王湘?蔡震宇?于洪濤?李剛
【摘要】腹主動(dòng)脈瘤是指與全身纖維結(jié)締組織退行性變相關(guān)聯(lián)的腹主動(dòng)脈局部瘤樣擴(kuò)張,是常見的主動(dòng)脈疾病。近年隨著三維(3D)打印技術(shù)的不斷進(jìn)步,其在醫(yī)療領(lǐng)域應(yīng)用的范圍不斷擴(kuò)大,特別是在血管外科的運(yùn)用。該文介紹1例腹主動(dòng)脈瘤3D打印輔助治療實(shí)例,與傳統(tǒng)主動(dòng)脈CT血管造影(CTA)檢查進(jìn)行對(duì)比,基于CTA圖像的3D打印技術(shù)能夠精準(zhǔn)地還原CTA重建圖像,測(cè)量數(shù)據(jù)更客觀,使外科醫(yī)師獲得更直觀的視覺理解,有助于手術(shù)的順利進(jìn)行。
【關(guān)鍵詞】腹主動(dòng)脈瘤;腔內(nèi)治療;三維打印
3D printing-assisted intraluminal treatment of abdominal aortic aneurysm: a case report Wang Xiang, Cai Zhenyu, Yu Hongtao, Li Gang. Cardiovascular Surgery, Shenzhen Hospital of Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518000, China
【Abstract】Abdominal aortic aneurysm refers to the local tumor-like dilatation of the abdominal aorta associated with the degeneration of systemic fibrous connective tissues, which is a common type of aortic disease. In recent years, with the persistent advancement of three-dimensional (3D) printing technology, its range of application in the medical field has been constantly expanded, especially in vascular surgery. In this article, one case of 3D printing-assisted treatment of abdominal aortic aneurysm was reported. Compared with traditional aortic CT angiography (CTA), 3D printing technology based on CTA image can more accurately restore the reconstructed CTA image, yield more objective measurement data, deliver more intuitive visual understanding to the surgeons and contribute to the success of surgery.
【Key words】Abdominal aortic aneurysm;Intraluminal treatment;Three-dimensional printing
三維(3D)打印技術(shù)起源于一百多年前美國(guó)研究的照相雕刻和地貌成型技術(shù)[1]。它是一種以數(shù)字模型數(shù)據(jù)為基礎(chǔ),綜合了數(shù)字運(yùn)算、信息技術(shù)、材料學(xué)與化學(xué)等多方面技術(shù),通過計(jì)算機(jī)控制,采用分層加工、疊加成型的方式來(lái)“制造”產(chǎn)品,故又稱為“增材”制造技術(shù)[2]。1986年美國(guó)科學(xué)家Charles Hull開發(fā)了第一臺(tái)商業(yè)3D打印機(jī)[3]。經(jīng)歷了30年的發(fā)展,3D打印技術(shù)的應(yīng)用范圍從航天航空、汽車制造、橋梁建筑逐漸延伸到了醫(yī)學(xué)領(lǐng)域。在血管外科領(lǐng)域,主動(dòng)脈瘤的治療方案取決于腹主動(dòng)脈瘤的解剖學(xué)形態(tài),主動(dòng)脈的擴(kuò)張及扭曲程度、瘤頸長(zhǎng)短、主要分支與瘤體間關(guān)系、瘤體內(nèi)附壁血栓等因素將直接影響手術(shù)方案的選擇以及患者預(yù)后的判斷[4]。通過 3D 打印技術(shù)能夠精準(zhǔn)復(fù)制動(dòng)脈瘤,可直視下全方位了解病變的解剖學(xué)情況。本文介紹1例腹主動(dòng)脈瘤3D打印實(shí)際模型,并與傳統(tǒng)主動(dòng)脈CT血管造影(CTA)檢查進(jìn)行對(duì)比,初步探討基于CTA圖像的3D打印技術(shù)的相關(guān)應(yīng)用價(jià)值及其準(zhǔn)確性和可塑性。
病例資料
一、主訴及病史
患者男,68歲。因突發(fā)腰、背痛15 h余于2017年7月3日急診入院?;颊咴V疼痛性質(zhì)劇烈,為撕裂樣疼痛,持續(xù)不緩解,伴全身乏力。既往有膽囊結(jié)石病史,已行手術(shù)治療,否認(rèn)高血壓、糖尿病史,否認(rèn)乙型肝炎、結(jié)核等傳染病史,否認(rèn)外傷及手術(shù)史,未發(fā)現(xiàn)食物及藥物過敏史。吸煙約40年,20支/日。
二、體格檢查及輔助檢查
入院體格檢查:體溫36.6℃,心率82次/分,血壓 110/68 mm Hg(左上肢,1 mm Hg = 0.133 kPa),呼吸20次/分。神志清晰,精神狀態(tài)差,痛苦面容,口唇無(wú)發(fā)紺。雙肺呼吸音清,各瓣膜聽診區(qū)未聞及明顯病理性雜音。腹膨隆,無(wú)壓痛及反跳痛,腸鳴音正常。雙側(cè)肢體波動(dòng)減弱。
血常規(guī)示血紅蛋白90 g/L,白細(xì)胞12.7 ×109/L,紅細(xì)胞2.9×1012/L,血小板143×109/L。UCG示LVEF 0.55,心腔結(jié)構(gòu)未見異常。全主動(dòng)脈增強(qiáng)CT掃描提示腹主動(dòng)脈瘤并腹主動(dòng)脈破裂。術(shù)前CT血管三維重建顯示患者腎下腹主動(dòng)脈呈囊性擴(kuò)張。瘤體最大直徑約96 mm,瘤體真腔最大直徑約45 mm,瘤體破口位于右側(cè)腎動(dòng)脈以下,瘤頸向右側(cè)略偏斜,無(wú)明顯扭曲,長(zhǎng)度約15 mm,見圖1。
三、3D模型重建及打印
提取患者術(shù)前主動(dòng)脈(從腹腔干動(dòng)脈上方到股動(dòng)脈分叉處)薄層增強(qiáng)CT掃描資料,并以DICOM格式輸出,將導(dǎo)出的主動(dòng)脈CT掃描資料導(dǎo)入 Mimics 軟件,對(duì)主動(dòng)脈區(qū)域進(jìn)行三維重構(gòu),重構(gòu)后的數(shù)據(jù)輸入 Cura軟件進(jìn)行切片設(shè)置,將轉(zhuǎn)換后的.x3g格式文件拷貝到SD卡,然后利用武漢嘉一公司科易樂-巧匠E73D打印機(jī)進(jìn)行打印,打印材料為聚乳酸生物可降解材料(PLA),分別打印成型腹主動(dòng)脈瘤及腹主動(dòng)脈瘤腔模型。該模型完整地展示了患者腹主動(dòng)脈瘤及腹主動(dòng)脈瘤腔的形態(tài),見圖2。
四、CTA重建圖像及3D打印模型測(cè)量對(duì)比
腹主動(dòng)脈瘤3D打印模型精準(zhǔn)還原CTA重建圖像:腸系膜上動(dòng)脈、雙側(cè)腎動(dòng)脈、雙側(cè)髂總動(dòng)脈及分支、腎動(dòng)脈與瘤頸關(guān)系、扭曲的瘤頸以及瘤頸長(zhǎng)度、髂外動(dòng)脈扭曲(具體測(cè)量數(shù)值見表 1)。腸系膜下動(dòng)脈在CTA重建圖像及3D打印模型中均無(wú)顯現(xiàn)。
五、手術(shù)治療
術(shù)中取右股動(dòng)脈及左股動(dòng)脈相應(yīng)部位皮膚切口,造影見腹主動(dòng)脈瘤巨大,直徑約10 cm,長(zhǎng)約14 cm,未累及左右髂動(dòng)脈,形態(tài)特征基本與CTA及3D打印模型測(cè)量值相符。順利置入美敦力ENBF2516C145EE腹主動(dòng)脈主體覆膜支架1枚,分別經(jīng)左、右側(cè)股動(dòng)脈順利置入美敦力ENLW1610C120EE、ENLW1613C120EE短腿支架各1枚。最后造影示所釋放支架位置均準(zhǔn)確固定,腹主動(dòng)脈瘤被完全隔絕,雙側(cè)腎動(dòng)脈、雙側(cè)髂總動(dòng)脈、雙側(cè)髂外動(dòng)脈、髂內(nèi)動(dòng)脈顯影好,無(wú)造影劑滯留,無(wú)造影劑外溢,無(wú)內(nèi)漏,見圖3A。術(shù)程順利,術(shù)中無(wú)輸血,術(shù)畢安返ICU,術(shù)后復(fù)查 CTA 結(jié)果滿意,見圖3B。隨訪至撰稿日,未見異常。
討論
CTA技術(shù)采用圖像后處理軟件進(jìn)行多平面重建(MPR)、最大密度投影(MIP)、容積成像(VR),綜合影像結(jié)果進(jìn)行診斷,可觀察主動(dòng)脈瘤發(fā)生部位、形態(tài)、大小和累及范圍,并依據(jù)專為腹主動(dòng)脈瘤腔內(nèi)修復(fù)術(shù)制定的三型五分法及其測(cè)量指標(biāo)進(jìn)行測(cè)量及分型,對(duì)臨床進(jìn)行指導(dǎo)[5]。
在主動(dòng)脈腔內(nèi)治療的術(shù)前指導(dǎo)過程以及主動(dòng)脈相關(guān)形態(tài)學(xué)研究中,CTA技術(shù)未能完全滿足需求,這主要與CTA本身局限的計(jì)算平臺(tái)功能有關(guān)[6]。例如“梯形瘤頸”直徑、動(dòng)脈瘤最大直徑、動(dòng)脈瘤腔最大直徑的測(cè)量,CTA存在一定的誤差,這種誤差與主動(dòng)脈在矢狀位的扭曲和傾斜有關(guān),實(shí)際上CTA三維重建圖像只是3D圖像的二維顯現(xiàn),這也解釋了表1中CTA與3D打印模型之間存在的數(shù)值差異。而3D打印技術(shù)可以個(gè)體化三維重建生成立體的、精確的腹主動(dòng)脈瘤解剖物理模型,有助于我們更準(zhǔn)確、更直觀地觀察和理解。我們結(jié)合3D打印模型的測(cè)量數(shù)值,準(zhǔn)確地選用了合適大小的主動(dòng)脈支架并且成功地實(shí)施了手術(shù)。
3D打印是一種正在快速發(fā)展的技術(shù)。3D打印能夠制作具有復(fù)雜內(nèi)部結(jié)構(gòu)的產(chǎn)品[7]。3D打印和影像學(xué)檢查的結(jié)合為醫(yī)學(xué),特別是血管外科的發(fā)展提供了巨大的機(jī)會(huì)[8-10]。該技術(shù)使具有復(fù)雜解剖結(jié)構(gòu)的疾病可視化、直觀化,并可以創(chuàng)建不同的模型用于外科手術(shù)規(guī)劃和培訓(xùn)[11-14]。術(shù)前手術(shù)規(guī)劃是血管內(nèi)手術(shù)的關(guān)鍵部分[15-18]。傳統(tǒng)情況下,血管內(nèi)支架的選擇主要依賴于CT圖像,然而,在病變較為復(fù)雜的情況下,CT提供的信息不夠直觀和具體[19-20]。而目前可以基于CT數(shù)據(jù)創(chuàng)建3D打印的血管模型,以協(xié)助進(jìn)行術(shù)前手術(shù)規(guī)劃[21-22]。
Koleilat等[23]比較了通過自動(dòng)3D中心線成像數(shù)據(jù)與3D打印的主動(dòng)脈模型獲得的測(cè)量結(jié)果的準(zhǔn)確性。與3D打印的主動(dòng)脈模型相比,各觀察者之間的測(cè)量結(jié)果存在實(shí)質(zhì)性差異,血管角度無(wú)法準(zhǔn)確測(cè)量,這可能會(huì)導(dǎo)致分支血管破裂和再次介入的幾率增加。在歐洲進(jìn)行的一項(xiàng)多中心、前瞻性、隨機(jī)試驗(yàn)顯示,在進(jìn)行腔內(nèi)修復(fù)術(shù)之前,利用3D打印血管模型進(jìn)行術(shù)前討論及手術(shù)訓(xùn)練,減少了支架植入術(shù)中對(duì)比劑及X線曝光劑量,進(jìn)而提高安全性和手術(shù)效率[24]。
本研究中,3D打印模型是基于CT掃描數(shù)據(jù),雖將CT圖像精確還原成立體實(shí)物,但3D模型僅能顯現(xiàn)瘤腔的大小、形狀,卻不能真實(shí)還原血管壁、瘤壁血栓以及瘤腔。而在Riesenkmpff等[25]采用CT及MRI數(shù)據(jù)對(duì)11例復(fù)雜先天性心臟病患者進(jìn)行三維重建,并打印出患者的3D心臟模型。Dankowski等[26]也完整打印出心臟模型,并且能較好地顯現(xiàn)出心臟瓣膜。CT掃描技術(shù)和3D打印技術(shù)的結(jié)合可以掃描、編輯和復(fù)制實(shí)體對(duì)象,創(chuàng)建精確的副本或優(yōu)化原件,從三維重建圖像到最終的待打印立體光刻模型,其中涉及的數(shù)據(jù)處理和格式轉(zhuǎn)換過程正是2種技術(shù)結(jié)合的關(guān)鍵。通過對(duì)立體光刻文件的再整合,本研究中的打印方法亦可改善模型的呈現(xiàn)。因此,與CTA相比,3D打印模型具有更直觀的視覺理解,測(cè)量數(shù)據(jù)更客觀,有廣闊的臨床應(yīng)用價(jià)值。
參 考 文 獻(xiàn)
[1] 黃建華,王偉. 3D打印技術(shù)在腔內(nèi)血管外科中的應(yīng)用前景. 臨床外科雜志,2015, 23(8): 577-579.
[2] Walker TG, Kalva SP, Yeddula K, Wicky S, Kundu S, Drescher P, dOthee BJ, Rose SC, Cardella JF; Society of Interventional Radiology Standards of Practice Committee; Interventional Radiological Society of Europe; Canadian Interventional Radiology Association. Clinical practice guidelines for endovascular abdominal aortic aneurysm repair: written by the Standards of Practice Committee for the Society of Interventional Radiology and endorsed by the Cardiovascular and Interventional Radiological Society of Europe and the Canadian Interventional Radiology Association. J Vasc Interv Radiol, 2010, 21(11):1632-1655.
[3] 林若然,呂俊遠(yuǎn),辛世杰. 3D打印技術(shù)在血管外科應(yīng)用進(jìn)展. 中國(guó)實(shí)用外科雜志,2016,36(12): 1338-1340.
[4] OMara JE, Bersin RM. Endovascular management of abdominal aortic aneurysms: the year in review. Curr Treat Options Car-diovasc Med, 2016, 18(8):54.
[5] 劉繼峰,郭旺明. 多層螺旋CT血管成像在腹主動(dòng)脈瘤診斷及術(shù)前評(píng)估中的應(yīng)用價(jià)值. 中國(guó)醫(yī)療設(shè)備, 2015, 30(9): 60-62.
[6] 楊晗,胡明,黃群,覃忠,郭思恩,覃曉. 3D打印輔助覆膜支架修復(fù)術(shù)在復(fù)雜主動(dòng)脈疾病腔內(nèi)治療中的應(yīng)用. 中國(guó)血管外科雜志(電子版),2018,10(1):4-9.
[7] Marro A, Bandukwala T, Mak W. Three-dimensional printing and medical imaging: a review of the methods and applications. Curr Probl Diagn Radiol, 2016, 45(1):2-9.
[8] Sheth R, Balesh ER, Zhang YS, Hirsch JA, Khademhosseini A, Oklu R. Three-dimensional printing: an enabling technology for IR. J Vasc Interv Radiol, 2016, 27(6):859-865.
[9] Giannopoulos AA, Mitsouras D, Yoo SJ, Liu PP, Chatzizisis YS, Rybicki FJ. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol, 2016, 13(12):701-718.
[10] Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, George E, Wake N, Caterson EJ, Pomahac B, Ho VB, Grant GT, Rybicki FJ. Medical 3D printing for the radiologist. Radiographics, 2015, 35(7):1965-1968.
[11] Marro A, Bandukwala T, Mak W. Three-dimensional printing and medical imaging: a review of the methods and applications. Curr Probl Diagn Radiol, 2016, 45(1):2-9.
[12] Shibata E, Takao H, Amemiya S, Ohtomo K. 3D-printed visceral aneurysm models based on CT data for simulations of endovascular embolization: evaluation of size and shape accuracy. AJR Am J Roentgenol, 2017, 209(2):243-247.
[13] Biglino G, Verschueren P, Zegels R, Taylor AM, Schievano S. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J Cardiovasc Magn Reson, 2013, 15(1):2.
[14] Mafeld S, Nesbitt C, Mc Caslin J, Bagnall A, Davey P, Bose P, Williams R. Three-dimensional (3D) printed endovascular simulation models: a feasibility study. Ann Transl Med, 2017, 5(3):42.
[15] Wilasrusmee C, Suvikrom J, Suthakorn J, Lertsithichai P, Sitthiseriprapip K, Proprom N, Kittur DS. Three-dimensional aortic aneurysm model and endovascular repair: an educational tool for surgical trainees. Int J Angiol, 2008, 17(3):129-133.
[16] Taher F, Falkensammer J, McCarte J, Strassegger J, Uhlmann M, Schuch P, Assadian A. The influence of prototype testing in three-dimensional aortic models on fenestrated endograft design. J Vasc Surg, 2017, 65(6):1591-1597.
[17] United Kingdom EVAR Trial Investigators, Greenhalgh RM, Brown LC, Powell JT, Thompson SG, Epstein D, Sculpher MJ. Endovascular versus open repair of abdominal aortic aneurysm. N Engl J Med, 2010, 362(20):1863-1871.
[18] Greenhalgh RM, Brown LC, Kwong GP, Powell JT, Thompson SG; EVAR trial participants. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial. Lancet, 2004, 364(9437):843-848.
[19] Tam MD, Laycock SD, Brown JR, Jakeways M. 3D printing of an aortic aneurysm to facilitate decision making and device selection for endovascular aneurysm repair in complex neck anatomy. J Endovasc Ther, 2013, 20(6):863-867.
[20] Taher F, Falkensammer J, McCarte J, Strassegger J, Uhlmann M, Schuch P, Assadian A. The influence of prototype testing in three-dimensional aortic models on fenestrated endograft design. J Vasc Surg, 2017, 65(6):1591-1597.
[21] Mafeld S, Nesbitt C, McCaslin J, Bagnall A, Davey P, Bose P, Williams R. Three-dimensional (3D) printed endovascular simulation models: a feasibility study. Ann Transl Med, 2017, 5(3):42.
[22] Andolfi C, Plana A, Kania P, Banerjee PP, Small S. Usefulness of three-dimensional modeling in surgical planning, resident training, and patient education. J Laparoendosc Adv Surg Tech A, 2017, 27(5):512-515.
[23] Koleilat I, Jaeggli M, Ewing JA, Androes M, Simionescu DT, Eidt J. Interobserver variability in physician-modified endograft planning by comparison with a three-dimensional printed aortic model. J Vasc Surg, 2016, 64(6):1789-1796.
[24] Desender LM, Van Herzeele I, Lachat ML, Rancic Z, Duchateau J, Rudarakanchana N, Bicknell CD, Heyligers JM, Teijink JA, Vermassen FE; PAVLOV Study Group. Patient-specific rehearsal before EVAR: influence on technical and nontechnical operative performance. a randomized controlled trial. Ann Surg, 2016, 264(5):703-709.
[25] Riesenkampff E, Rietdorf U, Wolf I, Schnackenburg B, Ewert P, Huebler M, Alexi-Meskishvili V, Anderson RH, Engel N, Meinzer HP, Hetzer R, Berger F, Kuehne T. The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J Thorac Cardiovasc Surg, 2009, 138(3):571-580.
[26] Dankowski R, Baszko A, Sutherland M, Firek L, Ka?mucki P, Wróblewska K, Szyszka A, Groothuis A, Siminiak T. 3D heart model printing for preparation of percutaneous structural interventions: description of the technology and case report. Kardiol Pol, 2014, 72(6):546-551.
(收稿日期:2020-03-20)
(本文編輯:林燕薇)