级片免费看| 制服人妻中文乱码| 99re6热这里在线精品视频| 黄色毛片三级朝国网站| 黑丝袜美女国产一区| 高清欧美精品videossex| 美女大奶头黄色视频| 国产日韩欧美视频二区| 久久人妻福利社区极品人妻图片 | 伊人亚洲综合成人网| 久久国产精品影院| 国产精品 国内视频| netflix在线观看网站| 精品免费久久久久久久清纯 | videos熟女内射| 亚洲综合色网址| avwww免费| 亚洲欧洲精品一区二区精品久久久| 国产伦理片在线播放av一区| 国产一区二区 视频在线| 黄色视频不卡| 美国免费a级毛片| 久久精品国产亚洲av高清一级| 亚洲专区国产一区二区| 欧美日韩视频精品一区| 欧美亚洲日本最大视频资源| 日韩制服骚丝袜av| 日本欧美视频一区| 欧美少妇被猛烈插入视频| 一本一本久久a久久精品综合妖精| 久久国产亚洲av麻豆专区| 亚洲人成77777在线视频| 老司机深夜福利视频在线观看 | 日本一区二区免费在线视频| 免费黄频网站在线观看国产| 欧美国产精品一级二级三级| 亚洲av美国av| 国产成人精品久久二区二区91| 精品少妇一区二区三区视频日本电影| 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久av网站| 久久精品久久精品一区二区三区| 久久久国产精品麻豆| 热99国产精品久久久久久7| 亚洲国产欧美一区二区综合| 制服人妻中文乱码| 午夜福利免费观看在线| 国产精品久久久久成人av| 精品福利永久在线观看| 老司机靠b影院| 国产成人欧美在线观看 | 伊人亚洲综合成人网| 蜜桃国产av成人99| 操美女的视频在线观看| 精品人妻在线不人妻| 桃花免费在线播放| 国产av一区二区精品久久| 一级毛片女人18水好多 | 午夜91福利影院| 精品福利永久在线观看| 精品国产超薄肉色丝袜足j| 国产一区二区在线观看av| 国产精品香港三级国产av潘金莲 | 欧美黑人欧美精品刺激| 亚洲国产欧美网| 满18在线观看网站| 国产亚洲一区二区精品| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久av美女十八| 制服人妻中文乱码| 久久女婷五月综合色啪小说| 欧美日韩av久久|