• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Existence of the Solution for Stochastic Generalized Coupled Differential Riccati Equation

    2021-01-07 01:23:44MAHeping馬和平HUChaozhu胡超竹
    應用數(shù)學 2021年1期
    關鍵詞:和平

    MA Heping(馬和平),HU Chaozhu(胡超竹)

    (School of Science,Hubei University of Technology,Wuhan 430068,China)

    Abstract: By means of the singular value decomposition,the existence of solution are obtained for the stochastic generalized coupled differential Riccati equation.As an application,we apply the existence results to consider the optimal control of Markovian jump linear stochastic singular system,and obtain the desired explicit representation of the optimal controllers for the optimal control problem with the finite horizon.

    Key words: Existence; Stochastic generalized coupled differential Riccati equation;Optimal control; Stochastic singular system

    1.Introduction

    In many control problem,both in deterministic and in stochastic framework,a crucial role is played by a class of nonlinear matrix differential equations.One of the most intensely studied nonlinear matrix equations arising in mathematics and engineering is the Riccati equation.This equation,in one form or another,has an important role in optimal control problems,multi-variable and large scale systems,scattering theory,estimation,detection,transportation,and radiative transfer.[16]It is known that the boundedness of the solution of the matrix Riccati differential equation (MRDE) with a terminal boundary condition is equivalent to the no-conjugate point to the final time.The solution of this equation is difficult to obtain from two points of view.One is that it is nonlinear,and the other is that it is in matrix form.Readers may refer to [3,5,6,8,10,11,15] for more details.

    In realities,the uncertainties are unavoidable.So over the past decades stochastic modeling has played an important role in many branches of science and engineering.The study of systems with stochastic disturbance has gained growing interest over the past few decades,and many research topics on stochastic systems have been investigated(for example,[1,13,17,18] and references therein).For the nonsingular stochastic system without Markovian jump parameter,SUN,LI and YONG[12]have studied the open-loop and closed-loop solvabilities for a general class of stochastic linear quadratic(LQ)problems with deterministic coefficients.Their results bring new insights into the internal structure of the LQ problem and explain the fundamental reason why the weighting matrices in the cost functional could be indefinite.Rami,CHEN and Moore[16]give a equation called generalized differential Riccati equation(GDRE),via general necessary and sufficient conditions for the solvability of GDRE.Rami,Moore and ZHOU[17]solve an outstanding open problem,which identifies an appropriate Riccati-type equation,also called generalized differential Riccati equation,whose solvability is equivalent to the solvability of the indefinite stochastic LQ problem.By introducing a notion of subsolution for the SRE,DU[4]derives several novel sufficient conditions for the existence and uniqueness of the solution to the SRE.On the other hand,LI and ZHOU[7]successfully extend the state space system to the system with Markov parameter.A system of coupled generalized differential Riccati equations (CGDREs) is introduced to cope with the indefinite stochastic LQ control problem with Markov parameter.Specifically,they proved that the solvability condition of the CGDREs is sufficient for the well-posedness of the stochastic LQ problem.

    The singular system contains the state-space form as a special case and thus can represent a much wider class of systems than its state-space counterpart.Singular system is an important class of systems in terms of theoretical and practical significance,and it has received great attention during the past few decades.WANG and LIU[14]consider the linear quadratic optimal control of stochastic singular systems without Markovian jump parameter.They established the existence and uniqueness of the impulse-free solution of nonregular stochastic singular system,and then gave the sufficient conditions for the optimal control problem.ZHANG and XING[19]studied the problems of stability and optimal control for a class of stochastic singular systems.They obtained some new results about mean-square admissibility and investigated finite-time horizon and infinite-time horizon LQ control problems for the stochastic singular system.ZHANG,LIN and XUE[20]concerned with the finite horizon linear quadratic Pareto optimal control problem of stochastic singular systems.By means of the square completion technique,they established a new kind of generalized differential Riccati equations(GDREs)and presented the existence condition of the solution of the GDREs.

    For the stochastic singular system with Markov parameter,a problem is how to guarantee existence of the impulse-free solution to the stochastic singular systems with Markovian jumps,and how to establish the existence of a finite set of stochastic generalized coupled differential Riccati equations (SGCDREs).If those problems are solved,naturally,we will ask that can we study well-posed of a finite set of generalized coupled differential Riccati equations? Being directly inspired by those reasons,the purpose of this work is to study the existence of the stochastic generalized coupled differential Riccati equation and application to LQ optimal control for Markov jump linear stochastic singular systems.

    The paper is organized as follows.In Section 2,we summarize some basic assumptions,definitions and some useful Lemmas.In Section 3,we establish the existence of the solution for stochastic generalized coupled differential Riccati equation (SGCDRE).In Section 4,as an application,we apply the existence results to consider the optimal control of Markovian jump linear stochastic singular system,and obtain the desired explicit representation of the optimal controllers for the optimal control problem with the finite horizon.

    NotationRndenotes the n-dimensional Euclidean space ,Rm×nis the set of all m×n real matrices and R+:=(0,∞).For symmetric matrices P,the notation P ?0(respectively,P?0) means that matrix P is positive definite(respectively,positive semi-definite).I is an identity matrix of appropriate dimensions.The superscripts ATand A-1stand for the transpose and the inverse of a matrix A,‖x‖ is the Euclidean norm of the vector x.

    2.Preliminaries

    In this section,consider the following linear stochastic singular systems with Markovian jumps,modeled by

    where x(t) ∈Rnis the system state vector,u(t) ∈Rmis the control input,and ω(t) is a one-dimensional standard Brownian motion that is defined on the given complete probability space (Ω,F(xiàn),(Ft)0≤t≤T,P).Define the set of all admissible controls Uad=(0,T;Rm).The coefficient matrices A(t,rt),C(t,rt)∈L∞(0,T;Rn×n)and B(t,rt),D(t,rt)∈L∞(0,T;Rn×m),and E ∈Rn×nis a singular constant matrix and we assume that rank(E) = r <n.x0∈Rnis the compatible initial condition which is deterministic.This form process r(t) is a continuous-time discrete-state Markov process taking values in a finite set S = {1,2,...,N}with transition probability matrix P :={pij} given by

    where Δ >0.Here λij≥0 is the form transition rate from i to j (ij),and

    Let the initial values x0and r0be independent random variables; x0is also independent of the σ-algebra generated by {r(t),t ∈(0,T]}.When the system operates in the ith mode(r(t) = i),for simplicity,let

    Subject to (2.1)-(2.3),we consider the minimization of

    where Ξ denotes expectation,L(r(T))∈L∞(0,T;Rn×n),Qi(t)∈L∞(0,T;Rn×n),and Ri(t)∈L∞(0,T;Rm×m),i ∈S,are symmetric matrices,and Li(t)∈L∞(0,T;Rn×m).For simplicity,we denotes Θ as follows,

    in order to meet the demands of subsequent proof,we assume L(r(T)) ?0 and Θ ?0.For the existence of the impulse-free solution to the stochastic singular systems with Markovian jumps (2.1),we impose the following assumptions:

    Definition 2.2[9]Let a matrix K ∈Rm×nbe given.Then the matrix K?is called the Moore-Penrose pseudoinverse of K if there exists a unique matrix K?∈Rn×msuch that

    Lemma 2.1[18](Variation of constants formula) For any ζ ∈(Ω;Rn),the equation

    admits a unique solution X(·),which is represented by the following:

    where Φ(·) is the unique solution of the following matrix-valued stochastic differential equation:

    where A(·),C(·)∈L∞(0,T;Rn×n),b(·),σ(·)∈L2(0,T;Rn).

    Theorem 2.1If the assumptions H(2.1) and H(2.2) hold,then the system (2.1) has a solution on [0,T],?i ∈S,in which there is no impulse.

    ProofDue to the constant-rank condition of matrix E,we can consider the singular value decomposition.Under the assumption H(2.2),there exist two orthogonal matrices Mi∈Rn×n,Ni∈Rn×n,?i ∈S such that

    where Σris a nonsingular diagonal constant matrix and Ci1(t) ∈Rr×r,Ci2(t) ∈Rr×(n-r),Di1(t)∈Rr×m.Accordingly,define

    where Ai1(t) ∈Rr×r,Ai2(t) ∈Rr×(n-r),Ai3(t) ∈R(n-r)×r,Ai4(t) ∈R(n-r)×(n-r),Bi1(t) ∈Rr×m,Bi2(t)∈R(n-r)×mand let

    where ζ1(t) ∈Rr,ζ2(t) ∈Rn-r.By above transformations,the system (2.1) can be transformed into

    On the other hand,under the assumption H(2.1),the rank relation

    holds.In general,the matrix rank(Ai4(t) Bi2(t)) does not have the full row rank,so there exists a nonsingular matrix Ui(t),?i ∈S,such that

    Obviously,the system (2.12) is equivalent to the system (2.11).Sincehas full-row rank,then there exists a nonsingular matrix Vi(t),?i ∈S such that

    Without loss of generality,we assume thathas full-row rank.Otherwise,we can exchange some columns offor some columns ofand then make the same exchanges betweenandLet=uT(t)),wherethen the system (2.12) is equivalently transformed into

    The first equation of (2.13) is an ordinary stochastic differential equation,in which ζ1(t)is the state vector andis the control vector.According to Lemma 2.1,the first equation of (2.13) has a solution ζ1(t) on [0,T] under the initial condition ζ1(0) = (0)Mx0.Accordingly,=-exists.Thus,the system (2.13) has a impulse-free solution on [0,T],which implies that the system (2.1) has a impulse-free solution on [0,T].This completes the proof.

    Remark 2.2When Di(t)≡0,S={1},the result is the same as that of [20].

    Remark 2.3When the diffusion term has finite state variables and control inputs,the discussion is similar.

    3.Existence of the Solution for SGCDRE

    In this section,we establish the existence of the solution for a set of stochastic generalized coupled differential Riccati equations.And we impose the following assumptions:

    H(3.1) Ai3(t)≡0 and the matrix Bi(t),?t ∈[0,T] is full of column rank.

    H(3.2) τi+τj0,where τiand τjare arbitrary eigenvalues of Ai4(t),?t ∈[0,T].

    Theorem 3.1Assume that H(3.1) and H(3.2) hold,consider L(r(T))?0,Θ ?0,and Ri(t)?0,there exists a solution Pi(t)∈Rn×n,?i ∈S,satisfying

    for each i ∈S,t ∈[0,T].

    For notational simplicity,we define

    As in (3.1),for finite T ∈R+arbitrarily fixed,the set of SGCDRE is defined as

    ProofWe follows the matrix decomposition method of theorem 2.1,then there exist two orthogonal matrices Mi∈Rn×n,Ni∈Rn×n,?i ∈S such that

    where Pi1(t),Pi2(t),Pi3(t),Pi4(t),Qi1(t),Qi2(t),Qi3(t),Li1(t),Li2(t),L(r(T))11,L(r(T))12,L(r(T))22are all matrices with appropriate dimensions.By means of the relation (2.5),it is easy to obtain that the Moore-Penrose pseudo inverse of E is

    We directly use the transformations (2.5)-(2.9) and (3.6)-(3.10) to SGCDRE (3.1).Then the first eqation of (3.1) can be partitioned into

    By the equation(3.1),we get ΣrPi1(t)=(ΣrPi1(t))Tand Pi2(t)=0.Then,from the equation(3.11),we obtain three equations as follows:

    By the assumption H(3.1) to be seen,Ai3(t) ≡0 and the matrix Bi(t) is full of column rank,without loss of generality,we can assume that Bi2(t)≡0,?t ∈[0,T].Then the equation(3.12) can be rewritten as

    By the conditions of the theorem 3.1,using the transformations (3.7) and (3.8),we can get that

    where Ni=(Ni1Ni2),Ni1is full-column rank with appropriate dimension.Having a careful observation to the system(3.13),we can know that the equation(3.13a)has a solution ΣrPi1(t)on [0,T] with ΣrPi1(t) ?0,?t ∈[0,T],guaranteed by [6],then substituting it into (3.13b),we could get the solution Pi3(t).By the assumption H(3.2),we can use the similar method in[30] to deal with the equation (3.13c),so we can get a solution Pi4(t) to the equation (3.13c).

    From what has been discussed above,the theorem is proved.

    Remark 3.1In particular,when Di(t) ≡0,Li(t) ≡0,and S = {1} in Theorem 3.1,we can see that the result can not be reduced to the result in [20].So (3.1) can be regarded as an extension of the GDRE in [20].

    4.Application to Optimal Control

    In Section 2,we know the system (2.1) has a no-impulse solution on [0,T],?i ∈S.In this section,we apply the above existence results to study the optimal control of Markovian jump linear stochastic singular system,and obtain the desired explicit representation of the optimal controllers for the optimal control problem with the finite horizon.First of all,We now give basic definitions and Lemmas before continuing our discussion,which will be used in the derivations of the main theorem.

    The objective of the optimal control in this paper is to find the optimal control u*(·)∈Uadthat minimizes the performance index J(0,x0,r(0),u,T).The optimal valued function is defined as

    Definition 4.1The optimization problem is called well-posed if

    -∞<V(0,x0)<+∞,?x0∈Rn.

    A well-posed problem is called attainable (with respect to x0) if there is a control u*(·) that achieves V(0,x0).In this case,the control u*(·) is called optimal (with respect to x0).

    Lemma 4.1[16](Generalized It?o’s formula) Let x(t) satisfy

    dx(t)=b(t,x(t),r(t))dt+σ(t,x(t),r(t))dω(t),

    and φ(·,·,i)∈C2([0,∞)×Rn),?i ∈S,be given.Then

    where

    Lemma 4.2Let f be a differentiable function such that f(t,x,i)=xT(t)ETPi(t)x(t),where Pi(t) ∈Rn×nsatisfies the SGCDRE given by (3.1).Then,for the system (2.1) with u ∈Uad,the generalized It?o’s formula (4.1) can be written as

    ProofBy the condition that ETPi(t)=(t)E,we can apply generalized It?o’s formula to xT(t)ETPi(t)x(t),

    where [···] does not affect the calculation result and can be omitted.Applying (3.1) to the above equation,we get (4.2).This complete the proof.

    Lemma 4.3For arbitrary u ∈Uad,the cost functional defined in (2.4) is given by

    where Γi(t)=:=(Mi(t)x(t)+Ri(t)u(t))TΓi(t)(Mi(t)x(t)+Ri(t)u(t)),with Pi(t) satisfying (3.1).

    ProofFrom (2.4) we have that

    Now,from Lemma 4.2,setting s=0 and t=T in (4.2),we get that

    where y =Mi(t)x(t) and ω =Ri(t)u(t),which completes the proof.

    Theorem 4.1Assume the SGCDRE admits a solution Pi(t)∈Rn×non t ∈[0,T],and the finite horizon LQ optimal control problem (2.1),(2.4) is well-posed.Then,the optimal control in the admissible class Uadis given by

    where Ki(t)=(t)Mi(t),i ∈S.Furthermore the minimum cost is given by

    ProofThe proof is immediate from Lemma 4.3.

    Remark 4.1Compared with[2]and[20],although the method adopted here,to prove the sufficiency of solvability of SDCDRE for the well posedness of LQ problem,is the same,under the condition that Ri(t) ?0,we get a different result in the case of linear stochastic singular systems with Markovian jumps.Unlike the standard stochastic system,the optimal control of stochastic singular systems with Markovian jumps is not unique.

    猜你喜歡
    和平
    和平之路
    和平萬歲
    青年歌聲(2020年9期)2020-09-27 07:57:12
    和平分手
    意林(2017年24期)2018-01-02 23:55:39
    Toward a History of Cross-Cultural Written Symbols
    和平之花綻放
    黃河之聲(2016年12期)2016-11-07 01:02:19
    博弈·和平
    特別文摘(2016年18期)2016-09-26 16:42:36
    和平的宣示
    太空探索(2015年10期)2015-07-18 10:59:20
    期盼和平
    珍惜脆弱的和平
    太空探索(2014年9期)2014-07-10 13:06:26
    和平
    小說月刊(2014年2期)2014-04-18 14:06:40
    天堂网av新在线| 22中文网久久字幕| 免费电影在线观看免费观看| 亚洲黑人精品在线| 久久草成人影院| 大又大粗又爽又黄少妇毛片口| 白带黄色成豆腐渣| 国内揄拍国产精品人妻在线| 欧美黑人巨大hd| 99久国产av精品| 天堂av国产一区二区熟女人妻| 国产高清不卡午夜福利| 国产精品免费一区二区三区在线| 国模一区二区三区四区视频| 成人亚洲精品av一区二区| 亚洲国产日韩欧美精品在线观看| 自拍偷自拍亚洲精品老妇| 琪琪午夜伦伦电影理论片6080| 日本欧美国产在线视频| 国产又黄又爽又无遮挡在线| 在线天堂最新版资源| 在线观看一区二区三区| 最近中文字幕高清免费大全6 | 国产精品国产高清国产av| 日本五十路高清| 国产精品三级大全| 一级黄片播放器| 真人做人爱边吃奶动态| 久久热精品热| 国产精品自产拍在线观看55亚洲| 久久久久性生活片| 欧美+日韩+精品| 国产三级在线视频| 搡老妇女老女人老熟妇| 特大巨黑吊av在线直播| 欧美激情国产日韩精品一区| 美女大奶头视频| 99九九线精品视频在线观看视频| 桃色一区二区三区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品福利在线免费观看| av视频在线观看入口| 亚洲精品456在线播放app | 精品免费久久久久久久清纯| 国产亚洲欧美98| 人人妻人人看人人澡| 亚洲 国产 在线| 久久精品综合一区二区三区| 一进一出抽搐动态| 久久久久久久久久成人| avwww免费| 狠狠狠狠99中文字幕| 久久草成人影院| 国产精品乱码一区二三区的特点| 日韩精品有码人妻一区| 性插视频无遮挡在线免费观看| 欧美另类亚洲清纯唯美| 九九在线视频观看精品| 国产国拍精品亚洲av在线观看| 春色校园在线视频观看| 国产欧美日韩精品一区二区| 亚洲专区中文字幕在线| 亚洲av一区综合| 欧美中文日本在线观看视频| 国语自产精品视频在线第100页| 久久精品夜夜夜夜夜久久蜜豆| 丝袜美腿在线中文| 欧美国产日韩亚洲一区| eeuss影院久久| 免费大片18禁| 免费黄网站久久成人精品| 亚洲国产精品合色在线| 一a级毛片在线观看| 99国产精品一区二区蜜桃av| 国产 一区 欧美 日韩| 中文亚洲av片在线观看爽| 97超视频在线观看视频| bbb黄色大片| 少妇的逼水好多| 此物有八面人人有两片| 国产高清有码在线观看视频| 天堂影院成人在线观看| ponron亚洲| 亚洲无线在线观看| 亚洲av不卡在线观看| 久久久久国产精品人妻aⅴ院| 日韩中字成人| 99久久无色码亚洲精品果冻| 亚洲欧美日韩高清在线视频| 最好的美女福利视频网| 亚洲av熟女| 九九爱精品视频在线观看| av福利片在线观看| 少妇的逼好多水| 可以在线观看的亚洲视频| 午夜免费男女啪啪视频观看 | 久久久精品欧美日韩精品| 97超级碰碰碰精品色视频在线观看| av在线亚洲专区| 国产 一区精品| 一区二区三区四区激情视频 | 最新在线观看一区二区三区| 欧美精品啪啪一区二区三区| 深夜精品福利| 夜夜夜夜夜久久久久| 不卡视频在线观看欧美| 国产精品国产三级国产av玫瑰| 男人和女人高潮做爰伦理| 免费观看精品视频网站| 国产精品无大码| 91久久精品国产一区二区成人| 亚洲不卡免费看| 精品不卡国产一区二区三区| 亚洲av日韩精品久久久久久密| 久久99热6这里只有精品| 国产探花极品一区二区| 国产精品国产三级国产av玫瑰| 最近在线观看免费完整版| 国产在线男女| 成人国产麻豆网| 18禁裸乳无遮挡免费网站照片| 淫妇啪啪啪对白视频| 一进一出抽搐gif免费好疼| 亚洲av日韩精品久久久久久密| 最新在线观看一区二区三区| 在线天堂最新版资源| 国产av不卡久久| 免费在线观看成人毛片| 国产精品98久久久久久宅男小说| 亚洲精品粉嫩美女一区| 亚洲人成网站在线播| 欧美日韩综合久久久久久 | 久久精品国产亚洲av天美| 国产精品久久久久久久电影| 听说在线观看完整版免费高清| 成年女人毛片免费观看观看9| 国产乱人伦免费视频| 97超视频在线观看视频| 免费看日本二区| 免费av不卡在线播放| 国产成年人精品一区二区| 一进一出抽搐动态| 国内精品一区二区在线观看| 他把我摸到了高潮在线观看| 欧美色欧美亚洲另类二区| 又黄又爽又免费观看的视频| 国产一区二区亚洲精品在线观看| 免费黄网站久久成人精品| 欧美三级亚洲精品| 国产精品爽爽va在线观看网站| 中出人妻视频一区二区| 人妻夜夜爽99麻豆av| 深爱激情五月婷婷| 男女那种视频在线观看| 日韩欧美精品v在线| 色精品久久人妻99蜜桃| 在线播放无遮挡| 色噜噜av男人的天堂激情| 男插女下体视频免费在线播放| 亚洲av中文字字幕乱码综合| 国产主播在线观看一区二区| 午夜精品在线福利| 国产高清三级在线| 一进一出抽搐动态| 深夜a级毛片| 国产伦精品一区二区三区视频9| 久久久久久国产a免费观看| 在线观看午夜福利视频| 欧美3d第一页| 18+在线观看网站| 大型黄色视频在线免费观看| 99热网站在线观看| 亚洲国产精品成人综合色| 亚洲图色成人| 韩国av一区二区三区四区| 国产高潮美女av| 97超视频在线观看视频| a在线观看视频网站| 九九爱精品视频在线观看| 亚洲第一区二区三区不卡| a级毛片a级免费在线| 亚洲avbb在线观看| 日韩精品青青久久久久久| 一区二区三区四区激情视频 | 国产精品嫩草影院av在线观看 | 欧美黑人欧美精品刺激| 女的被弄到高潮叫床怎么办 | 在线看三级毛片| 伦理电影大哥的女人| 亚洲精品色激情综合| 免费在线观看成人毛片| 国产一级毛片七仙女欲春2| 美女xxoo啪啪120秒动态图| 级片在线观看| av天堂在线播放| 久久午夜福利片| 国产在线男女| 亚洲自偷自拍三级| 亚洲久久久久久中文字幕| 亚洲成人久久性| 69人妻影院| 成人美女网站在线观看视频| avwww免费| 国产精品美女特级片免费视频播放器| 女同久久另类99精品国产91| 男女之事视频高清在线观看| 天堂av国产一区二区熟女人妻| avwww免费| 在线免费十八禁| 亚洲最大成人中文| 舔av片在线| 级片在线观看| 国产一区二区在线观看日韩| 国内精品久久久久久久电影| 人妻夜夜爽99麻豆av| 日日干狠狠操夜夜爽| 精品一区二区三区av网在线观看| 国内揄拍国产精品人妻在线| 欧美3d第一页| 97碰自拍视频| 1024手机看黄色片| 小说图片视频综合网站| 岛国在线免费视频观看| 国产精品电影一区二区三区| 丰满人妻一区二区三区视频av| 97超级碰碰碰精品色视频在线观看| 欧美日韩综合久久久久久 | 精品国内亚洲2022精品成人| 丰满的人妻完整版| 91精品国产九色| 日韩欧美 国产精品| 丝袜美腿在线中文| 欧美激情国产日韩精品一区| 日韩强制内射视频| 欧美潮喷喷水| 国产成年人精品一区二区| 国产精品久久久久久久久免| 大型黄色视频在线免费观看| 国产精品嫩草影院av在线观看 | 黄色视频,在线免费观看| 真实男女啪啪啪动态图| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av免费高清在线观看| 男女那种视频在线观看| 国产精品乱码一区二三区的特点| 国产精品久久视频播放| 真实男女啪啪啪动态图| 此物有八面人人有两片| 色综合站精品国产| 国产精品久久久久久久久免| 久久精品91蜜桃| 国产精品爽爽va在线观看网站| 性欧美人与动物交配| 免费无遮挡裸体视频| 88av欧美| 国产av麻豆久久久久久久| 中文字幕av成人在线电影| 久久精品影院6| 久久久久国内视频| 99久国产av精品| 成人特级黄色片久久久久久久| 十八禁网站免费在线| 国产亚洲欧美98| 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| 无人区码免费观看不卡| 日日摸夜夜添夜夜添av毛片 | 免费观看人在逋| 亚洲久久久久久中文字幕| 国产精品亚洲一级av第二区| 国产精品久久久久久精品电影| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频| 男女啪啪激烈高潮av片| 免费大片18禁| 久久精品国产亚洲av天美| 国产精品久久久久久久电影| 少妇的逼好多水| 99热这里只有是精品在线观看| 天天一区二区日本电影三级| 99久久精品热视频| 99久久精品国产国产毛片| 免费一级毛片在线播放高清视频| 日本五十路高清| 91在线精品国自产拍蜜月| 天堂av国产一区二区熟女人妻| 美女黄网站色视频| 尤物成人国产欧美一区二区三区| 深夜a级毛片| 国产成人av教育| av.在线天堂| 啪啪无遮挡十八禁网站| 又黄又爽又免费观看的视频| 日日干狠狠操夜夜爽| 亚洲午夜理论影院| 99在线人妻在线中文字幕| 天堂影院成人在线观看| 久久这里只有精品中国| 亚洲美女搞黄在线观看 | 观看美女的网站| 麻豆一二三区av精品| 97超视频在线观看视频| 色尼玛亚洲综合影院| 久久国产乱子免费精品| 欧美3d第一页| 国产一区二区三区av在线 | 一本一本综合久久| 亚洲国产高清在线一区二区三| 亚洲国产精品成人综合色| 欧美日韩国产亚洲二区| 欧美性猛交╳xxx乱大交人| 精品国内亚洲2022精品成人| 国产av不卡久久| 九色国产91popny在线| 国产伦精品一区二区三区视频9| 久久草成人影院| 国产男靠女视频免费网站| 国产成人影院久久av| 国产精品亚洲美女久久久| a级毛片免费高清观看在线播放| 黄色欧美视频在线观看| 少妇被粗大猛烈的视频| 特大巨黑吊av在线直播| 美女免费视频网站| 如何舔出高潮| 日韩中字成人| 亚洲人成网站在线播| 97人妻精品一区二区三区麻豆| xxxwww97欧美| 欧美日本亚洲视频在线播放| 两人在一起打扑克的视频| 欧美+亚洲+日韩+国产| 国产真实乱freesex| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩卡通动漫| 色综合色国产| 99久久无色码亚洲精品果冻| 免费av不卡在线播放| 少妇猛男粗大的猛烈进出视频 | 波多野结衣巨乳人妻| 十八禁网站免费在线| 男女那种视频在线观看| 国产男人的电影天堂91| 国产精品电影一区二区三区| 色哟哟·www| 国产探花在线观看一区二区| 国产成人福利小说| 亚洲中文日韩欧美视频| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频| 国产av不卡久久| 精品久久久噜噜| 久久久久久久久久黄片| 免费观看精品视频网站| 国国产精品蜜臀av免费| 亚洲午夜理论影院| 少妇裸体淫交视频免费看高清| 搡老熟女国产l中国老女人| 舔av片在线| 国产亚洲精品av在线| 亚洲狠狠婷婷综合久久图片| 亚洲av中文字字幕乱码综合| 亚洲最大成人av| 色综合婷婷激情| 亚洲无线在线观看| 国产成人一区二区在线| 日本a在线网址| 日韩国内少妇激情av| 一级毛片久久久久久久久女| 国产精品乱码一区二三区的特点| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看 | 91麻豆精品激情在线观看国产| 性欧美人与动物交配| 村上凉子中文字幕在线| 中出人妻视频一区二区| 国产高清激情床上av| 亚洲美女搞黄在线观看 | 免费搜索国产男女视频| 欧美不卡视频在线免费观看| 在线观看午夜福利视频| 动漫黄色视频在线观看| 成人性生交大片免费视频hd| 亚洲 国产 在线| 别揉我奶头~嗯~啊~动态视频| 国产毛片a区久久久久| 亚洲av免费在线观看| 老司机福利观看| 成人国产一区最新在线观看| 美女高潮的动态| 国产精品无大码| 99久国产av精品| avwww免费| 国内久久婷婷六月综合欲色啪| 色综合亚洲欧美另类图片| 精品人妻一区二区三区麻豆 | 成人特级av手机在线观看| 中文字幕高清在线视频| 在线观看美女被高潮喷水网站| 国产午夜精品论理片| 搡老妇女老女人老熟妇| 国产精品1区2区在线观看.| 亚洲精品影视一区二区三区av| 在线a可以看的网站| 成人无遮挡网站| 亚洲中文字幕日韩| 简卡轻食公司| 午夜影院日韩av| 国产v大片淫在线免费观看| 黄片wwwwww| 亚洲图色成人| 久久精品国产清高在天天线| 欧美丝袜亚洲另类 | 看免费成人av毛片| 日本色播在线视频| 欧美黑人巨大hd| 国产在线男女| 91麻豆精品激情在线观看国产| 干丝袜人妻中文字幕| 欧美日韩综合久久久久久 | 国模一区二区三区四区视频| 亚洲在线自拍视频| 深夜a级毛片| 精品人妻熟女av久视频| 色综合色国产| 天堂动漫精品| 欧美3d第一页| 国产免费一级a男人的天堂| 国产伦人伦偷精品视频| 亚洲欧美日韩高清在线视频| 国产伦精品一区二区三区视频9| 女人被狂操c到高潮| 欧美日韩精品成人综合77777| 国产精品永久免费网站| 长腿黑丝高跟| 日日摸夜夜添夜夜添av毛片 | 亚洲经典国产精华液单| 国产亚洲av嫩草精品影院| 午夜福利高清视频| 亚洲一区高清亚洲精品| 草草在线视频免费看| 男女那种视频在线观看| 国产精品爽爽va在线观看网站| 搞女人的毛片| 成人无遮挡网站| 精品一区二区三区人妻视频| 久久精品国产亚洲网站| 日韩精品有码人妻一区| 天堂网av新在线| 国产精品爽爽va在线观看网站| 伊人久久精品亚洲午夜| 国产伦人伦偷精品视频| 成人精品一区二区免费| 美女黄网站色视频| 欧美中文日本在线观看视频| 欧美日韩黄片免| 搡老妇女老女人老熟妇| 老司机深夜福利视频在线观看| 国产私拍福利视频在线观看| 51国产日韩欧美| 亚洲av五月六月丁香网| 一本久久中文字幕| 日本一本二区三区精品| 国产不卡一卡二| 久久久久性生活片| 人妻夜夜爽99麻豆av| 午夜福利在线观看吧| 日韩,欧美,国产一区二区三区 | 久9热在线精品视频| 久久香蕉精品热| 99国产精品一区二区蜜桃av| 国产精品不卡视频一区二区| 成人特级av手机在线观看| 国产成人a区在线观看| 免费av毛片视频| 九九爱精品视频在线观看| 搡老岳熟女国产| 夜夜夜夜夜久久久久| 男人舔奶头视频| 国产精品一区www在线观看 | 国产高清不卡午夜福利| 精品午夜福利在线看| 99久久精品国产国产毛片| 国产久久久一区二区三区| 18禁黄网站禁片免费观看直播| 久久国内精品自在自线图片| 亚洲va日本ⅴa欧美va伊人久久| 国产黄色小视频在线观看| 国产精品亚洲美女久久久| 国产av不卡久久| 精品久久久久久久人妻蜜臀av| 久久久久久国产a免费观看| 亚洲av不卡在线观看| 22中文网久久字幕| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲av涩爱 | av福利片在线观看| 最后的刺客免费高清国语| 九九在线视频观看精品| 午夜免费激情av| 欧美日韩黄片免| 国产淫片久久久久久久久| 亚洲成人久久性| 无人区码免费观看不卡| 精品一区二区三区视频在线观看免费| 一级毛片久久久久久久久女| 国内精品久久久久精免费| 国产一区二区在线观看日韩| 99热6这里只有精品| 国产一级毛片七仙女欲春2| 午夜老司机福利剧场| 搡老熟女国产l中国老女人| 97超视频在线观看视频| 中出人妻视频一区二区| 91午夜精品亚洲一区二区三区 | 日韩中文字幕欧美一区二区| 欧美黑人巨大hd| 国产精品98久久久久久宅男小说| 夜夜爽天天搞| 在线观看66精品国产| videossex国产| 亚洲人成网站在线播放欧美日韩| 日本 欧美在线| 国产精品国产高清国产av| 91在线精品国自产拍蜜月| 少妇的逼水好多| 露出奶头的视频| 九色国产91popny在线| 黄片wwwwww| 精品无人区乱码1区二区| 大型黄色视频在线免费观看| 日韩欧美精品免费久久| 久久久久久久久久成人| 九九热线精品视视频播放| 欧美一级a爱片免费观看看| 97超视频在线观看视频| 欧美国产日韩亚洲一区| 热99在线观看视频| 亚洲图色成人| 亚洲av.av天堂| 99热这里只有精品一区| 最新中文字幕久久久久| 亚洲久久久久久中文字幕| 婷婷六月久久综合丁香| 一本精品99久久精品77| 日韩欧美三级三区| 成人综合一区亚洲| 琪琪午夜伦伦电影理论片6080| 午夜免费男女啪啪视频观看 | 免费人成视频x8x8入口观看| 国语自产精品视频在线第100页| 久久久久国内视频| 国产一区二区三区视频了| 人妻少妇偷人精品九色| 欧美又色又爽又黄视频| 久久精品国产99精品国产亚洲性色| 美女免费视频网站| 别揉我奶头 嗯啊视频| 在线免费观看的www视频| 成人一区二区视频在线观看| or卡值多少钱| 少妇熟女aⅴ在线视频| 麻豆国产av国片精品| 男女下面进入的视频免费午夜| 麻豆一二三区av精品| 国模一区二区三区四区视频| 午夜福利18| 大又大粗又爽又黄少妇毛片口| 91久久精品国产一区二区成人| 男女啪啪激烈高潮av片| 级片在线观看| 天美传媒精品一区二区| 国产精品综合久久久久久久免费| 国产中年淑女户外野战色| www日本黄色视频网| 又爽又黄a免费视频| 高清日韩中文字幕在线| 真实男女啪啪啪动态图| 长腿黑丝高跟| 欧美人与善性xxx| 一个人免费在线观看电影| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6 | av在线观看视频网站免费| 亚洲欧美激情综合另类| av中文乱码字幕在线| 麻豆av噜噜一区二区三区| 欧美日本亚洲视频在线播放| 亚洲一区高清亚洲精品| www日本黄色视频网| 别揉我奶头 嗯啊视频| 搡女人真爽免费视频火全软件 | 久9热在线精品视频| 波多野结衣高清无吗| 极品教师在线视频| 我的女老师完整版在线观看| 99久久精品一区二区三区| 深爱激情五月婷婷| 国产黄片美女视频| 久久久国产成人免费| 国产精品福利在线免费观看| 亚洲精品乱码久久久v下载方式| 精品午夜福利在线看| 欧美日本视频| 亚洲国产精品成人综合色| 动漫黄色视频在线观看| 午夜激情福利司机影院| 少妇被粗大猛烈的视频| 男女那种视频在线观看| or卡值多少钱| 伦理电影大哥的女人| 久久九九热精品免费| 此物有八面人人有两片| 精品99又大又爽又粗少妇毛片 | 人妻丰满熟妇av一区二区三区|