• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid synthesis and characterization of bridged (bis-, tri- and tetra-) aryl carboxylic acid derivatives at room temperature by ultrasonic irradiation

    2020-12-22 08:55:02CHENLianqingYANGGengtaoWUChao
    關(guān)鍵詞:酯類化合物?;?/a>芳基

    CHEN Lianqing, YANG Gengtao, WU Chao

    (Hubei Key Laboratory of Catalysis and Materials Science,College of Chemistry and Materials Science,South-Central University for Nationalities, Wuhan 430074, China)

    Abstract Ultrasonic radiation was applied to perform the esterification and acylation reaction of alcohols and amines with acid chlorides. 28 bridged (bis-, tri- and tetra-) aryl carboxyl derivatives were synthesized at room temperature, with the structures characterized by IR, 1H NMR, MS, elemental analysis and so forth. The results indicated that the reactions were accomplished with high yield in short reaction time under mild conditions, and with no use of catalyst. This green approach represents a new general route for the synthesis of aryl carboxylic acid derivatives.

    Keywords ultrasonic radiation; bridged (bis-, tri- and tetra-) aryl carboxylic acid derivatives

    Carboxylic acid is one of the most important intermediates in organic chemistry because it can be transformed into esters, acyl halides, amides, anhydride and other derivatives. It has attracted much attention due to its importance in biology, organic chemistry, natural products, agriculture, pharmaceuticals and so on[1]. In these research areas, esters and amides are the focus of research. The ester compounds are very important fine chemicals, pharmaceutical intermediates, synthesis material intermediates, etc. For instance, phosphotriester compounds were used to produce phosphoric acid, which could be used as flame retardant; pentaerythritol tetraester is an environmentally friendly lubricant due to its comprehensive properties[2]. The amines are also one of the most common compounds in organic chemistry, and have important applications in the fields of drug chemistry, biochemistry and polymer synthesis[3]. The amines, including bisamides, triamides and tetraamides, have a wide range of properties and can be used for anti-inflammatory, antibacterial, anti-tumor, herbicidal, and insecticidal applications. Among them,N,N′-alkylene diamide is the key structural subunits of pseudopeptide framework[4], and 1, 3, 5-benzenetricaboxylic acid is a nucleating agent which can effectively improve the performance of the polypropylene[5].

    The traditional synthesis of carboxylic ester compounds involves heating or refluxing for a long time under the action of catalyst. For example, monoester is generally prepared by using concentrated sulfuric acid to catalyze the dehydration of alcohol and acid. However, reports about the synthesis of bridged (bis-,tri- andtetra-) aryl compounds are rare. At present, there are mainly esterification method, transesterification method and heating/refluxing two-step reaction for the synthesis of ester compounds, such as the direct esterification of carboxylic acid and perfluoroalcohol mediated by XtalFluor-E[6]. But this synthetic route has many disadvantages, such as long reaction time, many side reactions and complex post-treatment. Synthesis of five-membered cyclic carbonate by thermal transesterification has also been reported by GUIDI et al[7]. However, this method needs multi-step heating, complicated operation and high energy consumption. PENG[8]synthesized methyl cyanoacetate by reflux heating of cyanoacetic acid and methanol with sulfuric acid as catalyst, and then obtained the corresponding ester by cyano alcoholysis.

    The formation of the amine bond is very important in organic reactions. It is found in proteins and peptides, a large number of drugs, natural products, fine chemicals and lubricants. The synthesis of amide compounds is commonly used in acid halogen reaction, mixed anhydride reaction and condensation reaction. DE SOUZA used NaClO for the oxidative coupling of amine, which required heating for 12 h and the process was complicated[9]. The RuFG catalyst prepared by Ramen Jamatia was used in water medium to convert an aromatic aldehyde into the corresponding primary amine[10]. JIN synthesizedN′-(2-hydroxy-4-methyl-benzoylamide)-2-imino-4-thiazolidinone with an amine group[11]. If such methods were to be used in the synthesis ofbis-,tri- andtetra-amides, harsh reaction conditions such as highly active acylating agents, high temperature, and high pressure would still be required, which was not conducive to practical production. Although esters and amides can be synthesized by some particular methods, none of them represents a general route.

    The ultrasonic chemistry is a recently developed area, which uses cavitation effect to break the specific chemical bond and accelerate the chemical reaction[12]. In recent years, the ultrasonication technology has been widely used in many fields, such as chemistry, medicine, petrochemicals, etc. The promoting effect of ultrasonic wave is due to the cavitation effect and secondary effect when ultrasonic wave propagates in the medium. By utilizing these two effects, reactions that could not take place under normal conditions may occur smoothly and new reaction channels may be opened up.

    1 Experimental

    1.1 Reagents and apparatus

    Alcohol,n-propyl alcohol,n-butyl alcohol,benzilalcohol,phenol,2-alcohol thiophene,cyclopentanol,isophthaloyl chloride,1,3,5-benzenetricarboxylic acid,trimesoyl chloride,1,2,4,5-benzenetetracarboxylic acid,1,4,5,8-naphthalenetetracarboxylic acid,aniline,benzylamine,[1,1′-biphenyl]-3,3′,4,4′-tetracarboxylic acid,p-aminotoluene,p-fluoroaniline,n-butylamine,2-aminothiophene,cyclopentylamine,propylamine,dichloromethane,sodium hydrate,ethyl acetate.

    Ultrasonic cleaning instrument (KQ3200E,150 W); Fourier transform infrared spectrometer(NEXUS470,Nicolet); rotary evaporator (RE-52, Shanghai Yilong Bio-chemical Plant); circulating water vacuum pump (SHZ-D III, Wuhan Kohl); all-digital nuclear magnetic resonance spectrometer (AVANCE III,400 MHz, Switzerland Brooke), dichloromethane as solvent, TMS as internal standard; digital melting point meter (WRS-1B, Shanghai Jingke); element analyzer (Vario-EL III CHNS, USA).

    1.2 Preparation

    1.2.1 Preparation step of esterification reaction

    Take the synthesis ofE2ahas an example: add 10.5 mmol of ethanol and 10.5 mmol of triethylamine to a 100 mL flask, dissolve in 20 mL of methylene chloride, and then add 10 mL of a solution of methylene chloride with 5 mmol of chlorine of terephthalic acid. Put the flask in the ultrasonic washing instrument to react 20 min. The crude product was extracted with 100 mL ethyl acetate and 30 mL water. The solvent was evaporated, and finally dried in vacuum. The other esters were synthesized according to a similar method.

    1.2.2 Preparation step of acylation reaction

    Take the synthesis ofA2hpas an example(Fig.1): add 10.5 mmol of aniline to a 100 mL flask, dissolve in 40 mL of methylene chloride, and then add 10 mL of a solution of methylene chloride with 5 mmol of chlorine of terephthalic acid. Put the flask in the ultrasonic washing instrument to react 15 min. After filtration, the filter cake was washed for many times with 20 mL 10% NaOH solution to remove acid residue. A white solid product was finally obtained. Other amine derivatives were synthesized in a similar way.

    Fig.1 Synthesis route of aryl carboxylic acid derivatives圖1 芳基羧酸衍生物合成路線

    2 Results

    2.1 Ester with the number of groups n=2

    The synthetic route of esterification is shown in Fig.2.

    ProductE2ah: white solid, 99% yield. m.p. 75-76 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.10 (s, 4H, Ar-H), 4.41(m, 4H, C-H), 1.42 (t, 6H, C-H); IR (KBr,ν/cm-1): 2990, 2973, 1718, 1518, 1410, 1277, 1247, 729. Anal. calc for C12H14O4: C 64.85, H 6.35; found C 64.89, H 6.32. MS (FAB):m/e, 222 (M+).

    ProductE2bh: white solid, 83% yield. m.p. 97-98 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.03 (s, 4H, Ar-H), 4.23 (t, 4H, C-H), 1.73 (m, 4H, C-H), 0.96 (t, 6H, C-H); IR (KBr,ν/cm-1): 2969, 2881, 1722, 1578, 1465, 1272, 1204, 731. Anal. calc for C14H18O4: C 67.18, H 7.25; found C 67.23, H 7.17. MS (FAB):m/e, 250 (M+).

    ProductE2ch: white solid, 92% yield. m.p. 120-121 ℃.1H NMR(CDCl3, 400 MHz)δ: 8.02 (s, 4H, Ar-H), 4.28 (t, 4H, C-H), 1.70 (m, 4H, C-H), 1.42 (m, 4H, C-H), 0.91 (t, 6H, C-H); IR (KBr,ν/cm-1): 2961, 2874, 1724, 1578, 1465, 1273, 1104, 731. Anal. calc for C16H22O4:C 69.04, H 7.97; found C 69.11, H 7.93. MS (FAB):m/e, 278 (M+).

    ProductE2dh: white solid,95% yield. m.p. 240-241 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.06 (s, 4H, Ar-H), 7.33 (m, 10H, Ar-H), 5.31(s, 4H, C-H); IR (KBr,ν/cm-1): 3062, 2936, 1715, 1500, 1453, 1406, 1378, 1275, 1128, 736. Anal. calc for C22H18O4: C 76.29, H 5.24;found C 76.32, H 5.26. MS (FAB):m/e, 346 (M+).

    ProductE2ai: white solid, 99% yield.m.p.73-74 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.67 (s, 1H, Ar-H), 8.20 (d, 2H, Ar-H), 7.51 (t, 1H, Ar-H), 4.41(m, 4H, C-H), 1.40 (t, 6H, C-H); IR (KBr,ν/cm-1): 2983, 1304, 1240, 730. Anal. calc for C12H14O4: C 64.85, H 6.35; found C 64.88, H 6.31. MS (FAB):m/e, 222 (M+).

    ProductE2bi: white solid, 96% yield.m.p.95-96 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.68 (s, 1H, Ar-H), 8.21 (d, 2H, Ar-H), 7.52 (t, 1H, Ar-H), 4.30 (t, 4H, C-H), 1.80 (m, 4H, C-H), 1.03 (t, 6H, C-H); IR (KBr,ν/cm-1): 2969, 1722, 1390, 1300, 1237, 729. Anal. calc for C14H18O4: C 67.18, H 7.25; found C 67.12, H 7.29. MS (FAB):m/e, 250 (M+).

    ProductE2ci: white solid, 88% yield. m.p.117-118 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.60 (s, 1H, Ar-H), 8.15 (d, 2H, Ar-H), 7.45 (t, 1H, Ar-H), 4.28 (t, 4H, C-H), 1.69 (m, 4H, C-H), 1.40 (m, 4H, C-H), 0.91(t, 6H, C-H); IR (KBr,ν/cm-1): 2961, 2874, 1723, 1609, 1465, 1305, 1241, 730. Anal. calc for C16H22O4: C 69.04, H 7.97; found C 69.07, H 7.73. MS (FAB):m/e, 278 (M+).

    ProductE2di: white solid, 85% yield.m.p.228-229 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.64 (s, 1H, Ar-H), 8.20 (d, 2H, Ar-H), 7.34 (m, 10H, Ar-H), 5.32 (s, 4H, C-H); IR (KBr,ν/cm-1): 3033, 2956, 1716, 1237, 1128, 757, 700. Anal. calc for C22H18O4: C 76.29, H 5.24; found C 76.33, H 5.28. MS (FAB):m/e, 346 (M+).

    2.2 Ester with the number of groups n=3

    The synthetic route of esterification is shown in Fig.2.

    ProductE3cj: white solid, 89% yield.m.p.231-232 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.25 (d, 2H, Ar-H), 7.42 (t, 1H, Ar-H), 4.28 (m, 4H, C-H), 2.76 (m, 5H, C-H), 1.03 (t, 9H, C-H), 0.83 (m, 9H, C-H); IR (KBr,ν/cm-1): 3028, 1643, 1544, 1468, 1305, 1241, 817. Anal. calc for C21H30O6: C 66.65, H 7.99; found C 66.59, H 7.93. MS (FAB):m/e, 378 (M+).

    ProductE3ej: white solid, 90% yield.m.p.258-259 ℃.1H NMR (CDCl3, DMSO, 400 MHz)δ: 8.83 (s, 3H, Ar-H), 8.48 (d, 2H, Ar-H), 7.81 (m, 5H, Ar-H), 7.18 (d, 4H, Ar-H), 6.98 (d,4H, Ar-H); IR (KBr,ν/cm-1): 3033, 1665, 1562, 1451, 1310, 1245, 816. Anal. calc for C27H18O6: C 73.97, H 4.14; found C 73.91, H 4.18. MS (FAB):m/e, 438 (M+).

    ProductE3fj: white solid, 92% yield.m.p.276-277 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.87 (d, 2H, Ar-H), 8.35 (d, 3H, Ar-H), 7.68 (m, 4H, Ar-H), 6.83 (m, 3H, Ar-H); IR (KBr,ν/cm-1): 3028, 1669, 1571, 1436, 1307, 1241, 811. Anal. calc for C21H12O6S3: C 55.25, H 2.65; found C 55.26, H 2.61. MS (FAB):m/e, 455 (M+).

    2.3 Ester with the number of groups n= 4

    The synthetic route of esterification is shown in Fig.2.

    ProductE4gk: white solid, 87% yield.m.p.286-287 ℃.1H NMR(CDCl3, 400 MHz)δ: 8.72 (s, 2H, Ar-H), 6.89 (s, 3H, C-H), 3.28 (d, 4H, C-H), 2.19 (m, 11H, C-H), 1.84 (m, 9H, C-H), 1.57 (m, 12H, C-H); IR (KBr,ν/cm-1): 3010, 1674, 1556, 1443, 1307, 1245, 812. Anal. calc for C30H38O8: C 68.42, H 7.27; found C 68.49, H 7.10. MS (FAB):m/e, 526 (M+).

    ProductE4el: white solid, 74% yield.m.p.294-295 ℃.1H NMR(CDCl3, 400 MHz)δ: 8.23 (s, 2H, Ar-H), 8.11 (d, 2H, Ar-H), 7.79 (s, 6H, Ar-H), 7.46 (t, 8H, Ar-H), 7.14 (m, 6H, Ar-H); IR (KBr,ν/cm-1): 3032, 1668, 1547, 1441, 1311, 1232, 810. Anal. calc for C38H24O8: C 74.99, H 3.97; found C 74.87, H 3.91. MS (FAB):m/e, 608 (M+).

    Fig.2 General routes for synthesis of bridged (bis-, tri- and tetra-) aryl esters圖2 橋聯(lián)型(雙、三、四)芳基酯類化合物通用合成路線

    ProductE4bm: white solid, 79% yield.m.p.262-263 ℃.1H NMR (CDCl3, 400 MHz)δ: 8.86 (s, 2H, Ar-H), 8.47 (s, 2H, Ar-H), 4.44 (m, 6H, C-H), 4.12 (q, 2H, C-H), 2.19 (m, 4H, C-H), 1.67 (m, 5H, C-H), 1.13 (m, 6H, C-H), 0.96 (m, 5H, C-H); IR (KBr,ν/cm-1): 3031, 1658, 1545, 1436, 1305, 1246, 808. Anal. calc for C28H34O8: C 67.45, H 6.87; found C 67.49, H 6.81. MS (FAB):m/e, 498 (M+).

    2.4 Amides with the number of groups n=2

    The synthetic route of acylation reaction is shown in Fig.3.

    ProductA2hp: white solid, 96% yield.m.p.265-266 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.43(s, 2H, N-H), 8.10(s, 4H, Ar-H), 7.81(d, 4H, Ar-H), 7.38(t, 4H, Ar-H), 7.13(t, 2H, C-H); IR (KBr,ν/cm-1): 3329, 1648, 1525, 1440, 878. Anal. calc for C20H16N2O2: C 75.93, H 5.10, N 8.86; found C 75.96, H 5.11, N 8.89. MS (FAB):m/e, 316 (M+).

    ProductA2ip: white solid, 91% yield.m.p.288-289 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 9.20(t, 2H, N-H), 7.98(s, 4H, Ar-H), 7.33(d, 8H, Ar-H),7.25(m, 2H, Ar-H), 4.50(d, 4H, C-H);IR (KBr,ν/cm-1): 3279, 1631, 1541, 1462, 866. Anal. calc for C22H20N2O2: C 76.72, H 5.85, N 8.13; found C 76.65, H 5.82, N 8.15. MS (FAB):m/e, 344 (M+).

    ProductA2jp: white solid, 94% yield.m.p.292-293 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.50(s, 2H, N-H),8.11(s, 4H, Ar-H), 7.83(d, 4H, Ar-H), 7.22(t, 4H, Ar-H); IR (KBr,ν/cm-1): 3334, 1647, 1522, 1404, 1231, 833. Anal. calc for C20H14F2N2O2: C 68.18, H 4.01, N 7.95; found C 68.17, H 4.02, N 7.97. MS (FAB):m/e, 352 (M+).

    ProductA2kp: white solid, 92% yield.m.p.313-314 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.32(s, 2H, N-H), 8.07(s, 4H, Ar-H), 7.67(d, 4H, Ar-H), 7.17(d, 4H, Ar-H), 2.37(s, 6H, C-H); IR (KBr,ν/cm-1): 3312, 1644, 1518, 1402, 811. Anal. calc for C22H20N2O2: C 76.72, H 5.85, N 8.13; found C 76.78, H 5.82, N 8.15. MS (FAB):m/e, 344 (M+).

    ProductA2hq: white solid, 99% yield.m.p.265-266 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.57(s, 2H, N-H),8.59(s, 1H, Ar-H),8.15(s, 2H, Ar-H), 7.83-7.69(d, 5H, Ar-H), 7.37 (s, 4H, Ar-H),7.13(s, 2H, Ar-H); IR (KBr,ν/cm-1): 3418, 1638, 1546, 1500, 700. Anal. calc for C20H16N2O2: C 75.93, H 5.10, N 8.86; found C 75.91, H 5.15, N 8.86. MS (FAB):m/e, 316 (M+).

    ProductA2iq: white solid, 96% yield.m.p.288-289 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:9.18(s, 2H, N-H),8.40(s, 1H, Ar-H),8.03(d, 2H, Ar-H),7.58(t, 1H, Ar-H),7.33(d, 8H, Ar-H),7.25 (d, 2H, Ar-H), 4.49(d, 4H, C-H); IR (KBr,ν/cm-1): 3306, 1637, 1542, 1439, 699. Anal. calc for C22H20N2O2: C 76.72, H 5.85, N 8.13; found C 76.74, H 5.81, N 8.15. MS (FAB):m/e, 344 (M+).

    ProductA2jq: white solid, 94% yield.m.p.292-293 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.50(s, 2H, N-H),8.52(s, 1H, Ar-H),8.15(d, 2H, Ar-H),7.82(d, 4H, Ar-H); IR (KBr,ν/cm-1): 3270, 1648, 1524, 1403, 1234, 830. Anal. calc for C20H14F2N2O2: C 68.18, H 4.01, N 7.95; found C 68.16, H 4.07, N 7.93. MS (FAB):m/e, 352 (M+).

    ProductA2kq: white solid, 93% yield.m.p.303-304 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.35(s, 2H, Ar-H), 8.51(s, 1H, Ar-H), 8.12(d, 2H, Ar-H), 7.69(d, 5H, Ar-H), 7.18(d, 4H, Ar-H), 2.29(s, 6H, C-H); IR (KBr,ν/cm-1):3324, 1648, 1534, 1452, 824. Anal. calc for C22H20N2O2: C 76.72, H 5.85, N 8.13; found C 76.74, H 5.89, N 8.15.MS (FAB):m/e, 344 (M+).

    2.5 Amides with the number of groups n=3

    The synthetic route of acylation reaction is shown in Fig.3.

    ProductA3lr: white solid, 86% yield.m.p.166.5-166.3 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.17(s, 2H, N-H), 8.29 (s, 1H, Ar-H), 8.18(d, 4H, Ar-H),7.69(d, 2H, Ar-H), 7.12(s, 1H, Ar-H), 7.11(t, 3H, Ar-H); IR (KBr,ν/cm-1): 3202, 3034, 1699, 1525, 1443,823. Anal. calc for C21H33N3O3: C 67.17, H 8.86, N 11.19; found C 67.14, H 8.89, N 11.18. MS (FAB):m/e, 375 (M+).

    ProductA3hr: white solid, 83% yield.m.p.244.5-245.3 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ:10.09 (d, 3H, N-H), 8.29 (d, 3H, Ar-H), 8.11 (t, 6H, C-H), 8.02 (t, 4H, C-H), 7.08(s, 2H, C-H), 6.90 (d,3H, C-H); IR (KBr,ν/cm-1): 3143, 3042, 1744, 1565,1483,801. Anal. calc for C27H21N3O3: C 74.47, H 4.86, N 9.65; found C 74.44, H 4.87, N 9.62. MS (FAB):m/e, 435 (M+).

    ProductA3mr: white solid, 91% yield. m.p.224.5-225.3 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.09 (d, 3H, N-H), 8.29 (d, 3H, Ar-H), 8.11 (t, 6H, C-H), 8.02 (t, 4H, C-H), 7.08 (s, 2H, C-H),6.90 (d,4H, C-H); IR (KBr,ν/cm-1): 3153, 3022, 1714, 1565, 1483, 816. Anal. calc for C27H21N3O3S2: C 55.61, H 3.33, N 9.26; found C 55.65, H 3.31, N 9.25. MS (FAB):m/e, 453 (M+).

    2.6 Amides with the number of groups n=4

    The synthetic route of acylation reaction is shown in Fig.3.

    ProductA4ns: light yellow solid, 76% yield.m.p.254.6-255.2 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.09 (d, 4H, N-H), 8.29 (d, 3H, Ar-H),7.29 (s, 3H, C-H); IR (KBr,ν/cm-1): 3133, 3032, 1744, 1568, 1491, 810 . Anal. calc for C30H42N4O4: C 68.94, H 8.10, N 10.72; found C 68.94, H 8.14, N 10.7. MS (FAB):m/e, 522 (M+).

    ProductA4ht: yellow solid, 96% yield.m.p.264.1-265.9 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.09 (d, 4H, N-H), 8.29 (d, 4H, Ar-H), 8.29 (d,4H,Ar-H), 8.29 (s, 4H, Ar-H), 8.29 (t, 4H, Ar-H); IR (KBr,ν/cm-1): 3123,3022,1754,1578,1511,815.Anal. calc for C38H28N4O4: C 75.48,H 4.67, N 9.27; found C 75.45, H 4.63, N 9.29. MS (FAB):m/e, 604 (M+).

    ProductA4ou: grayish white solid, 81% yield.m.p.264.1-265.9 ℃.1H NMR(CDCl3, DMSO, 400 MHz)δ: 10.09 (d, 4H, N-H), 8.29 (t, 6H, Ar-H), 4.33 (s, 2H, C-H), 4.29 (s, 4H, C-H), 4.11(s, 2H, C-H); IR (KBr,ν/cm-1): 3143, 3112, 1746, 1534, 1498, 803. Anal. calc for C28H38N4O4: C 67.99, H 7.77, N 11.33; found C 67.96, H 7.78, N 11.34. MS (FAB):m/e, 494 (M+).

    Fig.3 General route for synthesis of bridged (bis-, tri- and tetra-) aryl amides圖3 橋聯(lián)型(雙、三、四)芳基酰胺類化合物通用合成路線

    3 Analysis and discussion

    3.1 Physical properties and elemental analysis

    Elemental analysis (data shown in Tab.1):The C and H of the target compound were consistent with the theoretical composition.

    Tab.1 Physical property constants and elemental analysis compositions of the products表1 產(chǎn)物的物性常數(shù)及元素分析組成

    productstructureconditionmelting point/℃yield/%elemental analysis composition/%CaHaNaCbHbNbE3cjwhite solid231-2328966.657.99-66.637.95-E3ejwhite solid258-2599073.974.14-73.964.18-E3fjwhite solid276-2779255.252.65-55.262.61-A3lrwhite solid166.5-166.38667.178.8611.1967.148.8911.18A3hrwhite solid244.5-245.38374.474.869.6574.444.879.62A3mrwhite solid224.5-225.39155.613.339.2655.653.319.25E4gkwhite solid286-2878768.427.27-68.457.28-E4elwhite solid294-2957474.993.97-74.953.93-

    productstructureconditionmelting point/℃yield/%elemental analysis composition/%CaHaNaCbHbNbE4bmwhite solid262-2637967.456.87-67.486.86-A4nalight yellow solid254.6-255.27668.948.1010.7268.948.1410.70A4htyellow solid264.1-265.99675.484.679.2775.454.639.29A4ougrayish white solid264.1-265.98167.997.7411.3367.967.7811.34

    3.2 Infrared and mass spectrometry analysis

    In the IR spectra of the target compound(data shown in Tab.2), each characteristic absorption peak of the compounds was confirmed. For instance, the stretching vibration of the amine N-H was about 3300-3100 cm-1; the stretching vibration of the aromatic C-H was about 3100-2800 cm-1; the stretching vibration of the ester -CO was about 1700-1600 cm-1; the stretching vibration of benzene ring skeleton was about 1690-1400 cm-1; the stretching vibration of the ester C-O-C was about 1400-1100 cm-1; the Out-of-plane bending vibration of the aromatic ring was about 850-700 cm-1. According to the characteristic vibration peaks of N-H, C-O and benzene rings, the structure of the product was consistent with that of the speculated structure. In MS spectra, the molecular fragment peaks of the compounds were consistent with the molecular theory.

    Tab.2 IR and MS date of the product表2 產(chǎn)物紅外和質(zhì)譜數(shù)據(jù)

    3.3 1H NMR analysis

    In the1H NMR spectra (data shown in Tab.3), the chemical shift of N-H on the amine was about 10-9, such asA2hz10.43(s, 2H, N-H),A3lr10.17(s, 2H, N-H)andA4ns10.09 (d, 4H, N-H).The chemical shift of hydrogen on benzene ring was about 8-7,E2ah8.10(s, 4H, Ar-H). The chemical shift of methyl hydrogen was 1.5-1, for example, the chemical shift ofE2ahmethyl hydrogen was 1.42 (t, 6H, C-H); and 5.31 (s, 4H, C-H), 5.32 (s, 4H, C-H) were assigned to the methylene hydrogen inE2dhandE2di ,respectively.The chemical shifts of hydrogen in benzylmethylene of amidesA2ipandA2iqbenzylidene were observed at 4.50 (d, 4H, C-H), 4.49 (d, 4H, C-H).

    Tab.3 1H NMR data of product表3 產(chǎn)物1H NMR數(shù)據(jù)

    3.4 Conjecture of reaction mechanism(n=2)

    Under ultrasonic irradiation, ultrasonic wave directly interacted with reaction molecules. Due to the effect of ultrasonic cavitation and secondary effect, the reaction system generated local high temperature and high pressure, and at the same time produced strong shock wave, which promoted the collision and aggregation between molecules, thus speeding up the reaction process. The possible reaction mechanism of etherification and acylation was shown in Fig.4 and Fig.5. In the process, the alcohol (amine) acted as nucleophilic reagent. Hydroxy oxygen and amino nitrogen attacked carbonyl carbon to form negative oxygen ions, then the intermediate I and III were separated from one molecule of HR3 to form intermediates II and IV, respectively. Nucleophilic addition of another molecule alcohol or amine followed subsequently, and the process was repeated to obtain esters or amide derivatives.

    Fig.4 Esterification reaction mechanism of bridged (bis-, tri- and tetra-) aryl amides圖4 橋聯(lián)型(雙、三、四)芳基酯類化合物的酯化反應(yīng)機(jī)理

    Fig.5 Acylation reaction mechanism of bridged (bis-, tri- and tetra-) aryl amides圖5 橋聯(lián)型(雙、三、四)芳基酯類化合物的?;磻?yīng)機(jī)理

    3.5 Optimization of reaction experiment conditions

    3.5.1 Determination of the optimum ratio of raw materials(n=2)

    The reaction of ethanol and aniline withp-benzoyl chloride for the synthesis of compoundsE2ah/A2hpwere studied as a model. The reaction was conducted at room temperature under ultrasonication for 20/15 min, the amount of terephthaloyl chloride was fixed at 0.25 mmol, while the ratio of ethanol/aniline to chloride were varied from 2∶1 to 2.2∶2. The increase of the ratio was beneficial to the equilibrium shift of esterification and acylation reaction to the right; however, as can be seen from Tab.4, a maximum yield was obtained at a ratio of 2.05∶1, exceeding which the yield decreased. This was not totally surprising, since the further increase of ratio resulted in more deviation from stoichiometry, the yield would decrease.

    Tab.4 Effect of raw material ratio on esterification and acylation reaction表4 原料配比對(duì)酯化和?;磻?yīng)的影響

    3.5.2 Ultrasonic radiation time

    To determinate the optimum ultrasonic time of ester/acylation reaction, with synthesis of compoundE2ahwas studied in detail. The amount ofp-benzoyl chloride and ethanol/aniline was 0.25 mmol and 0.51 mmol respectively. From Tab.5, it could be seen that the increase of reaction time could improve the yield, but too long reaction time resulted in the decrease of yield. The esterification and acylation reaction was a reversible reaction. Before the reaction was complete, the increase of reaction time increased the yield. However, after the reaction was completed, continued ultrosonication might lead to side reactions and decrease the yield. The optimum reaction time was 20 minutes for esterification and 15 minutes for acylation .

    Tab.5 Effect of ultrasonic time on esterification and acylation reaction表5 超聲時(shí)間對(duì)酯化和?;磻?yīng)的影響

    3.6 Advantages of this method

    There are many methods for the synthesis of monoamides and monoesters, which generally involve heating/refluxing, using alkali (including organic and inorganic base) or acid (including organic and inorganic acid) as catalyst. However, production ofbis-,tri- andtetra- amides involves the formation of multiple ester bonds, which is much more complicated. In the present work, two kinds of carboxylic acid derivatives,bis-,tri-,tetra- ester and amide, were synthesized by ultrasonic radiation, with no need for prolonged heating and refluxing, or use of a catalyst. It took only 20 min or 15 min to complete the reaction.

    Moreover, compared with the traditional synthesis method, the ultrasonic radiation method made use of the “cavitation effect” and “secondary effect” of ultrasonic radiation, which produced instantaneous high temperature and high pressure to initiate chemical reaction, formed local high energy center, allowed the reaction solution to stir violently, and greatly shortened the reaction time.The product was also directly precipitated from the solvent, thereby avoided complicated separation process. In addition, no catalyst was used, especially the highly polluting acid or alkaline reagent. The solvent used was non-toxic dichloromethane. The method simplified the synthesis route and saved cost, and was a good general method for synthesizing aryl carboxylic acid derivatives.

    4 Conclusion

    28 bridged aryl carboxylic acid derivatives were synthesized at room temperature by the reaction of alcohol and amine with acyl chloride using ultrasonic radiation. The structure of the compounds was confirmed by IR,1H NMR, MS and elemental analysis. The optimum reaction conditions were obtained. Compared with the traditional methods, this approach not only can be used for the efficient synthesis of thebis-,tri- andtetra-arylcarboxylic acid derivatives in one step, but also has many advantages such as ease of operation, less pollution, simple post-treatment, low cost, etc. It is a new, efficient general method for the synthesis of bridged arylcarboxylic acid derivatives and has great potential for reducing the cost of some industrially important fine chemicals.

    猜你喜歡
    酯類化合物酰化芳基
    新型3-氧-3-芳基-2-芳基腙-丙腈衍生物的合成及其抗癌活性
    新型(Z)-2-[(2-碘苯氧基)(芳基)]次甲基-2-丁烯酸酯類化合物的合成
    內(nèi)源信號(hào)肽DSE4介導(dǎo)頭孢菌素C酰化酶在畢赤酵母中的分泌表達(dá)
    一種新型芳基烷基磺酸鹽的制備與性能評(píng)價(jià)
    3-芳基苯并呋喃酮類化合物的合成
    中國塑料(2015年10期)2015-10-14 01:13:13
    促酰化蛋白對(duì)3T3-L1脂肪細(xì)胞炎性反應(yīng)的影響
    鄰苯二甲酸酯類化合物的生殖毒性及其環(huán)境內(nèi)分泌干擾效應(yīng)
    人參二醇磺?;磻?yīng)的研究
    拓?fù)渲笖?shù)在酯類化合物沸點(diǎn)QSPR研究中的應(yīng)用
    氨基酸酯基二硫代甲酸酯類化合物獲專利
    久久亚洲真实| 亚洲精品成人久久久久久| 午夜精品一区二区三区免费看| 1024手机看黄色片| 日本黄大片高清| 窝窝影院91人妻| 一级黄片播放器| 亚洲熟妇中文字幕五十中出| 国产激情偷乱视频一区二区| 国内精品久久久久久久电影| 欧美在线一区亚洲| 亚洲,欧美精品.| 日韩成人在线观看一区二区三区| 亚洲中文字幕日韩| 国产精品人妻久久久久久| 成人鲁丝片一二三区免费| 热99re8久久精品国产| 给我免费播放毛片高清在线观看| 桃红色精品国产亚洲av| 日韩av在线大香蕉| 国产亚洲精品久久久com| 99精品久久久久人妻精品| 精品一区二区三区视频在线| 欧美黑人巨大hd| 有码 亚洲区| 男女下面进入的视频免费午夜| 精品久久久久久,| 一区二区三区高清视频在线| 白带黄色成豆腐渣| 国产精品国产高清国产av| 看片在线看免费视频| 亚洲美女搞黄在线观看 | 日韩精品中文字幕看吧| 日韩精品青青久久久久久| 国产午夜福利久久久久久| 亚洲av中文字字幕乱码综合| 看免费av毛片| 丁香六月欧美| 淫妇啪啪啪对白视频| 精品人妻一区二区三区麻豆 | 在线国产一区二区在线| 中文亚洲av片在线观看爽| 我的老师免费观看完整版| 成人国产综合亚洲| 久久精品国产亚洲av涩爱 | 熟妇人妻久久中文字幕3abv| 国产av麻豆久久久久久久| 精品国内亚洲2022精品成人| 亚洲av中文字字幕乱码综合| 国产精品一区二区免费欧美| 9191精品国产免费久久| 在线播放无遮挡| 国产大屁股一区二区在线视频| 中文在线观看免费www的网站| 观看免费一级毛片| 欧美3d第一页| 亚洲欧美日韩高清专用| 18禁黄网站禁片午夜丰满| 岛国在线免费视频观看| 国产国拍精品亚洲av在线观看| 五月伊人婷婷丁香| 一区二区三区高清视频在线| 一个人看的www免费观看视频| 成人欧美大片| 亚洲不卡免费看| 亚洲精品456在线播放app | 一级黄片播放器| 夜夜爽天天搞| 亚洲欧美日韩卡通动漫| 国内毛片毛片毛片毛片毛片| 露出奶头的视频| 极品教师在线免费播放| 噜噜噜噜噜久久久久久91| 美女高潮喷水抽搐中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 少妇丰满av| 欧美bdsm另类| 丁香欧美五月| eeuss影院久久| 欧美bdsm另类| av国产免费在线观看| 欧美又色又爽又黄视频| 999久久久精品免费观看国产| 国内精品美女久久久久久| 国内精品美女久久久久久| 国产亚洲精品久久久久久毛片| 又紧又爽又黄一区二区| 国产黄片美女视频| 欧美日韩瑟瑟在线播放| 人人妻人人看人人澡| 精品午夜福利视频在线观看一区| 一个人观看的视频www高清免费观看| 噜噜噜噜噜久久久久久91| 欧美激情在线99| 日本一二三区视频观看| 99热这里只有是精品在线观看 | 欧美一区二区精品小视频在线| 搡老岳熟女国产| АⅤ资源中文在线天堂| 舔av片在线| 亚洲国产精品成人综合色| 嫩草影院新地址| 日本免费a在线| 在线观看午夜福利视频| 欧美成人性av电影在线观看| 淫秽高清视频在线观看| 久久久精品欧美日韩精品| 午夜福利在线观看吧| 男女视频在线观看网站免费| 久久久久性生活片| 18+在线观看网站| 久久精品国产亚洲av涩爱 | 亚洲成人免费电影在线观看| 亚洲最大成人中文| netflix在线观看网站| 亚洲三级黄色毛片| 九色国产91popny在线| 成熟少妇高潮喷水视频| 99在线视频只有这里精品首页| 久久6这里有精品| 深夜精品福利| 亚洲国产精品sss在线观看| 亚洲中文字幕日韩| 亚洲国产高清在线一区二区三| 亚洲国产高清在线一区二区三| 99视频精品全部免费 在线| 伊人久久精品亚洲午夜| a级一级毛片免费在线观看| 最近最新中文字幕大全电影3| 精品午夜福利视频在线观看一区| 午夜激情福利司机影院| 日韩高清综合在线| 啪啪无遮挡十八禁网站| 麻豆国产97在线/欧美| 美女免费视频网站| 日韩免费av在线播放| 日韩国内少妇激情av| 午夜免费男女啪啪视频观看 | 久久欧美精品欧美久久欧美| 国语自产精品视频在线第100页| 午夜免费男女啪啪视频观看 | 搡老岳熟女国产| 91午夜精品亚洲一区二区三区 | 老司机深夜福利视频在线观看| 国产精品野战在线观看| 久久人妻av系列| 欧美成人免费av一区二区三区| 在线免费观看不下载黄p国产 | 91在线精品国自产拍蜜月| 亚洲狠狠婷婷综合久久图片| 天堂动漫精品| 国产蜜桃级精品一区二区三区| 国产av在哪里看| 亚洲中文字幕日韩| 亚洲精品一卡2卡三卡4卡5卡| 国产探花极品一区二区| 国产精品电影一区二区三区| 成人一区二区视频在线观看| 天堂影院成人在线观看| 国产精品永久免费网站| 别揉我奶头 嗯啊视频| 亚洲久久久久久中文字幕| 午夜福利成人在线免费观看| 欧美高清成人免费视频www| 内射极品少妇av片p| 国产黄片美女视频| 国产精品久久久久久久电影| 亚洲一区二区三区色噜噜| 中文字幕av成人在线电影| 亚洲乱码一区二区免费版| 男人舔奶头视频| 免费看a级黄色片| 午夜福利欧美成人| www.色视频.com| 国产欧美日韩精品亚洲av| 亚洲狠狠婷婷综合久久图片| 欧美成人性av电影在线观看| www.www免费av| 精品人妻熟女av久视频| 久久精品国产99精品国产亚洲性色| 亚洲精品乱码久久久v下载方式| 欧美在线黄色| 亚洲精品日韩av片在线观看| 国产欧美日韩一区二区三| 亚洲激情在线av| 欧美日韩中文字幕国产精品一区二区三区| 免费看美女性在线毛片视频| 最近最新免费中文字幕在线| 午夜免费激情av| 欧美xxxx性猛交bbbb| 午夜精品久久久久久毛片777| 最新在线观看一区二区三区| bbb黄色大片| 欧美日韩亚洲国产一区二区在线观看| av黄色大香蕉| 日韩大尺度精品在线看网址| 日日摸夜夜添夜夜添av毛片 | 国产精品一区二区三区四区免费观看 | av天堂中文字幕网| 国产高清视频在线播放一区| 97人妻精品一区二区三区麻豆| 久久精品国产亚洲av香蕉五月| 91av网一区二区| 精品一区二区免费观看| 亚洲熟妇熟女久久| 午夜亚洲福利在线播放| 久久久久九九精品影院| 无人区码免费观看不卡| 亚洲男人的天堂狠狠| 精品国内亚洲2022精品成人| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区三区四区免费观看 | 亚洲熟妇熟女久久| 日日干狠狠操夜夜爽| 日韩亚洲欧美综合| 国产v大片淫在线免费观看| 真实男女啪啪啪动态图| 91九色精品人成在线观看| 日本成人三级电影网站| 欧美又色又爽又黄视频| 一进一出好大好爽视频| 噜噜噜噜噜久久久久久91| 色精品久久人妻99蜜桃| 三级毛片av免费| 丰满人妻熟妇乱又伦精品不卡| 中文字幕高清在线视频| 最近在线观看免费完整版| 欧美色欧美亚洲另类二区| 中文字幕人妻熟人妻熟丝袜美| 亚洲午夜理论影院| av天堂中文字幕网| 午夜福利在线在线| 美女黄网站色视频| 亚洲av一区综合| 真人一进一出gif抽搐免费| 精品午夜福利视频在线观看一区| 亚洲欧美日韩高清在线视频| 内射极品少妇av片p| 人妻夜夜爽99麻豆av| 少妇丰满av| 淫秽高清视频在线观看| 中国美女看黄片| 欧美丝袜亚洲另类 | 精品久久久久久成人av| 亚洲av成人精品一区久久| 亚洲最大成人中文| 国产乱人视频| 亚洲美女视频黄频| 国产精华一区二区三区| 国产精品永久免费网站| 人人妻人人看人人澡| 美女黄网站色视频| 亚洲七黄色美女视频| 91久久精品国产一区二区成人| 午夜福利在线观看吧| 简卡轻食公司| 国产精品一区二区免费欧美| 99国产精品一区二区三区| 99久久99久久久精品蜜桃| .国产精品久久| 精品国内亚洲2022精品成人| 中文字幕免费在线视频6| 欧美色欧美亚洲另类二区| 99久国产av精品| 欧美潮喷喷水| 我的老师免费观看完整版| 亚洲av成人av| 最后的刺客免费高清国语| 免费观看的影片在线观看| 老司机午夜福利在线观看视频| 亚洲在线观看片| 韩国av一区二区三区四区| 国产极品精品免费视频能看的| 丰满人妻一区二区三区视频av| 欧美zozozo另类| 国产真实乱freesex| 亚洲一区高清亚洲精品| 内地一区二区视频在线| 成人美女网站在线观看视频| 国产白丝娇喘喷水9色精品| 色噜噜av男人的天堂激情| 亚洲精华国产精华精| 99久久成人亚洲精品观看| 婷婷亚洲欧美| avwww免费| 欧美在线一区亚洲| www.熟女人妻精品国产| 精品一区二区三区视频在线观看免费| 亚洲,欧美精品.| 久久久国产成人免费| 久久久久久久久中文| 午夜免费成人在线视频| 美女xxoo啪啪120秒动态图 | 国产精品不卡视频一区二区 | 天美传媒精品一区二区| 欧美极品一区二区三区四区| 精品福利观看| 国产私拍福利视频在线观看| 麻豆国产av国片精品| 午夜精品一区二区三区免费看| 久久久久久九九精品二区国产| 国产一区二区亚洲精品在线观看| 亚洲国产色片| 亚洲天堂国产精品一区在线| 亚洲精品在线美女| 有码 亚洲区| 美女 人体艺术 gogo| 在线十欧美十亚洲十日本专区| 国产伦精品一区二区三区视频9| 最近中文字幕高清免费大全6 | 久久久久久大精品| 狂野欧美白嫩少妇大欣赏| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老司机深夜福利视频在线观看| 亚洲欧美日韩无卡精品| 最近视频中文字幕2019在线8| 简卡轻食公司| 又爽又黄a免费视频| 成人国产综合亚洲| 亚洲精品日韩av片在线观看| 久久久久久久午夜电影| 精品久久久久久久末码| 欧美国产日韩亚洲一区| 赤兔流量卡办理| 国产精品久久久久久久电影| 亚洲av免费在线观看| 超碰av人人做人人爽久久| 国产日本99.免费观看| 国产 一区 欧美 日韩| 国语自产精品视频在线第100页| 亚洲精品成人久久久久久| 美女xxoo啪啪120秒动态图 | 全区人妻精品视频| 男女做爰动态图高潮gif福利片| 制服丝袜大香蕉在线| 精品人妻熟女av久视频| 免费人成在线观看视频色| 欧美日韩综合久久久久久 | 成人精品一区二区免费| 网址你懂的国产日韩在线| 男女做爰动态图高潮gif福利片| 亚洲熟妇中文字幕五十中出| 亚洲av第一区精品v没综合| 51国产日韩欧美| 国内精品久久久久精免费| 国产精品久久久久久久电影| 久久精品国产亚洲av香蕉五月| 亚洲av熟女| 蜜桃亚洲精品一区二区三区| 国产激情偷乱视频一区二区| 免费在线观看影片大全网站| 精品久久久久久久久av| 18禁裸乳无遮挡免费网站照片| 日本三级黄在线观看| 国产在线男女| 欧美激情国产日韩精品一区| 在线观看av片永久免费下载| 精华霜和精华液先用哪个| 国产野战对白在线观看| 欧美性猛交黑人性爽| 亚洲欧美日韩高清专用| 九色国产91popny在线| 久久香蕉精品热| 日本 av在线| www.999成人在线观看| 午夜免费激情av| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av涩爱 | 亚洲在线观看片| .国产精品久久| 丰满的人妻完整版| 琪琪午夜伦伦电影理论片6080| 91av网一区二区| 欧美午夜高清在线| 香蕉av资源在线| 他把我摸到了高潮在线观看| 国产高清视频在线观看网站| 综合色av麻豆| 69人妻影院| 亚洲狠狠婷婷综合久久图片| 深爱激情五月婷婷| 日韩有码中文字幕| 蜜桃久久精品国产亚洲av| 又爽又黄a免费视频| 久久久精品大字幕| 午夜视频国产福利| 亚洲天堂国产精品一区在线| 国产大屁股一区二区在线视频| 99久久成人亚洲精品观看| 日本三级黄在线观看| 免费在线观看日本一区| 亚洲在线自拍视频| 国产av麻豆久久久久久久| 亚洲欧美精品综合久久99| 一级作爱视频免费观看| 内地一区二区视频在线| 国产 一区 欧美 日韩| 亚洲成av人片在线播放无| 高潮久久久久久久久久久不卡| 美女被艹到高潮喷水动态| 亚洲三级黄色毛片| 亚洲欧美日韩东京热| 久久精品91蜜桃| 一区二区三区激情视频| 国产高清视频在线播放一区| 精品人妻1区二区| 天堂√8在线中文| 日本a在线网址| 欧美色视频一区免费| 免费在线观看成人毛片| 99久国产av精品| 中文字幕久久专区| 9191精品国产免费久久| 欧美不卡视频在线免费观看| 午夜影院日韩av| 午夜福利免费观看在线| 深爱激情五月婷婷| 国产精品一区二区三区四区久久| 超碰av人人做人人爽久久| 一本一本综合久久| 欧美丝袜亚洲另类 | 十八禁网站免费在线| 欧美性感艳星| 亚洲欧美日韩高清专用| 人妻久久中文字幕网| 老女人水多毛片| 窝窝影院91人妻| 变态另类成人亚洲欧美熟女| 久久精品人妻少妇| 亚洲综合色惰| 欧美一区二区亚洲| 欧美三级亚洲精品| 精品乱码久久久久久99久播| 网址你懂的国产日韩在线| 一二三四社区在线视频社区8| 欧美3d第一页| 国产精品一区二区性色av| 69人妻影院| 亚洲av成人精品一区久久| 91av网一区二区| 好男人在线观看高清免费视频| 一个人看视频在线观看www免费| 波多野结衣高清作品| 在线看三级毛片| 一级黄色大片毛片| 中文字幕熟女人妻在线| 色尼玛亚洲综合影院| 国产精品一区二区性色av| 久久6这里有精品| 国产在线男女| 亚洲,欧美精品.| 首页视频小说图片口味搜索| 在线天堂最新版资源| 色播亚洲综合网| 99久久精品一区二区三区| 国产精品免费一区二区三区在线| 无人区码免费观看不卡| 国产精品98久久久久久宅男小说| 女生性感内裤真人,穿戴方法视频| 别揉我奶头 嗯啊视频| 国产精品影院久久| 在线观看午夜福利视频| 成人高潮视频无遮挡免费网站| 久久精品综合一区二区三区| 99久久成人亚洲精品观看| 99国产极品粉嫩在线观看| 性色avwww在线观看| 老司机深夜福利视频在线观看| 淫秽高清视频在线观看| 99热这里只有是精品50| av在线观看视频网站免费| 禁无遮挡网站| 亚洲经典国产精华液单 | 免费在线观看日本一区| 国产精品久久久久久精品电影| 日韩有码中文字幕| 国产乱人伦免费视频| 88av欧美| 久久精品国产99精品国产亚洲性色| 我的老师免费观看完整版| 亚洲精品久久国产高清桃花| 免费看光身美女| 久久久久久久午夜电影| 老女人水多毛片| 午夜a级毛片| 久久久久性生活片| 人妻夜夜爽99麻豆av| 午夜免费激情av| 在线a可以看的网站| 一区二区三区四区激情视频 | 特级一级黄色大片| 国产一区二区激情短视频| 老女人水多毛片| 热99在线观看视频| 蜜桃亚洲精品一区二区三区| 亚洲精品一区av在线观看| 久99久视频精品免费| 在线观看66精品国产| 嫩草影院新地址| 亚洲午夜理论影院| 亚洲精品粉嫩美女一区| av黄色大香蕉| 国产伦精品一区二区三区视频9| 欧美成人免费av一区二区三区| 日韩成人在线观看一区二区三区| 久9热在线精品视频| 午夜两性在线视频| 欧美在线一区亚洲| 久久久久久久久久成人| 淫秽高清视频在线观看| 看免费av毛片| 欧美午夜高清在线| 久久草成人影院| 欧美+亚洲+日韩+国产| av女优亚洲男人天堂| 在线天堂最新版资源| 毛片一级片免费看久久久久 | 亚洲avbb在线观看| 亚洲精品日韩av片在线观看| 桃色一区二区三区在线观看| 日韩人妻高清精品专区| 亚洲欧美日韩高清专用| 国产极品精品免费视频能看的| 午夜福利视频1000在线观看| 亚洲av二区三区四区| 欧美zozozo另类| 亚洲最大成人中文| 岛国在线免费视频观看| 91狼人影院| 少妇裸体淫交视频免费看高清| 91在线观看av| 午夜福利免费观看在线| 免费观看精品视频网站| 久久精品影院6| 中文字幕久久专区| 亚洲自偷自拍三级| 高潮久久久久久久久久久不卡| 亚洲精品色激情综合| 国产又黄又爽又无遮挡在线| 国产高清激情床上av| 99热这里只有精品一区| 久久国产乱子免费精品| 老司机午夜福利在线观看视频| 国产一区二区在线观看日韩| 如何舔出高潮| 一级a爱片免费观看的视频| 亚洲精品456在线播放app | 在线观看av片永久免费下载| 能在线免费观看的黄片| 日韩人妻高清精品专区| 久久久国产成人免费| 身体一侧抽搐| 一级作爱视频免费观看| 久久久久久九九精品二区国产| av女优亚洲男人天堂| 欧美一区二区精品小视频在线| 午夜免费激情av| 国产亚洲精品久久久久久毛片| 久久九九热精品免费| 永久网站在线| 久久九九热精品免费| 日本黄大片高清| 午夜精品在线福利| 国产一级毛片七仙女欲春2| 嫁个100分男人电影在线观看| 中文亚洲av片在线观看爽| 18美女黄网站色大片免费观看| 小说图片视频综合网站| 97热精品久久久久久| 久久国产精品影院| 日韩欧美精品免费久久 | av视频在线观看入口| 免费无遮挡裸体视频| 国产高清有码在线观看视频| 亚洲最大成人中文| 69av精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 最后的刺客免费高清国语| 999久久久精品免费观看国产| 亚洲欧美清纯卡通| 身体一侧抽搐| 三级毛片av免费| 最好的美女福利视频网| 两人在一起打扑克的视频| 亚洲乱码一区二区免费版| 97超级碰碰碰精品色视频在线观看| 精品久久久久久,| 精品99又大又爽又粗少妇毛片 | 国产不卡一卡二| 欧美国产日韩亚洲一区| 国产欧美日韩一区二区三| 人妻丰满熟妇av一区二区三区| 哪里可以看免费的av片| 成人精品一区二区免费| 听说在线观看完整版免费高清| 国产成+人综合+亚洲专区| 91在线精品国自产拍蜜月| 国产毛片a区久久久久| 性插视频无遮挡在线免费观看| 成年女人看的毛片在线观看| 三级毛片av免费| 日韩成人在线观看一区二区三区| 精品日产1卡2卡| 国产精品一及| 国内精品久久久久精免费| 久久久久久国产a免费观看| 9191精品国产免费久久| 欧美成狂野欧美在线观看| 国产一区二区三区视频了| 国产成人aa在线观看| 欧美又色又爽又黄视频| 午夜福利成人在线免费观看| 男女做爰动态图高潮gif福利片| 亚洲在线观看片| a级毛片a级免费在线|