• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Magnetic Field on Tribological Properties of Lubricating Oils with and without Tricresyl Phosphate

    2016-03-22 08:05:07
    中國煉油與石油化工 2016年3期

    (Logistical Engineering University, Chongqing 401311)

    Effect of Magnetic Field on Tribological Properties of Lubricating Oils with and without Tricresyl Phosphate

    Jiang Zeqi; Fang Jianhua; Chen Boshui; Zheng Zhe; Li Hao; Xu Lai

    (Logistical Engineering University, Chongqing 401311)

    Tribological properties of neat 150 SN mineral base oil and the oils doped with different contents of tricresyl phosphate (TCP) under magnetic feld or non-magnetic feld were evaluated on a four-ball tribotester, on which an external magnetic feld was applied. Furthermore, the morphology and the tribochemical characteristics of the worn surfaces were examined with a scanning electron microscope (SEM) and an X-ray photoelectron spectrograph (XPS). The tribological test results showed that the magnetic feld improved anti-wear properties but impaired the friction-reducing properties of neat base oil and the TCP-doped oils. The worn surfaces tested in magnetic feld were characterized by a slighter wear than those tested in normal condition, especially for the surfaces lubricated with the TCP-doped oils. Furthermore, the results of XPS analysis indicated that tribochemical flms on the surfaces tested with TCP-doped oils were mainly composed of ferriccontaining compounds such as Fe2O3, Fe3O4and FePO4. Under the infuence of a magnetic feld, the atomic concentrations of oxygen and phosphorous in the frictional sub-surfaces were higher than those without magnetic impact. Thus it can be inferred that the improved anti-wear properties and impaired friction-reducing capabilities of lubricating oils with TCP under a magnetic feld were related to the diffusion of phosphorus and oxygen into the substrate induced by magnetism.

    magnetic feld; tricresyl phosphate; tribological properties; mechanisms

    1 Introduction

    In industrial tribological systems, many sliding units work in electric and magnetic surroundings such as the magnetic cutting, the motor brush, the carbon brush of excitation machine, the contact wire of high speed skater, the switch contactor of high power electric transmission[1-4]. It has been known that electromagnetic-induced physico-chemical effect will certainly infuence tribological properties of lubricants[5-7]. On the other hand, the self generated voltage (SGV) induced by friction will produce electric felds which, when varying, will excite magnetic felds[8]. Studies have shown that tribomates under magnetic conditions can produce dynamic magnetization thus affecting the hardness of frictional materials[9-11]. Tang[12]pointed out that the electron clouds inside molecules would deform temporarily under magnetic felds, resulting in changes of intermolecular forces that could influence the physical and chemical properties of a substance such as viscosity. Zhai, et al.[13]demonstrated that the friction coefficients were related to tribochemical reaction on the worn surfaces under electromagnetic condition. Unfortunately, the infuence of electromagnetic effect on the molecular design of traditional lubricant additives is usually not taken into consideration. It is thus of great significance to understand the electromagnetic effect on tribological performance of lubricants to realize the reasonable application and design of lubricants and additives for tribological contacts involved in electromagnetic conditions.

    Tricresyl phosphate (TCP), a phosphorus-containing extreme pressure and anti-wear additive, has been widely used in many lubrication applications[14]. In the present paper, the tribological properties of lubricating oils with different contents of TCP were tested and compared with those of neat mineral base oil under magnetic conditions. Furthermore, the possible mechanisms of magnetic feld on infuencing the tribological performance of lubricating oils were also analyzed.

    2 Experimental

    2.1 Base oil and additive

    150 SN base oil: a non-polarized paraffinic base oil obtained from the Shenzhen Lubricating Oil Industry Company, with its kinematic viscosity at 40 ℃ being equating to 31.85 mm2/s.

    Additive: Tricresyl phosphate (TCP) was obtained from the Beijing Benzene Ring Fine Chemicals Co., Ltd. The chemical structure and some physicochemical indices of TCP are shown in Figure 1 and Table 1, respectively.

    Table 1 The physicochemical properties of TCP

    2.2 Friction and wear test

    To evaluate the effect of magnetic field on tribological properties of lubricating oils with and without TCP, different mass fraction values of TCP, viz.: 0, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%, respectively, were incorporated into the 150 SN base oil. The tribological tests were performed on a MMW-1 universal four-ball tribotester following the procedures of SH/T 0189—1992, a Chinese standard method for testing friction and wear properties of lubricants. To investigate the effect of magnetic feld on tribological performance of the lubricants, a copper loop of 800 windings was wrapped on an aluminium alloy sleeve and then placed around the friction region as shown in Figure 2(a). During the friction testing, the loop was electrifed to produce a specifc intensity of magnetic field by controlling the current intensity, with magnetic induction lines being mostly perpendicular to the frictional contact surfaces, as shown in Figure 2(b). The friction and wear tests were conducted under a magnetic feld intensity of 0.1 Tesla (0.1 T) and a load of 392 N, at a rotary speed of 1 200 r/min for 30 minutes. After each test run, the wear scar diameters (WSD) and the friction coeffcients were measured to evaluate the anti-wear and friction-reducing ability of the tested lubricants. The balls used in the tests are GCr15 standard steel balls, 12.7 mm in diameter and 59—61 HRC in hardness. The magnetic intensity was measured by a HT201 portable digital Tesla meter.

    Figure 2 Assembly of tribotester

    2.3 Surface analysis

    Prior to the analysis, the steel balls lubricated with 150 SN base oil and oils formulated with 2.0% of TCP, respectively, under magnetic or non-magnetic fields were ultrasonically cleansed with petroleum ether for 10 minutes, respectively. Then the morphology of the worn surfaces was observed by a TESCAN Vega 3 LMH scanning electron microscope (SEM). The chemical characteristics of typical elements on the worn surfaces were analyzed on a Thermo ESCALab250 X-ray photoelectron spectroscope (XPS), with the Al Kα radiation used as the exciting source and a binding energy of contaminated carbon (C1s: 284.80 eV) used as the reference.

    3 Results and Discussion

    3.1 Anti-wear capacity

    Figure 3 shows the variation of wear scar diameters with the change in mass fraction of TCP under different magnetic fields. It can clearly be observed from Figure 3 that WSDs of the worn surfaces under magnetic felds were much smaller than those under non-magnetic feld, demonstrating that magnetic field could contribute to the improvement of the anti-wear property of lubricating oils.

    Figure 3 Variation of WSD with TCP contents under magnetic or non-magnetic fi eld

    3.2 Friction-reducing ability

    Figure 4 Friction coef fi cient against mass fraction of TCP under magnetic or non-magnetic fi eld

    Figure 5 Variation of friction coef fi cient with test duration under magnetic or non-magnetic fi eld conditions

    Figure 4 shows the variation of friction coeffcients with the mass fraction of TCP under different magnetic felds. Also shown in Figure 5 is the variation of friction coefficient versus test duration of lubricant oil containing 2.0% of TCP. It can be seen from Figure 4 and Figure 5 that the friction coefficients of the tested oils increased with an increasing content of TCP. In addition, the friction coefficients under magnetic conditions were higher than those under non-magnetic conditions. Furthermore, in the whole test process of 30 minutes, the friction coeffcient of oil containing 2.0% of TCP under the magnetic feld condition fuctuated more obviously than that under non-magnetic feld condition as shown in Figure 5. The results indicated that the magnetic impact could impair the friction-reducing ability of lubricants.

    3.3 Morphology of worn surfaces

    The SEM morphology of worn surfaces lubricated with 150 SN mineral oil and the oils formulated with 2.0% of TCP under a load of 392 N for 30 minutes in the presence of different magnetic felds are shown in Figure 6. It can be seen from Figure 6(a) and Figure 6(b) that smoother wear scar could be observed on surfaces lubricated with base oil under magnetic condition, a similar situation of surfaces lubricated with TCP-doped oils could be observed from Figure 6(c) and Figure 6(d), indicating the positive effect of magnetic feld on anti-wear property of tested oils. The results are well correlated with the antiwear test results shown in Figure 3.

    3.4 Tribochemical characteristics

    Figure 7 shows the XPS spectra of worn surface lubricated with oil samples containing 2.0% of TCP under the influence of magnetic or non-magnetic field. The XPS spectrum of C1s (Figure 7a) showed a peak in the binding energy range of 284.7—288.4 eV, which was assigned to organic species of C—C bonds, indicating that the lubricant molecules were adsorbed on the metal surfaces. In Figure 7b, the peak of Fe2p at a binding energy of 710.5 eV indicated that iron was oxidized to Fe3O4or Fe2O3. In the spectrum of P2p (Figure 7c), the peak at a binding energy of 133.4 eV might be attributed to the chemical species of FePO4. The peak of O1s (Figure 7d) around a binding energy of 531.4 eV might be attributed to P=O or iron oxide, in combination with the peak of Fe2p and P2p. It can be inferred from the results of XPS that a composite boundary lubrication film was mainly composed of FePO4, Fe2O3, and Fe3O4.

    Figure 6 SEM images of worn surfaces lubricated with base oil and TCP-doped oil.

    Figure 7 XPS spectra of worn surfaces lubricated by oil containing 2% of TCP under magnetic or non-magnetic fi eld

    Table 2 Atomic percentage of typical elements on the worn surfaces

    To further explore the magnetic effect on tribological property of lubricating oils formulated with TCP, the elemental compositions of worn surfaces obtained during testing in different magnetic felds were also determined by XPS analysis. The atomic concentrations of typical elements in the worn surfaces are listed in Table 2. As it can be seen from Table 2, the atomic contents of oxygen and phosphorus contained in the surface film under a magnetic feld of 0.1 T were higher than those under nonmagnetic feld. After sputtering for 5 minutes, higher concentrations of oxygen and phosphorus were detected in the sub-surface, indicating that tribo-diffusion of oxygen and phosphorus was promoted by magnetic affection. The higher content of oxygen obtained under magnetism quite well complied with the phenomenon that oxygen tends to gather around the magnetic feld because of its paramagnetic property[15]. Tribo-diffusion of oxygen and phosphorus into the sub-surface under magnetic condition can be an attribute of TCP to fortify anti-wear performance and impair friction-reducing ability of lubricating oils. Zhou[16]reported that the π bond structure of graphite exhibited good magnetization performance under the infuence of magnetic felds. Higher concentrations of oxygen and phosphorus on the surface and in the sub-surface of metal under magnetic condition can also be explained on the basis of the structural characteristics of TCP. The molecule of TCP contains a conjugated π bond structure because of three benzene rings (as can be seen from Figure 1), which can be a positive factor for TCP to exhibit good magnetization performance in the perpendicular direction of molecular plane with magnetic affection to improve the adsorption of TCP on the metal surfaces.

    4 Conclusions

    Based on the results given above, the following conclusions can be drawn.

    (1) The wear scar diameters of steel balls lubricated with 150 SN mineral oil or oils formulated with TCP under magnetic fields were smaller than those obtained under non-magnetic condition, while the friction coefficients of the tested oils under magnetic field were higher than those under non-magnetic field condition. Magnetic field to some extent improved the anti-wear properties but impaired the friction-reducing properties of 150 SN mineral oil and TCP-doped oils.

    (2) Composite boundary flms mainly were composed of FePO4, Fe2O3, and Fe3O4generated on the worn surfaces, and tribo-diffusion of phosphorus and oxygen into the sub-surfaces of metal under magnetic field might be an attribute for the improved anti-wear performance and impaired friction-reducing ability of TCP-doped oils with magnetic affection.

    Acknowledgements: The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Project No. 51375491), the Natural Science Foundation of Chongqing (Project No. CSTC, 2014JCYJAA50021) and the Innovation Fund of Logistical Engineering University of PLA (Project No. YZ13-43703).

    [1] Zhang M, Feng Y. Effect of electric current on the friction and wear behavior of carbon nanotubes-silver-graphite composite[J]. Tribology, 2005, 25(4): 328-332

    [2] Hu B, Meng Y G, Wen S Z. A preliminary experimental study on voltage-controlled friction clutch[J]. Tribology, 2004, 24(1): 46-49

    [3] Senouci A, Zaidi H, Frene J, et al. Damage of surfaces in sliding electrical contact copper/steel[J]. Applied Surface Science, 1999, 144: 287-291

    [4] Jiang Z Q, Zheng Z, Fang J H, et al. Effect of magnetic field on frictional and wearing properties[J]. Synthetic Lubricants, 2016, 43(1): 23-25 (in Chinese)

    [5] Muju M K, Radhakrishna A. Wear of non-magnetic materials in the presence of a magnetic feld[J]. Wear, 1980, 58(1): 49-58

    [6] Dong X L, Chen J R, Jian X G. Research situation and prospects for effect of a magnetic feld on friction and wear of metals[J]. Materials Science and Engineering, 2000, 18(1): 116-120 (in Chinese)

    [7] Wei Y H, Zhang Z Y, Chen Y. Dry sliding friction and wearof high-speed steel/45 steel tribo-pair under direct current steady magnetic feld[J]. Tribology, 2010, 30(4): 399-403 (in Chinese)

    [8] Zhou Q, Li J P, Long H S. The friction and wear of sleevering pair lubricated by active lubricants in the presence of magnetic field[J]. Journal of Wuhan University of Technology, 2004(11): 69-71 (in Chinese)

    [9] Han H B, Gao Y K, Zhang Y Z, et al. The magnetic flux density and magnetic attraction force on the contact surface of pin-disk friction pair under DC magnetic feld[J]. Chinese Mechanical Engineering, 2015, 26(4): 503-507 (in Chinese)

    [10] Han H B, Liu H, Zhang Y Z, et al. The electromagnetic induction phenomena in friction contact area of pin and disk under DC magnetic feld[J]. Tribology, 2015, 35(5): 557-562 (in Chinese)

    [11] Zhou Z Z, Xiao J J, Zheng W. Recent research of the triboelectrifcation mechanism between the friction surfaces[J]. Journal of Wenzhou Vocational and Technical College, 2005, 5(1): 28-30 (in Chinese)

    [12] Tang H B, Zhang M Q. Effect of magnetic felds on viscosity of alkane and alcohol[J]. Journal of Shenyang University of Technology, 2000, 22(5): 448-449 (in Chinese)

    [13] Zhai W J, Hao G P. Influence of externally applied electrical factors on friction coefficient of steel/steel pair with boundary oil lubrication[J]. Journal of Harbin Institute of Technology, 2003, 35(8): 946-949 (in Chinese)

    [14] Fang C M, Li M S, Liu X Q, et al. Research progress in synthesis and application situation of P-containing antiwear and extreme pressure additives[J]. Lubricating Oil, 2007, 22(1): 35-38 (in Chinese)

    [15] Hu H, Gao H, Jia S Y. Effect of magnetic feld on physical and chemical properties of matter[J]. J Magn Mater Devices, 2000, 6: 36-38 (in Chinese)

    [16] Zhou Q, Zheng Y J. Magnetizing friction and its boosting action on lubrication[J]. Tribology, 2002, 22(4): 479-482 (in Chinese)

    Received date: 2016-04-20; Accepted date: 2016-06-17.

    Prof. Fang Jianhua, Telephone: +86-23-86731410; E-mail: fangjianhua71225@sina.com.

    亚洲黑人精品在线| 交换朋友夫妻互换小说| 精品久久久久久电影网| av国产精品久久久久影院| 亚洲欧美中文字幕日韩二区| 国产亚洲av片在线观看秒播厂| 国产欧美日韩精品亚洲av| 视频在线观看一区二区三区| 免费久久久久久久精品成人欧美视频| 久久精品国产综合久久久| 999精品在线视频| 久久毛片免费看一区二区三区| 国产熟女欧美一区二区| 国产精品亚洲av一区麻豆| 亚洲 欧美一区二区三区| 侵犯人妻中文字幕一二三四区| 欧美av亚洲av综合av国产av| 天堂中文最新版在线下载| 国产麻豆69| 久久青草综合色| 麻豆乱淫一区二区| 熟女av电影| 国产精品 国内视频| 中文精品一卡2卡3卡4更新| av国产久精品久网站免费入址| 少妇粗大呻吟视频| www.av在线官网国产| 日韩大码丰满熟妇| 男女国产视频网站| 黄色视频在线播放观看不卡| 两个人免费观看高清视频| 性色av乱码一区二区三区2| 亚洲国产av新网站| 一本综合久久免费| 日本91视频免费播放| 色94色欧美一区二区| 成年人黄色毛片网站| 午夜激情久久久久久久| 中文乱码字字幕精品一区二区三区| 国产亚洲av片在线观看秒播厂| 99精国产麻豆久久婷婷| 日韩中文字幕视频在线看片| 欧美乱码精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 欧美日韩综合久久久久久| 欧美日韩福利视频一区二区| 热re99久久国产66热| 18禁观看日本| 国产有黄有色有爽视频| 2018国产大陆天天弄谢| 一级黄色大片毛片| 一本一本久久a久久精品综合妖精| 久久天躁狠狠躁夜夜2o2o | 午夜福利乱码中文字幕| 在线看a的网站| 各种免费的搞黄视频| 精品国产国语对白av| 91字幕亚洲| 国产三级黄色录像| 亚洲欧洲国产日韩| av不卡在线播放| videos熟女内射| 亚洲av电影在线进入| 中文字幕人妻熟女乱码| 亚洲中文日韩欧美视频| av在线老鸭窝| 男女下面插进去视频免费观看| 精品久久久久久电影网| 欧美精品啪啪一区二区三区 | 国产成人一区二区在线| 婷婷色综合大香蕉| 热re99久久国产66热| 老熟女久久久| 亚洲欧美精品自产自拍| 国产精品 欧美亚洲| 黄色视频在线播放观看不卡| 国产成人一区二区在线| 精品一区二区三区四区五区乱码 | 国产在线视频一区二区| 日韩一卡2卡3卡4卡2021年| 丰满少妇做爰视频| 亚洲国产看品久久| 国产成人影院久久av| 亚洲国产精品一区三区| 亚洲图色成人| 欧美精品一区二区大全| 久久ye,这里只有精品| 少妇 在线观看| 另类亚洲欧美激情| 成年人黄色毛片网站| 日本av手机在线免费观看| 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99| 精品一区二区三区四区五区乱码 | 国产三级黄色录像| 国产精品人妻久久久影院| 久久久久网色| 人人妻人人爽人人添夜夜欢视频| 最新的欧美精品一区二区| 少妇粗大呻吟视频| 久久久久久免费高清国产稀缺| 十八禁网站网址无遮挡| 手机成人av网站| 欧美精品一区二区免费开放| 熟女av电影| a级毛片黄视频| 国产伦人伦偷精品视频| 亚洲第一av免费看| av天堂在线播放| 国产精品99久久99久久久不卡| 亚洲,一卡二卡三卡| 啦啦啦在线观看免费高清www| 操出白浆在线播放| 国产精品久久久久久人妻精品电影 | 久久久久视频综合| 国产精品国产三级专区第一集| 狠狠婷婷综合久久久久久88av| 日韩精品免费视频一区二区三区| 啦啦啦啦在线视频资源| 精品福利观看| av不卡在线播放| 国产成人a∨麻豆精品| 久久久精品国产亚洲av高清涩受| 五月开心婷婷网| 久久精品熟女亚洲av麻豆精品| 亚洲午夜精品一区,二区,三区| 中文字幕色久视频| 一级片免费观看大全| 精品亚洲乱码少妇综合久久| 国产精品久久久久成人av| 国产男人的电影天堂91| 久久人妻福利社区极品人妻图片 | 少妇裸体淫交视频免费看高清 | 久久99热这里只频精品6学生| 国产伦人伦偷精品视频| 久久热在线av| 日本午夜av视频| 80岁老熟妇乱子伦牲交| 水蜜桃什么品种好| 中文字幕最新亚洲高清| 免费看十八禁软件| 男女午夜视频在线观看| 又紧又爽又黄一区二区| 午夜激情久久久久久久| 国产一区二区三区av在线| 国产免费又黄又爽又色| 国产精品免费视频内射| 亚洲免费av在线视频| 日韩一本色道免费dvd| 久久鲁丝午夜福利片| 婷婷成人精品国产| 手机成人av网站| 9191精品国产免费久久| 成人黄色视频免费在线看| 成人18禁高潮啪啪吃奶动态图| 久久女婷五月综合色啪小说| 男女下面插进去视频免费观看| 亚洲国产av影院在线观看| 青青草视频在线视频观看| 精品福利观看| 日韩视频在线欧美| 精品国产乱码久久久久久男人| 日本一区二区免费在线视频| 黄色怎么调成土黄色| 久热爱精品视频在线9| 国产又爽黄色视频| 久久人妻福利社区极品人妻图片 | 18禁观看日本| 99re6热这里在线精品视频| 亚洲五月婷婷丁香| 久久ye,这里只有精品| 日韩免费高清中文字幕av| 性色av一级| 欧美日韩综合久久久久久| √禁漫天堂资源中文www| 午夜视频精品福利| 国产黄色免费在线视频| 一区二区三区乱码不卡18| 午夜免费观看性视频| 欧美日韩视频精品一区| 国产片特级美女逼逼视频| 免费在线观看完整版高清| 日本wwww免费看| a级毛片黄视频| 国产一区二区三区综合在线观看| 日本wwww免费看| 亚洲欧美一区二区三区国产| 成人亚洲欧美一区二区av| 国产成人啪精品午夜网站| 午夜视频精品福利| 永久免费av网站大全| 国产成人av激情在线播放| 无遮挡黄片免费观看| 亚洲av国产av综合av卡| 无限看片的www在线观看| 亚洲视频免费观看视频| 各种免费的搞黄视频| 亚洲成人免费电影在线观看 | 一本大道久久a久久精品| 亚洲人成网站在线观看播放| 国产成人91sexporn| 国产精品一区二区精品视频观看| 国产av一区二区精品久久| 久久国产精品大桥未久av| 欧美日韩视频精品一区| 欧美 亚洲 国产 日韩一| 91麻豆精品激情在线观看国产 | 欧美 亚洲 国产 日韩一| 亚洲av美国av| 日韩av免费高清视频| 亚洲国产欧美日韩在线播放| 久久精品成人免费网站| av国产久精品久网站免费入址| 亚洲视频免费观看视频| av网站在线播放免费| 热re99久久精品国产66热6| 老司机影院毛片| 久久久久精品国产欧美久久久 | 午夜免费观看性视频| 亚洲欧洲国产日韩| 国产精品免费视频内射| 亚洲国产精品一区二区三区在线| 日日爽夜夜爽网站| 久久久欧美国产精品| 国产精品秋霞免费鲁丝片| 手机成人av网站| 国产精品.久久久| 午夜久久久在线观看| 三上悠亚av全集在线观看| 欧美精品一区二区大全| 欧美人与性动交α欧美软件| 性高湖久久久久久久久免费观看| 黑人猛操日本美女一级片| 精品亚洲乱码少妇综合久久| 国产熟女午夜一区二区三区| 亚洲精品第二区| 欧美日韩亚洲综合一区二区三区_| 欧美大码av| 国产野战对白在线观看| 日韩伦理黄色片| 手机成人av网站| 视频区欧美日本亚洲| 国产亚洲午夜精品一区二区久久| 好男人电影高清在线观看| 一级,二级,三级黄色视频| 热re99久久国产66热| 亚洲第一青青草原| 一级片'在线观看视频| 午夜视频精品福利| 国产色视频综合| 中文乱码字字幕精品一区二区三区| 国产欧美亚洲国产| 国产精品 欧美亚洲| 丝瓜视频免费看黄片| 亚洲九九香蕉| 久久99热这里只频精品6学生| 久久精品aⅴ一区二区三区四区| 午夜老司机福利片| 悠悠久久av| 国产成人精品无人区| 日日夜夜操网爽| 日韩欧美一区视频在线观看| 精品久久久久久电影网| 国产精品免费视频内射| 香蕉丝袜av| 青青草视频在线视频观看| 波野结衣二区三区在线| 丰满迷人的少妇在线观看| 国产成人系列免费观看| 精品久久久久久电影网| 久久人人97超碰香蕉20202| 亚洲五月婷婷丁香| 99热全是精品| 男女边摸边吃奶| 无限看片的www在线观看| 大香蕉久久网| 国精品久久久久久国模美| 久久精品aⅴ一区二区三区四区| 桃花免费在线播放| 男人舔女人的私密视频| 国产一区二区三区av在线| 亚洲精品一卡2卡三卡4卡5卡 | 成年美女黄网站色视频大全免费| 国产成人精品久久二区二区免费| 啦啦啦 在线观看视频| www.熟女人妻精品国产| 少妇精品久久久久久久| 久久性视频一级片| 国产免费一区二区三区四区乱码| 亚洲久久久国产精品| 午夜av观看不卡| 精品少妇内射三级| 啦啦啦 在线观看视频| 中国国产av一级| 久久亚洲精品不卡| 大片电影免费在线观看免费| 亚洲欧美色中文字幕在线| 日本wwww免费看| 悠悠久久av| 只有这里有精品99| 亚洲精品第二区| cao死你这个sao货| 欧美黄色淫秽网站| 亚洲成人免费av在线播放| 日本午夜av视频| 九色亚洲精品在线播放| 日韩一本色道免费dvd| 亚洲欧美清纯卡通| 亚洲九九香蕉| 久久精品久久精品一区二区三区| 热99久久久久精品小说推荐| 国产视频首页在线观看| 国产午夜精品一二区理论片| 一级毛片 在线播放| 国产欧美日韩一区二区三区在线| 国产成人影院久久av| 亚洲午夜精品一区,二区,三区| 免费观看人在逋| 精品少妇内射三级| 久久女婷五月综合色啪小说| 国产免费一区二区三区四区乱码| 成人亚洲欧美一区二区av| 国产1区2区3区精品| 老汉色av国产亚洲站长工具| 黄色a级毛片大全视频| 1024香蕉在线观看| 国产日韩一区二区三区精品不卡| 1024香蕉在线观看| 欧美久久黑人一区二区| 黄片小视频在线播放| 男女边吃奶边做爰视频| 午夜免费男女啪啪视频观看| 制服人妻中文乱码| 蜜桃在线观看..| 激情五月婷婷亚洲| 欧美av亚洲av综合av国产av| 在线av久久热| 亚洲第一av免费看| 国产激情久久老熟女| 欧美av亚洲av综合av国产av| xxx大片免费视频| 在线观看一区二区三区激情| 日韩中文字幕视频在线看片| 美女中出高潮动态图| 首页视频小说图片口味搜索 | 国产精品欧美亚洲77777| 一区福利在线观看| 久久久久精品国产欧美久久久 | 女人久久www免费人成看片| 欧美日韩视频高清一区二区三区二| 国产又色又爽无遮挡免| 中文字幕最新亚洲高清| 亚洲人成网站在线观看播放| 久久影院123| 午夜福利乱码中文字幕| 夫妻午夜视频| 午夜福利乱码中文字幕| av天堂久久9| 蜜桃在线观看..| 国产高清videossex| 赤兔流量卡办理| av一本久久久久| 另类亚洲欧美激情| 搡老乐熟女国产| 宅男免费午夜| 青春草亚洲视频在线观看| av视频免费观看在线观看| 亚洲精品国产一区二区精华液| 国产日韩欧美在线精品| 国产成人啪精品午夜网站| 国产主播在线观看一区二区 | 亚洲精品美女久久久久99蜜臀 | 精品国产乱码久久久久久男人| 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久久毛片微露脸 | 最近手机中文字幕大全| 国产av精品麻豆| 热re99久久国产66热| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 欧美日韩黄片免| 欧美精品一区二区免费开放| 999久久久国产精品视频| 精品熟女少妇八av免费久了| www.自偷自拍.com| 精品一区二区三区四区五区乱码 | 国产精品一国产av| 久久久久久久大尺度免费视频| 在线观看免费午夜福利视频| 亚洲av成人不卡在线观看播放网 | 亚洲精品国产av成人精品| 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 婷婷色麻豆天堂久久| 一边摸一边做爽爽视频免费| 91国产中文字幕| 免费在线观看影片大全网站 | 国产精品国产三级国产专区5o| 最新的欧美精品一区二区| 激情视频va一区二区三区| 91国产中文字幕| 国产一级毛片在线| bbb黄色大片| 亚洲少妇的诱惑av| 国产亚洲欧美精品永久| 亚洲精品一二三| 国产一区二区 视频在线| 亚洲精品美女久久久久99蜜臀 | 永久免费av网站大全| 国产精品免费视频内射| 亚洲熟女精品中文字幕| 男人舔女人的私密视频| 亚洲精品乱久久久久久| 日韩精品免费视频一区二区三区| 国产日韩一区二区三区精品不卡| 国产在线免费精品| 又黄又粗又硬又大视频| 国产精品久久久久久人妻精品电影 | xxx大片免费视频| 精品一品国产午夜福利视频| av天堂久久9| 久久久久精品人妻al黑| 91九色精品人成在线观看| 精品国产乱码久久久久久男人| 在线 av 中文字幕| 久久精品成人免费网站| 中文字幕制服av| 亚洲欧洲国产日韩| 免费少妇av软件| www.熟女人妻精品国产| 国产欧美亚洲国产| 夜夜骑夜夜射夜夜干| 国产免费福利视频在线观看| 久久久久国产精品人妻一区二区| 久久九九热精品免费| 黄色 视频免费看| 精品久久久久久电影网| avwww免费| 亚洲国产中文字幕在线视频| 国产伦理片在线播放av一区| 丁香六月欧美| 国产免费福利视频在线观看| 亚洲欧美激情在线| 亚洲欧美成人综合另类久久久| av在线老鸭窝| 国产高清国产精品国产三级| 啦啦啦 在线观看视频| 欧美日韩国产mv在线观看视频| 天堂中文最新版在线下载| 亚洲欧美精品综合一区二区三区| 成年人黄色毛片网站| 丝瓜视频免费看黄片| 国产一区亚洲一区在线观看| 考比视频在线观看| 久久久久久久精品精品| 久久久久网色| 狠狠婷婷综合久久久久久88av| 黄色视频在线播放观看不卡| 成人黄色视频免费在线看| 亚洲国产精品国产精品| 精品久久蜜臀av无| 成人午夜精彩视频在线观看| 一区二区三区四区激情视频| 国产精品av久久久久免费| 在线 av 中文字幕| 日本av免费视频播放| 91字幕亚洲| 777米奇影视久久| 国产午夜精品一二区理论片| 黄色毛片三级朝国网站| 亚洲av日韩在线播放| 亚洲欧美日韩另类电影网站| 欧美日韩一级在线毛片| 欧美av亚洲av综合av国产av| 成人18禁高潮啪啪吃奶动态图| 女性生殖器流出的白浆| 日本欧美国产在线视频| 亚洲精品久久久久久婷婷小说| 晚上一个人看的免费电影| av片东京热男人的天堂| 另类亚洲欧美激情| 91精品伊人久久大香线蕉| 满18在线观看网站| 丰满饥渴人妻一区二区三| 日本一区二区免费在线视频| 男人添女人高潮全过程视频| 国产精品一区二区免费欧美 | 国产成人91sexporn| 久久狼人影院| 黄色怎么调成土黄色| 国产精品av久久久久免费| www日本在线高清视频| 电影成人av| 美女视频免费永久观看网站| 成年女人毛片免费观看观看9 | 2018国产大陆天天弄谢| 亚洲久久久国产精品| 午夜福利影视在线免费观看| 嫁个100分男人电影在线观看 | 亚洲欧洲日产国产| 尾随美女入室| 99久久综合免费| 纵有疾风起免费观看全集完整版| 欧美成人精品欧美一级黄| 日韩大片免费观看网站| 亚洲男人天堂网一区| av电影中文网址| 麻豆av在线久日| 狠狠精品人妻久久久久久综合| 国产男人的电影天堂91| 久久久久精品人妻al黑| 老司机深夜福利视频在线观看 | 精品少妇久久久久久888优播| 午夜福利免费观看在线| 一级黄色大片毛片| 国产一区二区在线观看av| 亚洲精品久久成人aⅴ小说| 久久人人爽av亚洲精品天堂| 美女脱内裤让男人舔精品视频| 一级黄片播放器| 亚洲av成人精品一二三区| 男人添女人高潮全过程视频| 日日爽夜夜爽网站| 国产成人精品无人区| 美女视频免费永久观看网站| 亚洲国产欧美在线一区| 国产淫语在线视频| 黑人猛操日本美女一级片| 人妻 亚洲 视频| 成人影院久久| 一二三四社区在线视频社区8| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三 | a级毛片黄视频| 日本色播在线视频| 免费少妇av软件| 人人妻人人添人人爽欧美一区卜| 亚洲欧美精品自产自拍| 亚洲精品国产区一区二| 中文字幕色久视频| 久久av网站| 天天躁日日躁夜夜躁夜夜| 免费看十八禁软件| videos熟女内射| 黄片播放在线免费| 久久99一区二区三区| 欧美亚洲日本最大视频资源| 777米奇影视久久| 啦啦啦 在线观看视频| 丝袜脚勾引网站| 国产成人一区二区三区免费视频网站 | 久久人妻福利社区极品人妻图片 | 亚洲伊人久久精品综合| 久久久欧美国产精品| 咕卡用的链子| 一区二区三区精品91| 天天躁狠狠躁夜夜躁狠狠躁| 人人澡人人妻人| 国产有黄有色有爽视频| 国产成人欧美| 18禁裸乳无遮挡动漫免费视频| 美女中出高潮动态图| 在线观看国产h片| 国产一区二区三区综合在线观看| 久久精品久久精品一区二区三区| 国产有黄有色有爽视频| 欧美亚洲日本最大视频资源| 亚洲精品国产一区二区精华液| 国产在线免费精品| 少妇 在线观看| 最新在线观看一区二区三区 | 黄色片一级片一级黄色片| 欧美av亚洲av综合av国产av| 国产亚洲欧美精品永久| 国产又色又爽无遮挡免| 黄片播放在线免费| 夫妻性生交免费视频一级片| 一本久久精品| 国产免费福利视频在线观看| 欧美日韩亚洲高清精品| 午夜久久久在线观看| 久久国产精品大桥未久av| 丰满饥渴人妻一区二区三| 日韩中文字幕视频在线看片| 国产精品九九99| 狂野欧美激情性bbbbbb| 少妇人妻久久综合中文| 午夜免费男女啪啪视频观看| 国产精品久久久久成人av| 日韩伦理黄色片| 波多野结衣av一区二区av| 夫妻午夜视频| 成年人免费黄色播放视频| netflix在线观看网站| 纵有疾风起免费观看全集完整版| 亚洲五月色婷婷综合| 美女主播在线视频| 亚洲国产精品国产精品| 又粗又硬又长又爽又黄的视频| 午夜福利,免费看| 精品卡一卡二卡四卡免费| 国产有黄有色有爽视频| 777久久人妻少妇嫩草av网站| 久9热在线精品视频| 午夜福利乱码中文字幕| netflix在线观看网站| 成人黄色视频免费在线看| av视频免费观看在线观看| 国产精品久久久久成人av| bbb黄色大片| 久久亚洲国产成人精品v| 免费日韩欧美在线观看| 又大又黄又爽视频免费| 国产午夜精品一二区理论片| 日本欧美国产在线视频|