• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid synthesis and characterization of bridged (bis-, tri- and tetra-) aryl carboxylic acid derivatives at room temperature by ultrasonic irradiation

    2020-12-22 08:55:02CHENLianqingYANGGengtaoWUChao
    關(guān)鍵詞:酯類化合物?;?/a>芳基

    CHEN Lianqing, YANG Gengtao, WU Chao

    (Hubei Key Laboratory of Catalysis and Materials Science,College of Chemistry and Materials Science,South-Central University for Nationalities, Wuhan 430074, China)

    Abstract Ultrasonic radiation was applied to perform the esterification and acylation reaction of alcohols and amines with acid chlorides. 28 bridged (bis-, tri- and tetra-) aryl carboxyl derivatives were synthesized at room temperature, with the structures characterized by IR, 1H NMR, MS, elemental analysis and so forth. The results indicated that the reactions were accomplished with high yield in short reaction time under mild conditions, and with no use of catalyst. This green approach represents a new general route for the synthesis of aryl carboxylic acid derivatives.

    Keywords ultrasonic radiation; bridged (bis-, tri- and tetra-) aryl carboxylic acid derivatives

    Carboxylic acid is one of the most important intermediates in organic chemistry because it can be transformed into esters, acyl halides, amides, anhydride and other derivatives. It has attracted much attention due to its importance in biology, organic chemistry, natural products, agriculture, pharmaceuticals and so on[1]. In these research areas, esters and amides are the focus of research. The ester compounds are very important fine chemicals, pharmaceutical intermediates, synthesis material intermediates, etc. For instance, phosphotriester compounds were used to produce phosphoric acid, which could be used as flame retardant; pentaerythritol tetraester is an environmentally friendly lubricant due to its comprehensive properties[2]. The amines are also one of the most common compounds in organic chemistry, and have important applications in the fields of drug chemistry, biochemistry and polymer synthesis[3]. The amines, including bisamides, triamides and tetraamides, have a wide range of properties and can be used for anti-inflammatory, antibacterial, anti-tumor, herbicidal, and insecticidal applications. Among them,N,N′-alkylene diamide is the key structural subunits of pseudopeptide framework[4], and 1, 3, 5-benzenetricaboxylic acid is a nucleating agent which can effectively improve the performance of the polypropylene[5].

    The traditional synthesis of carboxylic ester compounds involves heating or refluxing for a long time under the action of catalyst. For example, monoester is generally prepared by using concentrated sulfuric acid to catalyze the dehydration of alcohol and acid. However, reports about the synthesis of bridged (bis-,tri- andtetra-) aryl compounds are rare. At present, there are mainly esterification method, transesterification method and heating/refluxing two-step reaction for the synthesis of ester compounds, such as the direct esterification of carboxylic acid and perfluoroalcohol mediated by XtalFluor-E[6]. But this synthetic route has many disadvantages, such as long reaction time, many side reactions and complex post-treatment. Synthesis of five-membered cyclic carbonate by thermal transesterification has also been reported by GUIDI et al[7]. However, this method needs multi-step heating, complicated operation and high energy consumption. PENG[8]synthesized methyl cyanoacetate by reflux heating of cyanoacetic acid and methanol with sulfuric acid as catalyst, and then obtained the corresponding ester by cyano alcoholysis.

    The formation of the amine bond is very important in organic reactions. It is found in proteins and peptides, a large number of drugs, natural products, fine chemicals and lubricants. The synthesis of amide compounds is commonly used in acid halogen reaction, mixed anhydride reaction and condensation reaction. DE SOUZA used NaClO for the oxidative coupling of amine, which required heating for 12 h and the process was complicated[9]. The RuFG catalyst prepared by Ramen Jamatia was used in water medium to convert an aromatic aldehyde into the corresponding primary amine[10]. JIN synthesizedN′-(2-hydroxy-4-methyl-benzoylamide)-2-imino-4-thiazolidinone with an amine group[11]. If such methods were to be used in the synthesis ofbis-,tri- andtetra-amides, harsh reaction conditions such as highly active acylating agents, high temperature, and high pressure would still be required, which was not conducive to practical production. Although esters and amides can be synthesized by some particular methods, none of them represents a general route.

    The ultrasonic chemistry is a recently developed area, which uses cavitation effect to break the specific chemical bond and accelerate the chemical reaction[12]. In recent years, the ultrasonication technology has been widely used in many fields, such as chemistry, medicine, petrochemicals, etc. The promoting effect of ultrasonic wave is due to the cavitation effect and secondary effect when ultrasonic wave propagates in the medium. By utilizing these two effects, reactions that could not take place under normal conditions may occur smoothly and new reaction channels may be opened up.

    1 Experimental

    1.1 Reagents and apparatus

    Alcohol,n-propyl alcohol,n-butyl alcohol,benzilalcohol,phenol,2-alcohol thiophene,cyclopentanol,isophthaloyl chloride,1,3,5-benzenetricarboxylic acid,trimesoyl chloride,1,2,4,5-benzenetetracarboxylic acid,1,4,5,8-naphthalenetetracarboxylic acid,aniline,benzylamine,[1,1′-biphenyl]-3,3′,4,4′-tetracarboxylic acid,p-aminotoluene,p-fluoroaniline,n-butylamine,2-aminothiophene,cyclopentylamine,propylamine,dichloromethane,sodium hydrate,ethyl acetate.

    Ultrasonic cleaning instrument (KQ3200E,150 W); Fourier transform infrared spectrometer(NEXUS470,Nicolet); rotary evaporator (RE-52, Shanghai Yilong Bio-chemical Plant); circulating water vacuum pump (SHZ-D III, Wuhan Kohl); all-digital nuclear magnetic resonance spectrometer (AVANCE III,400 MHz, Switzerland Brooke), dichloromethane as solvent, TMS as internal standard; digital melting point meter (WRS-1B, Shanghai Jingke); element analyzer (Vario-EL III CHNS, USA).

    1.2 Preparation

    1.2.1 Preparation step of esterification reaction

    Take the synthesis ofE2ahas an example: add 10.5 mmol of ethanol and 10.5 mmol of triethylamine to a 100 mL flask, dissolve in 20 mL of methylene chloride, and then add 10 mL of a solution of methylene chloride with 5 mmol of chlorine of terephthalic acid. Put the flask in the ultrasonic washing instrument to react 20 min. The crude product was extracted with 100 mL ethyl acetate and 30 mL water. The solvent was evaporated, and finally dried in vacuum. The other esters were synthesized according to a similar method.

    1.2.2 Preparation step of acylation reaction

    Take the synthesis ofA2hpas an example(Fig.1): add 10.5 mmol of aniline to a 100 mL flask, dissolve in 40 mL of methylene chloride, and then add 10 mL of a solution of methylene chloride with 5 mmol of chlorine of terephthalic acid. Put the flask in the ultrasonic washing instrument to react 15 min. After filtration, the filter cake was washed for many times with 20 mL 10% NaOH solution to remove acid residue. A white solid product was finally obtained. Other amine derivatives were synthesized in a similar way.

    Fig.1 Synthesis route of aryl carboxylic acid derivatives圖1 芳基羧酸衍生物合成路線

    2 Results

    2.1 Ester with the number of groups n=2

    The synthetic route of esterification is shown in Fig.2.

    ProductE2ah: white solid, 99% yield. m.p. 75-76 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.10 (s, 4H, Ar-H), 4.41(m, 4H, C-H), 1.42 (t, 6H, C-H); IR (KBr,ν/cm-1): 2990, 2973, 1718, 1518, 1410, 1277, 1247, 729. Anal. calc for C12H14O4: C 64.85, H 6.35; found C 64.89, H 6.32. MS (FAB):m/e, 222 (M+).

    ProductE2bh: white solid, 83% yield. m.p. 97-98 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.03 (s, 4H, Ar-H), 4.23 (t, 4H, C-H), 1.73 (m, 4H, C-H), 0.96 (t, 6H, C-H); IR (KBr,ν/cm-1): 2969, 2881, 1722, 1578, 1465, 1272, 1204, 731. Anal. calc for C14H18O4: C 67.18, H 7.25; found C 67.23, H 7.17. MS (FAB):m/e, 250 (M+).

    ProductE2ch: white solid, 92% yield. m.p. 120-121 ℃.1H NMR(CDCl3, 400 MHz)δ: 8.02 (s, 4H, Ar-H), 4.28 (t, 4H, C-H), 1.70 (m, 4H, C-H), 1.42 (m, 4H, C-H), 0.91 (t, 6H, C-H); IR (KBr,ν/cm-1): 2961, 2874, 1724, 1578, 1465, 1273, 1104, 731. Anal. calc for C16H22O4:C 69.04, H 7.97; found C 69.11, H 7.93. MS (FAB):m/e, 278 (M+).

    ProductE2dh: white solid,95% yield. m.p. 240-241 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.06 (s, 4H, Ar-H), 7.33 (m, 10H, Ar-H), 5.31(s, 4H, C-H); IR (KBr,ν/cm-1): 3062, 2936, 1715, 1500, 1453, 1406, 1378, 1275, 1128, 736. Anal. calc for C22H18O4: C 76.29, H 5.24;found C 76.32, H 5.26. MS (FAB):m/e, 346 (M+).

    ProductE2ai: white solid, 99% yield.m.p.73-74 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.67 (s, 1H, Ar-H), 8.20 (d, 2H, Ar-H), 7.51 (t, 1H, Ar-H), 4.41(m, 4H, C-H), 1.40 (t, 6H, C-H); IR (KBr,ν/cm-1): 2983, 1304, 1240, 730. Anal. calc for C12H14O4: C 64.85, H 6.35; found C 64.88, H 6.31. MS (FAB):m/e, 222 (M+).

    ProductE2bi: white solid, 96% yield.m.p.95-96 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.68 (s, 1H, Ar-H), 8.21 (d, 2H, Ar-H), 7.52 (t, 1H, Ar-H), 4.30 (t, 4H, C-H), 1.80 (m, 4H, C-H), 1.03 (t, 6H, C-H); IR (KBr,ν/cm-1): 2969, 1722, 1390, 1300, 1237, 729. Anal. calc for C14H18O4: C 67.18, H 7.25; found C 67.12, H 7.29. MS (FAB):m/e, 250 (M+).

    ProductE2ci: white solid, 88% yield. m.p.117-118 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.60 (s, 1H, Ar-H), 8.15 (d, 2H, Ar-H), 7.45 (t, 1H, Ar-H), 4.28 (t, 4H, C-H), 1.69 (m, 4H, C-H), 1.40 (m, 4H, C-H), 0.91(t, 6H, C-H); IR (KBr,ν/cm-1): 2961, 2874, 1723, 1609, 1465, 1305, 1241, 730. Anal. calc for C16H22O4: C 69.04, H 7.97; found C 69.07, H 7.73. MS (FAB):m/e, 278 (M+).

    ProductE2di: white solid, 85% yield.m.p.228-229 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.64 (s, 1H, Ar-H), 8.20 (d, 2H, Ar-H), 7.34 (m, 10H, Ar-H), 5.32 (s, 4H, C-H); IR (KBr,ν/cm-1): 3033, 2956, 1716, 1237, 1128, 757, 700. Anal. calc for C22H18O4: C 76.29, H 5.24; found C 76.33, H 5.28. MS (FAB):m/e, 346 (M+).

    2.2 Ester with the number of groups n=3

    The synthetic route of esterification is shown in Fig.2.

    ProductE3cj: white solid, 89% yield.m.p.231-232 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.25 (d, 2H, Ar-H), 7.42 (t, 1H, Ar-H), 4.28 (m, 4H, C-H), 2.76 (m, 5H, C-H), 1.03 (t, 9H, C-H), 0.83 (m, 9H, C-H); IR (KBr,ν/cm-1): 3028, 1643, 1544, 1468, 1305, 1241, 817. Anal. calc for C21H30O6: C 66.65, H 7.99; found C 66.59, H 7.93. MS (FAB):m/e, 378 (M+).

    ProductE3ej: white solid, 90% yield.m.p.258-259 ℃.1H NMR (CDCl3, DMSO, 400 MHz)δ: 8.83 (s, 3H, Ar-H), 8.48 (d, 2H, Ar-H), 7.81 (m, 5H, Ar-H), 7.18 (d, 4H, Ar-H), 6.98 (d,4H, Ar-H); IR (KBr,ν/cm-1): 3033, 1665, 1562, 1451, 1310, 1245, 816. Anal. calc for C27H18O6: C 73.97, H 4.14; found C 73.91, H 4.18. MS (FAB):m/e, 438 (M+).

    ProductE3fj: white solid, 92% yield.m.p.276-277 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.87 (d, 2H, Ar-H), 8.35 (d, 3H, Ar-H), 7.68 (m, 4H, Ar-H), 6.83 (m, 3H, Ar-H); IR (KBr,ν/cm-1): 3028, 1669, 1571, 1436, 1307, 1241, 811. Anal. calc for C21H12O6S3: C 55.25, H 2.65; found C 55.26, H 2.61. MS (FAB):m/e, 455 (M+).

    2.3 Ester with the number of groups n= 4

    The synthetic route of esterification is shown in Fig.2.

    ProductE4gk: white solid, 87% yield.m.p.286-287 ℃.1H NMR(CDCl3, 400 MHz)δ: 8.72 (s, 2H, Ar-H), 6.89 (s, 3H, C-H), 3.28 (d, 4H, C-H), 2.19 (m, 11H, C-H), 1.84 (m, 9H, C-H), 1.57 (m, 12H, C-H); IR (KBr,ν/cm-1): 3010, 1674, 1556, 1443, 1307, 1245, 812. Anal. calc for C30H38O8: C 68.42, H 7.27; found C 68.49, H 7.10. MS (FAB):m/e, 526 (M+).

    ProductE4el: white solid, 74% yield.m.p.294-295 ℃.1H NMR(CDCl3, 400 MHz)δ: 8.23 (s, 2H, Ar-H), 8.11 (d, 2H, Ar-H), 7.79 (s, 6H, Ar-H), 7.46 (t, 8H, Ar-H), 7.14 (m, 6H, Ar-H); IR (KBr,ν/cm-1): 3032, 1668, 1547, 1441, 1311, 1232, 810. Anal. calc for C38H24O8: C 74.99, H 3.97; found C 74.87, H 3.91. MS (FAB):m/e, 608 (M+).

    Fig.2 General routes for synthesis of bridged (bis-, tri- and tetra-) aryl esters圖2 橋聯(lián)型(雙、三、四)芳基酯類化合物通用合成路線

    ProductE4bm: white solid, 79% yield.m.p.262-263 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.86 (s, 2H, Ar-H), 8.47 (s, 2H, Ar-H), 4.44 (m, 6H, C-H), 4.12 (q, 2H, C-H), 2.19 (m, 4H, C-H), 1.67 (m, 5H, C-H), 1.13 (m, 6H, C-H), 0.96 (m, 5H, C-H); IR (KBr,ν/cm-1): 3031, 1658, 1545, 1436, 1305, 1246, 808. Anal. calc for C28H34O8: C 67.45, H 6.87; found C 67.49, H 6.81. MS (FAB):m/e, 498 (M+).

    2.4 Amides with the number of groups n=2

    The synthetic route of acylation reaction is shown in Fig.3.

    ProductA2hp: white solid, 96% yield.m.p.265-266 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.43(s, 2H, N-H), 8.10(s, 4H, Ar-H), 7.81(d, 4H, Ar-H), 7.38(t, 4H, Ar-H), 7.13(t, 2H, C-H); IR (KBr,ν/cm-1): 3329, 1648, 1525, 1440, 878. Anal. calc for C20H16N2O2: C 75.93, H 5.10, N 8.86; found C 75.96, H 5.11, N 8.89. MS (FAB):m/e, 316 (M+).

    ProductA2ip: white solid, 91% yield.m.p.288-289 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 9.20(t, 2H, N-H), 7.98(s, 4H, Ar-H), 7.33(d, 8H, Ar-H),7.25(m, 2H, Ar-H), 4.50(d, 4H, C-H);IR (KBr,ν/cm-1): 3279, 1631, 1541, 1462, 866. Anal. calc for C22H20N2O2: C 76.72, H 5.85, N 8.13; found C 76.65, H 5.82, N 8.15. MS (FAB):m/e, 344 (M+).

    ProductA2jp: white solid, 94% yield.m.p.292-293 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.50(s, 2H, N-H),8.11(s, 4H, Ar-H), 7.83(d, 4H, Ar-H), 7.22(t, 4H, Ar-H); IR (KBr,ν/cm-1): 3334, 1647, 1522, 1404, 1231, 833. Anal. calc for C20H14F2N2O2: C 68.18, H 4.01, N 7.95; found C 68.17, H 4.02, N 7.97. MS (FAB):m/e, 352 (M+).

    ProductA2kp: white solid, 92% yield.m.p.313-314 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.32(s, 2H, N-H), 8.07(s, 4H, Ar-H), 7.67(d, 4H, Ar-H), 7.17(d, 4H, Ar-H), 2.37(s, 6H, C-H); IR (KBr,ν/cm-1): 3312, 1644, 1518, 1402, 811. Anal. calc for C22H20N2O2: C 76.72, H 5.85, N 8.13; found C 76.78, H 5.82, N 8.15. MS (FAB):m/e, 344 (M+).

    ProductA2hq: white solid, 99% yield.m.p.265-266 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.57(s, 2H, N-H),8.59(s, 1H, Ar-H),8.15(s, 2H, Ar-H), 7.83-7.69(d, 5H, Ar-H), 7.37 (s, 4H, Ar-H),7.13(s, 2H, Ar-H); IR (KBr,ν/cm-1): 3418, 1638, 1546, 1500, 700. Anal. calc for C20H16N2O2: C 75.93, H 5.10, N 8.86; found C 75.91, H 5.15, N 8.86. MS (FAB):m/e, 316 (M+).

    ProductA2iq: white solid, 96% yield.m.p.288-289 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:9.18(s, 2H, N-H),8.40(s, 1H, Ar-H),8.03(d, 2H, Ar-H),7.58(t, 1H, Ar-H),7.33(d, 8H, Ar-H),7.25 (d, 2H, Ar-H), 4.49(d, 4H, C-H); IR (KBr,ν/cm-1): 3306, 1637, 1542, 1439, 699. Anal. calc for C22H20N2O2: C 76.72, H 5.85, N 8.13; found C 76.74, H 5.81, N 8.15. MS (FAB):m/e, 344 (M+).

    ProductA2jq: white solid, 94% yield.m.p.292-293 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.50(s, 2H, N-H),8.52(s, 1H, Ar-H),8.15(d, 2H, Ar-H),7.82(d, 4H, Ar-H); IR (KBr,ν/cm-1): 3270, 1648, 1524, 1403, 1234, 830. Anal. calc for C20H14F2N2O2: C 68.18, H 4.01, N 7.95; found C 68.16, H 4.07, N 7.93. MS (FAB):m/e, 352 (M+).

    ProductA2kq: white solid, 93% yield.m.p.303-304 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.35(s, 2H, Ar-H), 8.51(s, 1H, Ar-H), 8.12(d, 2H, Ar-H), 7.69(d, 5H, Ar-H), 7.18(d, 4H, Ar-H), 2.29(s, 6H, C-H); IR (KBr,ν/cm-1):3324, 1648, 1534, 1452, 824. Anal. calc for C22H20N2O2: C 76.72, H 5.85, N 8.13; found C 76.74, H 5.89, N 8.15.MS (FAB):m/e, 344 (M+).

    2.5 Amides with the number of groups n=3

    The synthetic route of acylation reaction is shown in Fig.3.

    ProductA3lr: white solid, 86% yield.m.p.166.5-166.3 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.17(s, 2H, N-H), 8.29 (s, 1H, Ar-H), 8.18(d, 4H, Ar-H),7.69(d, 2H, Ar-H), 7.12(s, 1H, Ar-H), 7.11(t, 3H, Ar-H); IR (KBr,ν/cm-1): 3202, 3034, 1699, 1525, 1443,823. Anal. calc for C21H33N3O3: C 67.17, H 8.86, N 11.19; found C 67.14, H 8.89, N 11.18. MS (FAB):m/e, 375 (M+).

    ProductA3hr: white solid, 83% yield.m.p.244.5-245.3 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.09 (d, 3H, N-H), 8.29 (d, 3H, Ar-H), 8.11 (t, 6H, C-H), 8.02 (t, 4H, C-H), 7.08(s, 2H, C-H), 6.90 (d,3H, C-H); IR (KBr,ν/cm-1): 3143, 3042, 1744, 1565,1483,801. Anal. calc for C27H21N3O3: C 74.47, H 4.86, N 9.65; found C 74.44, H 4.87, N 9.62. MS (FAB):m/e, 435 (M+).

    ProductA3mr: white solid, 91% yield. m.p.224.5-225.3 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.09 (d, 3H, N-H), 8.29 (d, 3H, Ar-H), 8.11 (t, 6H, C-H), 8.02 (t, 4H, C-H), 7.08 (s, 2H, C-H),6.90 (d,4H, C-H); IR (KBr,ν/cm-1): 3153, 3022, 1714, 1565, 1483, 816. Anal. calc for C27H21N3O3S2: C 55.61, H 3.33, N 9.26; found C 55.65, H 3.31, N 9.25. MS (FAB):m/e, 453 (M+).

    2.6 Amides with the number of groups n=4

    The synthetic route of acylation reaction is shown in Fig.3.

    ProductA4ns: light yellow solid, 76% yield.m.p.254.6-255.2 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.09 (d, 4H, N-H), 8.29 (d, 3H, Ar-H),7.29 (s, 3H, C-H); IR (KBr,ν/cm-1): 3133, 3032, 1744, 1568, 1491, 810 . Anal. calc for C30H42N4O4: C 68.94, H 8.10, N 10.72; found C 68.94, H 8.14, N 10.7. MS (FAB):m/e, 522 (M+).

    ProductA4ht: yellow solid, 96% yield.m.p.264.1-265.9 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.09 (d, 4H, N-H), 8.29 (d, 4H, Ar-H), 8.29 (d,4H,Ar-H), 8.29 (s, 4H, Ar-H), 8.29 (t, 4H, Ar-H); IR (KBr,ν/cm-1): 3123,3022,1754,1578,1511,815.Anal. calc for C38H28N4O4: C 75.48,H 4.67, N 9.27; found C 75.45, H 4.63, N 9.29. MS (FAB):m/e, 604 (M+).

    ProductA4ou: grayish white solid, 81% yield.m.p.264.1-265.9 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.09 (d, 4H, N-H), 8.29 (t, 6H, Ar-H), 4.33 (s, 2H, C-H), 4.29 (s, 4H, C-H), 4.11(s, 2H, C-H); IR (KBr,ν/cm-1): 3143, 3112, 1746, 1534, 1498, 803. Anal. calc for C28H38N4O4: C 67.99, H 7.77, N 11.33; found C 67.96, H 7.78, N 11.34. MS (FAB):m/e, 494 (M+).

    Fig.3 General route for synthesis of bridged (bis-, tri- and tetra-) aryl amides圖3 橋聯(lián)型(雙、三、四)芳基酰胺類化合物通用合成路線

    3 Analysis and discussion

    3.1 Physical properties and elemental analysis

    Elemental analysis (data shown in Tab.1):The C and H of the target compound were consistent with the theoretical composition.

    Tab.1 Physical property constants and elemental analysis compositions of the products表1 產(chǎn)物的物性常數(shù)及元素分析組成

    productstructureconditionmelting point/℃yield/%elemental analysis composition/%CaHaNaCbHbNbE3cjwhite solid231-2328966.657.99-66.637.95-E3ejwhite solid258-2599073.974.14-73.964.18-E3fjwhite solid276-2779255.252.65-55.262.61-A3lrwhite solid166.5-166.38667.178.8611.1967.148.8911.18A3hrwhite solid244.5-245.38374.474.869.6574.444.879.62A3mrwhite solid224.5-225.39155.613.339.2655.653.319.25E4gkwhite solid286-2878768.427.27-68.457.28-E4elwhite solid294-2957474.993.97-74.953.93-

    productstructureconditionmelting point/℃yield/%elemental analysis composition/%CaHaNaCbHbNbE4bmwhite solid262-2637967.456.87-67.486.86-A4nalight yellow solid254.6-255.27668.948.1010.7268.948.1410.70A4htyellow solid264.1-265.99675.484.679.2775.454.639.29A4ougrayish white solid264.1-265.98167.997.7411.3367.967.7811.34

    3.2 Infrared and mass spectrometry analysis

    In the IR spectra of the target compound(data shown in Tab.2), each characteristic absorption peak of the compounds was confirmed. For instance, the stretching vibration of the amine N-H was about 3300-3100 cm-1; the stretching vibration of the aromatic C-H was about 3100-2800 cm-1; the stretching vibration of the ester -CO was about 1700-1600 cm-1; the stretching vibration of benzene ring skeleton was about 1690-1400 cm-1; the stretching vibration of the ester C-O-C was about 1400-1100 cm-1; the Out-of-plane bending vibration of the aromatic ring was about 850-700 cm-1. According to the characteristic vibration peaks of N-H, C-O and benzene rings, the structure of the product was consistent with that of the speculated structure. In MS spectra, the molecular fragment peaks of the compounds were consistent with the molecular theory.

    Tab.2 IR and MS date of the product表2 產(chǎn)物紅外和質(zhì)譜數(shù)據(jù)

    3.3 1H NMR analysis

    In the1H NMR spectra (data shown in Tab.3), the chemical shift of N-H on the amine was about 10-9, such asA2hz10.43(s, 2H, N-H),A3lr10.17(s, 2H, N-H)andA4ns10.09 (d, 4H, N-H).The chemical shift of hydrogen on benzene ring was about 8-7,E2ah8.10(s, 4H, Ar-H). The chemical shift of methyl hydrogen was 1.5-1, for example, the chemical shift ofE2ahmethyl hydrogen was 1.42 (t, 6H, C-H); and 5.31 (s, 4H, C-H), 5.32 (s, 4H, C-H) were assigned to the methylene hydrogen inE2dhandE2di ,respectively.The chemical shifts of hydrogen in benzylmethylene of amidesA2ipandA2iqbenzylidene were observed at 4.50 (d, 4H, C-H), 4.49 (d, 4H, C-H).

    Tab.3 1H NMR data of product表3 產(chǎn)物1H NMR數(shù)據(jù)

    3.4 Conjecture of reaction mechanism(n=2)

    Under ultrasonic irradiation, ultrasonic wave directly interacted with reaction molecules. Due to the effect of ultrasonic cavitation and secondary effect, the reaction system generated local high temperature and high pressure, and at the same time produced strong shock wave, which promoted the collision and aggregation between molecules, thus speeding up the reaction process. The possible reaction mechanism of etherification and acylation was shown in Fig.4 and Fig.5. In the process, the alcohol (amine) acted as nucleophilic reagent. Hydroxy oxygen and amino nitrogen attacked carbonyl carbon to form negative oxygen ions, then the intermediate I and III were separated from one molecule of HR3 to form intermediates II and IV, respectively. Nucleophilic addition of another molecule alcohol or amine followed subsequently, and the process was repeated to obtain esters or amide derivatives.

    Fig.4 Esterification reaction mechanism of bridged (bis-, tri- and tetra-) aryl amides圖4 橋聯(lián)型(雙、三、四)芳基酯類化合物的酯化反應(yīng)機(jī)理

    Fig.5 Acylation reaction mechanism of bridged (bis-, tri- and tetra-) aryl amides圖5 橋聯(lián)型(雙、三、四)芳基酯類化合物的?;磻?yīng)機(jī)理

    3.5 Optimization of reaction experiment conditions

    3.5.1 Determination of the optimum ratio of raw materials(n=2)

    The reaction of ethanol and aniline withp-benzoyl chloride for the synthesis of compoundsE2ah/A2hpwere studied as a model. The reaction was conducted at room temperature under ultrasonication for 20/15 min, the amount of terephthaloyl chloride was fixed at 0.25 mmol, while the ratio of ethanol/aniline to chloride were varied from 2∶1 to 2.2∶2. The increase of the ratio was beneficial to the equilibrium shift of esterification and acylation reaction to the right; however, as can be seen from Tab.4, a maximum yield was obtained at a ratio of 2.05∶1, exceeding which the yield decreased. This was not totally surprising, since the further increase of ratio resulted in more deviation from stoichiometry, the yield would decrease.

    Tab.4 Effect of raw material ratio on esterification and acylation reaction表4 原料配比對(duì)酯化和?;磻?yīng)的影響

    3.5.2 Ultrasonic radiation time

    To determinate the optimum ultrasonic time of ester/acylation reaction, with synthesis of compoundE2ahwas studied in detail. The amount ofp-benzoyl chloride and ethanol/aniline was 0.25 mmol and 0.51 mmol respectively. From Tab.5, it could be seen that the increase of reaction time could improve the yield, but too long reaction time resulted in the decrease of yield. The esterification and acylation reaction was a reversible reaction. Before the reaction was complete, the increase of reaction time increased the yield. However, after the reaction was completed, continued ultrosonication might lead to side reactions and decrease the yield. The optimum reaction time was 20 minutes for esterification and 15 minutes for acylation .

    Tab.5 Effect of ultrasonic time on esterification and acylation reaction表5 超聲時(shí)間對(duì)酯化和?;磻?yīng)的影響

    3.6 Advantages of this method

    There are many methods for the synthesis of monoamides and monoesters, which generally involve heating/refluxing, using alkali (including organic and inorganic base) or acid (including organic and inorganic acid) as catalyst. However, production ofbis-,tri- andtetra- amides involves the formation of multiple ester bonds, which is much more complicated. In the present work, two kinds of carboxylic acid derivatives,bis-,tri-,tetra- ester and amide, were synthesized by ultrasonic radiation, with no need for prolonged heating and refluxing, or use of a catalyst. It took only 20 min or 15 min to complete the reaction.

    Moreover, compared with the traditional synthesis method, the ultrasonic radiation method made use of the “cavitation effect” and “secondary effect” of ultrasonic radiation, which produced instantaneous high temperature and high pressure to initiate chemical reaction, formed local high energy center, allowed the reaction solution to stir violently, and greatly shortened the reaction time.The product was also directly precipitated from the solvent, thereby avoided complicated separation process. In addition, no catalyst was used, especially the highly polluting acid or alkaline reagent. The solvent used was non-toxic dichloromethane. The method simplified the synthesis route and saved cost, and was a good general method for synthesizing aryl carboxylic acid derivatives.

    4 Conclusion

    28 bridged aryl carboxylic acid derivatives were synthesized at room temperature by the reaction of alcohol and amine with acyl chloride using ultrasonic radiation. The structure of the compounds was confirmed by IR,1H NMR, MS and elemental analysis. The optimum reaction conditions were obtained. Compared with the traditional methods, this approach not only can be used for the efficient synthesis of thebis-,tri- andtetra-arylcarboxylic acid derivatives in one step, but also has many advantages such as ease of operation, less pollution, simple post-treatment, low cost, etc. It is a new, efficient general method for the synthesis of bridged arylcarboxylic acid derivatives and has great potential for reducing the cost of some industrially important fine chemicals.

    猜你喜歡
    酯類化合物酰化芳基
    新型3-氧-3-芳基-2-芳基腙-丙腈衍生物的合成及其抗癌活性
    新型(Z)-2-[(2-碘苯氧基)(芳基)]次甲基-2-丁烯酸酯類化合物的合成
    內(nèi)源信號(hào)肽DSE4介導(dǎo)頭孢菌素C酰化酶在畢赤酵母中的分泌表達(dá)
    一種新型芳基烷基磺酸鹽的制備與性能評(píng)價(jià)
    3-芳基苯并呋喃酮類化合物的合成
    中國塑料(2015年10期)2015-10-14 01:13:13
    促酰化蛋白對(duì)3T3-L1脂肪細(xì)胞炎性反應(yīng)的影響
    鄰苯二甲酸酯類化合物的生殖毒性及其環(huán)境內(nèi)分泌干擾效應(yīng)
    人參二醇磺?;磻?yīng)的研究
    拓?fù)渲笖?shù)在酯類化合物沸點(diǎn)QSPR研究中的應(yīng)用
    氨基酸酯基二硫代甲酸酯類化合物獲專利
    天天躁狠狠躁夜夜躁狠狠躁| 夜夜爽天天搞| 精品一区二区三区四区五区乱码| 欧美日本视频| 午夜免费成人在线视频| 亚洲男人天堂网一区| 欧美成人性av电影在线观看| 国产亚洲欧美精品永久| 又黄又爽又免费观看的视频| 成人三级黄色视频| 久久久精品欧美日韩精品| 国产精品久久视频播放| 国产精品久久电影中文字幕| 一级黄色大片毛片| 色综合亚洲欧美另类图片| 满18在线观看网站| 黄色视频不卡| 热99re8久久精品国产| 91老司机精品| 久久精品91蜜桃| 人人妻,人人澡人人爽秒播| 美女免费视频网站| 午夜福利免费观看在线| 精品无人区乱码1区二区| 日日夜夜操网爽| 精品一区二区三区视频在线观看免费| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 啦啦啦观看免费观看视频高清| 国产精品亚洲一级av第二区| 国产精品一区二区三区四区久久 | 一本精品99久久精品77| 亚洲三区欧美一区| 天堂√8在线中文| 成年人黄色毛片网站| 欧美大码av| 一级a爱视频在线免费观看| 色在线成人网| 欧美zozozo另类| 十分钟在线观看高清视频www| 色综合婷婷激情| 日本免费一区二区三区高清不卡| 一个人免费在线观看的高清视频| 亚洲一区高清亚洲精品| 欧美国产精品va在线观看不卡| 午夜福利18| 黑丝袜美女国产一区| 国产成人av教育| 久久 成人 亚洲| 一区二区三区高清视频在线| 91成年电影在线观看| 成人手机av| 亚洲成人久久爱视频| 成熟少妇高潮喷水视频| 国产精品野战在线观看| 亚洲av五月六月丁香网| 一区二区三区高清视频在线| 美女免费视频网站| 精品乱码久久久久久99久播| 淫秽高清视频在线观看| 天天添夜夜摸| 日韩av在线大香蕉| 国产成人影院久久av| 可以在线观看的亚洲视频| e午夜精品久久久久久久| 国产成人啪精品午夜网站| 最新美女视频免费是黄的| 精品卡一卡二卡四卡免费| 欧美日韩瑟瑟在线播放| 欧美日韩精品网址| 悠悠久久av| 国产精品影院久久| 国产精品久久久人人做人人爽| 国产精品一区二区三区四区久久 | 国产区一区二久久| 最新美女视频免费是黄的| 精品高清国产在线一区| 免费无遮挡裸体视频| 亚洲 国产 在线| 一区福利在线观看| 久久久久久国产a免费观看| 日本a在线网址| a级毛片在线看网站| 国产极品粉嫩免费观看在线| 操出白浆在线播放| 国产高清有码在线观看视频 | 每晚都被弄得嗷嗷叫到高潮| 久久婷婷成人综合色麻豆| 精品电影一区二区在线| 最好的美女福利视频网| 精品国产美女av久久久久小说| 国产精品爽爽va在线观看网站 | 天堂影院成人在线观看| 黄色毛片三级朝国网站| 成年版毛片免费区| 久久婷婷成人综合色麻豆| 99国产极品粉嫩在线观看| 久久99热这里只有精品18| 国产亚洲欧美在线一区二区| a级毛片在线看网站| 亚洲欧美激情综合另类| 亚洲av成人一区二区三| 波多野结衣av一区二区av| 两个人视频免费观看高清| 欧美日韩福利视频一区二区| 波多野结衣巨乳人妻| av天堂在线播放| 91成年电影在线观看| 操出白浆在线播放| 超碰成人久久| 精品乱码久久久久久99久播| 国产日本99.免费观看| 亚洲一区二区三区不卡视频| 亚洲成人国产一区在线观看| 成年人黄色毛片网站| 一级毛片高清免费大全| 久久狼人影院| 久久久久九九精品影院| 国产精品久久电影中文字幕| 12—13女人毛片做爰片一| 精品久久久久久久毛片微露脸| 国产视频内射| 欧美不卡视频在线免费观看 | 亚洲精华国产精华精| 成人18禁高潮啪啪吃奶动态图| 日韩欧美 国产精品| 午夜福利免费观看在线| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲一级av第二区| 女生性感内裤真人,穿戴方法视频| 午夜福利在线观看吧| 在线观看午夜福利视频| 欧美成人午夜精品| 久久国产精品男人的天堂亚洲| 男女之事视频高清在线观看| 香蕉国产在线看| 国产视频内射| 国产aⅴ精品一区二区三区波| 亚洲一区二区三区不卡视频| 久久久久久人人人人人| 一a级毛片在线观看| 在线免费观看的www视频| 免费观看人在逋| 少妇的丰满在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区91| 操出白浆在线播放| 中文字幕av电影在线播放| 亚洲精品中文字幕在线视频| 一级a爱片免费观看的视频| 午夜福利一区二区在线看| 国产91精品成人一区二区三区| 叶爱在线成人免费视频播放| 真人一进一出gif抽搐免费| 黄色丝袜av网址大全| 久久久久免费精品人妻一区二区 | 女生性感内裤真人,穿戴方法视频| 美女高潮到喷水免费观看| 亚洲av熟女| 两性夫妻黄色片| 成人亚洲精品av一区二区| 亚洲国产欧美网| 免费在线观看影片大全网站| 亚洲av美国av| 久久这里只有精品19| 日韩国内少妇激情av| 在线永久观看黄色视频| 亚洲一区高清亚洲精品| 丝袜在线中文字幕| 久久久久久久精品吃奶| 中文字幕av电影在线播放| 丁香欧美五月| 欧美日韩福利视频一区二区| 一级a爱视频在线免费观看| 99在线人妻在线中文字幕| 久久久久久亚洲精品国产蜜桃av| 身体一侧抽搐| 欧美黑人巨大hd| 成人欧美大片| av欧美777| tocl精华| 超碰成人久久| 成人免费观看视频高清| 中文字幕最新亚洲高清| 午夜影院日韩av| 夜夜爽天天搞| 中文字幕高清在线视频| 国产一区在线观看成人免费| 操出白浆在线播放| 一级黄色大片毛片| 制服丝袜大香蕉在线| 亚洲第一电影网av| 国产精品综合久久久久久久免费| 国产亚洲欧美在线一区二区| 制服人妻中文乱码| 美女午夜性视频免费| 青草久久国产| 又黄又爽又免费观看的视频| 亚洲人成77777在线视频| 成人18禁在线播放| 久久人人精品亚洲av| 一本久久中文字幕| av电影中文网址| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| av免费在线观看网站| 女生性感内裤真人,穿戴方法视频| 人妻久久中文字幕网| 国产高清视频在线播放一区| 久久天躁狠狠躁夜夜2o2o| 日日爽夜夜爽网站| 免费看a级黄色片| 日本a在线网址| 欧美色欧美亚洲另类二区| 国产精品永久免费网站| 老司机深夜福利视频在线观看| 日本黄色视频三级网站网址| 深夜精品福利| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 91九色精品人成在线观看| 成人特级黄色片久久久久久久| 男女下面进入的视频免费午夜 | 成年免费大片在线观看| 女人爽到高潮嗷嗷叫在线视频| 人人妻人人澡欧美一区二区| 18禁美女被吸乳视频| 欧美成人免费av一区二区三区| 色播在线永久视频| 欧美一区二区精品小视频在线| 精品乱码久久久久久99久播| 欧美成人一区二区免费高清观看 | 19禁男女啪啪无遮挡网站| 一级片免费观看大全| 国产高清videossex| 黄网站色视频无遮挡免费观看| 日本精品一区二区三区蜜桃| 人人妻人人澡人人看| 国产99久久九九免费精品| 欧美精品亚洲一区二区| 亚洲国产毛片av蜜桃av| 国产黄色小视频在线观看| 国产区一区二久久| 国产熟女xx| 一区二区三区高清视频在线| videosex国产| 午夜福利视频1000在线观看| 50天的宝宝边吃奶边哭怎么回事| ponron亚洲| 国产黄a三级三级三级人| 午夜精品久久久久久毛片777| 熟女少妇亚洲综合色aaa.| 精品福利观看| 亚洲成人国产一区在线观看| 在线观看免费日韩欧美大片| www.精华液| 在线观看66精品国产| 久久久久久久久久黄片| 国内精品久久久久久久电影| 色婷婷久久久亚洲欧美| 国产精品久久久人人做人人爽| 禁无遮挡网站| 成人一区二区视频在线观看| 在线观看66精品国产| 欧美在线黄色| 国产精品久久视频播放| 啦啦啦韩国在线观看视频| 老汉色∧v一级毛片| 国产av不卡久久| 成年人黄色毛片网站| 最近最新中文字幕大全电影3 | 99热只有精品国产| 麻豆国产av国片精品| 9191精品国产免费久久| 天天躁狠狠躁夜夜躁狠狠躁| 精品免费久久久久久久清纯| 欧美大码av| 伊人久久大香线蕉亚洲五| 国产高清有码在线观看视频 | 黄色片一级片一级黄色片| 亚洲自偷自拍图片 自拍| 久久亚洲精品不卡| 亚洲精品久久国产高清桃花| 日本一本二区三区精品| 日韩中文字幕欧美一区二区| 免费在线观看完整版高清| 国产色视频综合| 国产精品一区二区免费欧美| 999久久久精品免费观看国产| 国产精品久久久人人做人人爽| 欧美在线一区亚洲| 级片在线观看| 亚洲熟女毛片儿| 亚洲熟妇中文字幕五十中出| av福利片在线| 在线观看舔阴道视频| 午夜影院日韩av| 视频在线观看一区二区三区| 日日夜夜操网爽| www日本黄色视频网| 桃红色精品国产亚洲av| 脱女人内裤的视频| 男人舔奶头视频| 国产一区二区三区在线臀色熟女| 99久久精品国产亚洲精品| 国产精品乱码一区二三区的特点| 日本五十路高清| 免费人成视频x8x8入口观看| 伦理电影免费视频| 老司机靠b影院| 欧美性猛交黑人性爽| 中出人妻视频一区二区| 激情在线观看视频在线高清| 1024香蕉在线观看| bbb黄色大片| 热re99久久国产66热| 欧美在线黄色| 午夜免费激情av| 一区二区三区国产精品乱码| 午夜a级毛片| 99精品久久久久人妻精品| 欧美性长视频在线观看| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 久久中文看片网| 法律面前人人平等表现在哪些方面| 无遮挡黄片免费观看| 亚洲欧美激情综合另类| www.自偷自拍.com| 免费在线观看成人毛片| 久久久久亚洲av毛片大全| 可以在线观看的亚洲视频| 国产成人欧美| 欧美日韩福利视频一区二区| 91字幕亚洲| 欧美人与性动交α欧美精品济南到| 亚洲 欧美 日韩 在线 免费| 成年人黄色毛片网站| 夜夜看夜夜爽夜夜摸| av超薄肉色丝袜交足视频| 又黄又爽又免费观看的视频| 国产精品久久久久久人妻精品电影| 超碰成人久久| 69av精品久久久久久| 色婷婷久久久亚洲欧美| 亚洲黑人精品在线| 又紧又爽又黄一区二区| 桃红色精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看 | 欧美在线黄色| 亚洲男人的天堂狠狠| 欧美在线黄色| 日韩欧美在线二视频| 久久狼人影院| 国产精品永久免费网站| 国产私拍福利视频在线观看| 九色国产91popny在线| 精品国产美女av久久久久小说| √禁漫天堂资源中文www| 中文字幕人成人乱码亚洲影| 久久伊人香网站| 啦啦啦免费观看视频1| 精品欧美一区二区三区在线| 精品国产一区二区三区四区第35| 国产单亲对白刺激| 午夜视频精品福利| 国产一区二区三区在线臀色熟女| 美女扒开内裤让男人捅视频| 亚洲人成网站在线播放欧美日韩| 国产午夜精品久久久久久| 日韩有码中文字幕| 欧美最黄视频在线播放免费| 精华霜和精华液先用哪个| 成人手机av| 成人国产综合亚洲| 亚洲男人天堂网一区| 美女扒开内裤让男人捅视频| 久久国产乱子伦精品免费另类| 国产成人av教育| 亚洲成人免费电影在线观看| 国内毛片毛片毛片毛片毛片| 成人18禁高潮啪啪吃奶动态图| 91成人精品电影| 麻豆国产av国片精品| 成人国产综合亚洲| 久久久久久久午夜电影| 日本三级黄在线观看| www.自偷自拍.com| 午夜免费激情av| 亚洲va日本ⅴa欧美va伊人久久| 日本精品一区二区三区蜜桃| 午夜福利成人在线免费观看| 久久精品人妻少妇| 免费在线观看黄色视频的| 午夜福利高清视频| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 美女国产高潮福利片在线看| 久久久久久久精品吃奶| av电影中文网址| 亚洲无线在线观看| 国产免费男女视频| 日本 欧美在线| 精品不卡国产一区二区三区| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产区一区二| 国产成人一区二区三区免费视频网站| 久久国产乱子伦精品免费另类| 欧美一级毛片孕妇| 男女做爰动态图高潮gif福利片| 亚洲天堂国产精品一区在线| 变态另类丝袜制服| 搡老熟女国产l中国老女人| 一夜夜www| 757午夜福利合集在线观看| 老鸭窝网址在线观看| 少妇 在线观看| 高清毛片免费观看视频网站| 女性被躁到高潮视频| 99国产综合亚洲精品| 久久精品亚洲精品国产色婷小说| 老司机在亚洲福利影院| 18美女黄网站色大片免费观看| 精品少妇一区二区三区视频日本电影| 后天国语完整版免费观看| 每晚都被弄得嗷嗷叫到高潮| 国产视频内射| 国产高清激情床上av| 欧美大码av| 一二三四社区在线视频社区8| 久久国产亚洲av麻豆专区| 国产精品精品国产色婷婷| 老司机深夜福利视频在线观看| 国产精品久久久久久人妻精品电影| 黑人巨大精品欧美一区二区mp4| 久久午夜亚洲精品久久| av天堂在线播放| 婷婷丁香在线五月| 国产91精品成人一区二区三区| 一级毛片女人18水好多| 国产一区二区激情短视频| 欧美乱码精品一区二区三区| 国产成人精品久久二区二区91| 一级片免费观看大全| 亚洲精品一卡2卡三卡4卡5卡| 18禁裸乳无遮挡免费网站照片 | 日韩欧美免费精品| 曰老女人黄片| 一边摸一边抽搐一进一小说| 国产亚洲av高清不卡| 99在线视频只有这里精品首页| 波多野结衣高清无吗| 精品久久蜜臀av无| 国产不卡一卡二| 欧美大码av| 亚洲精品国产精品久久久不卡| 9191精品国产免费久久| 精品一区二区三区视频在线观看免费| 真人一进一出gif抽搐免费| 亚洲电影在线观看av| 欧美成狂野欧美在线观看| 大型黄色视频在线免费观看| 久久久国产成人精品二区| 久久精品国产亚洲av香蕉五月| 50天的宝宝边吃奶边哭怎么回事| 91成年电影在线观看| 日本熟妇午夜| 亚洲精品久久国产高清桃花| 日韩欧美 国产精品| 国产区一区二久久| 久久狼人影院| 国产精品一区二区免费欧美| 午夜福利免费观看在线| 欧美精品啪啪一区二区三区| 午夜免费激情av| 欧美+亚洲+日韩+国产| 精品午夜福利视频在线观看一区| 宅男免费午夜| 日日摸夜夜添夜夜添小说| 丝袜美腿诱惑在线| 成年版毛片免费区| 制服诱惑二区| 久久欧美精品欧美久久欧美| 精品欧美一区二区三区在线| 免费电影在线观看免费观看| 亚洲精品av麻豆狂野| 18禁美女被吸乳视频| 中文亚洲av片在线观看爽| 国产国语露脸激情在线看| www日本黄色视频网| 校园春色视频在线观看| 草草在线视频免费看| 精品久久久久久久久久久久久 | 国产又黄又爽又无遮挡在线| 女生性感内裤真人,穿戴方法视频| 国产免费男女视频| 国产成人影院久久av| www.自偷自拍.com| 精品久久久久久成人av| 天堂动漫精品| 又黄又粗又硬又大视频| 国产成人影院久久av| 男人舔奶头视频| www.精华液| 在线天堂中文资源库| 亚洲自偷自拍图片 自拍| 久久久久九九精品影院| 久久久久亚洲av毛片大全| 国产久久久一区二区三区| 国产一区二区在线av高清观看| 又黄又粗又硬又大视频| 桃红色精品国产亚洲av| 午夜免费成人在线视频| 亚洲第一电影网av| 欧美性猛交黑人性爽| 国语自产精品视频在线第100页| 在线观看日韩欧美| 美女大奶头视频| 欧美久久黑人一区二区| 俄罗斯特黄特色一大片| 一边摸一边做爽爽视频免费| 亚洲欧美激情综合另类| 国产精品久久久人人做人人爽| 一区二区三区国产精品乱码| 老鸭窝网址在线观看| 999久久久国产精品视频| 成人亚洲精品av一区二区| 天堂√8在线中文| 色尼玛亚洲综合影院| 亚洲美女黄片视频| 九色国产91popny在线| 丝袜美腿诱惑在线| 夜夜看夜夜爽夜夜摸| 国产97色在线日韩免费| 国产欧美日韩一区二区三| 亚洲av成人一区二区三| 亚洲精品久久国产高清桃花| 日本五十路高清| 国产又黄又爽又无遮挡在线| 亚洲九九香蕉| 精品国产超薄肉色丝袜足j| 久久久国产成人精品二区| 国产成年人精品一区二区| 中文字幕精品免费在线观看视频| 成人手机av| 国产成人系列免费观看| 日韩大尺度精品在线看网址| av视频在线观看入口| 黄色 视频免费看| 色av中文字幕| 国产一区二区在线av高清观看| 成年版毛片免费区| 三级毛片av免费| 一进一出好大好爽视频| 亚洲国产日韩欧美精品在线观看 | 99国产极品粉嫩在线观看| 亚洲欧洲精品一区二区精品久久久| 黄色视频,在线免费观看| 在线观看免费视频日本深夜| 免费在线观看亚洲国产| 宅男免费午夜| 亚洲自偷自拍图片 自拍| 好男人在线观看高清免费视频 | 精品国内亚洲2022精品成人| 亚洲av熟女| 亚洲 国产 在线| 级片在线观看| 制服丝袜大香蕉在线| 黄色 视频免费看| 午夜久久久在线观看| 一个人免费在线观看的高清视频| 午夜两性在线视频| 可以免费在线观看a视频的电影网站| 国产精品,欧美在线| 精品国产乱子伦一区二区三区| 女生性感内裤真人,穿戴方法视频| 欧美乱码精品一区二区三区| 久久人妻福利社区极品人妻图片| 欧美激情久久久久久爽电影| 99riav亚洲国产免费| 亚洲熟女毛片儿| 给我免费播放毛片高清在线观看| 一区二区三区激情视频| 真人一进一出gif抽搐免费| 999久久久精品免费观看国产| 免费在线观看黄色视频的| 久久久国产欧美日韩av| 亚洲一区高清亚洲精品| 18禁黄网站禁片免费观看直播| svipshipincom国产片| 18禁黄网站禁片免费观看直播| 久久中文字幕人妻熟女| 很黄的视频免费| 久久婷婷人人爽人人干人人爱| 欧美中文综合在线视频| 亚洲国产精品999在线| 亚洲精品国产一区二区精华液| 十八禁网站免费在线| 一卡2卡三卡四卡精品乱码亚洲| 国产成年人精品一区二区| 国产激情偷乱视频一区二区| 亚洲性夜色夜夜综合| 欧美日韩精品网址| 亚洲色图 男人天堂 中文字幕| 人人妻,人人澡人人爽秒播| 日韩欧美在线二视频| 亚洲,欧美精品.| 国产伦在线观看视频一区| 在线观看午夜福利视频| 欧美又色又爽又黄视频| 日本在线视频免费播放| 国产精品一区二区三区四区久久 | 国产亚洲精品一区二区www| 啪啪无遮挡十八禁网站|