藍軍南溫久福李俊偉區(qū)又君周慧李加兒李活
四指馬鲅淋巴器官發(fā)育組織學觀察*
藍軍南1,2溫久福1李俊偉1區(qū)又君1①周 慧1李加兒1李 活3
(1. 中國水產(chǎn)科學研究院南海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部南海漁業(yè)資源開發(fā)利用重點實驗室 廣州 510300;2. 上海海洋大學 水產(chǎn)種質(zhì)資源發(fā)掘與利用教育部重點實驗室 水產(chǎn)科學國家級實驗教學示范中心海洋動物系統(tǒng)分類與進化上海高校重點實驗室 上海 201306;3. 茂名市金陽熱帶海珍養(yǎng)殖有限公司 茂名 525444)
采用石蠟組織連續(xù)切片和HE染色技術(shù),對1~60 dph (Days post hatching)四指馬鲅()的淋巴器官個體發(fā)育進行研究,描述了淋巴器官發(fā)育特點及組織學特征。結(jié)果顯示,在鹽度為9.0±0.5,水溫為(28±2)℃條件下,3 dph胸腺原基出現(xiàn),由4~6層未分化干細胞和淋巴母細胞樣的細胞組成;胸腺發(fā)育迅速,主要由淋巴細胞填充;至25 dph皮質(zhì)區(qū)和髓質(zhì)區(qū)分明顯,胸腺發(fā)育基本完成。3 dph頭腎原基形成,由前腎管和少量造血干細胞組成;5 dph胸腺淋巴細胞向頭腎遷移,頭腎開始淋巴化;隨著魚體生長,造血干細胞分化成不同類型細胞;18 dph前腎管開始退化,至53 dph完全消失,頭腎主要由網(wǎng)狀內(nèi)皮系統(tǒng)支持下的淋巴造血組織構(gòu)成。7 dph脾臟原基形成,至16 dph開始淋巴化;脾臟內(nèi)皮系統(tǒng)較頭腎發(fā)達,但其發(fā)育速度較胸腺和頭腎慢,淋巴細胞明顯少于胸腺和頭腎。研究表明,四指馬鲅淋巴器官原基出現(xiàn)及淋巴化的順序是胸腺、頭腎、脾臟。免疫淋巴器官結(jié)構(gòu)及功能尚未發(fā)育完善,可能是四指馬鲅在變態(tài)期間幼體死亡率高的主要原因之一。
四指馬鲅;淋巴器官;發(fā)育;組織學
魚類的淋巴器官主要包括胸腺、頭腎、脾臟以及黏膜相關(guān)的淋巴組織(Boehm, 2012),黏膜相關(guān)淋巴組織包括鼻咽、內(nèi)臟、鰓和皮膚相關(guān)淋巴組織,它們通過細胞和體液介導途徑參與繼發(fā)性淋巴免疫反應。胸腺是大多數(shù)魚類最早發(fā)育的中樞淋巴器官,它在魚類胚胎發(fā)育早期就已經(jīng)形成并發(fā)揮作用,胸腺為T細胞的增殖、成熟和抗原受體庫的生成提供了適宜的微環(huán)境(Nakanishi, 2015),同時,產(chǎn)生促淋巴細胞生成素以促進其他淋巴器官的淋巴細胞生成(Fishelson, 2006)。頭腎和脾臟是主要的免疫及造血器官,含有豐富的血管、血竇和免疫細胞(胡玲玲等, 2010)。其免疫細胞介導并參與免疫反應,尤其吞噬細胞(黑色素–巨噬細胞和粒細胞)是免疫系統(tǒng)的重要組成部分,具有趨化、吞噬、細胞因子分泌、抗原處理以及通過多種機制表達來清除病原體的作用(Espinosa, 2018;邢賀飛等, 2016)。免疫淋巴器官是魚類防止病原入侵的主要防線,研究免疫淋巴器官的發(fā)生發(fā)育可了解機體免疫活性建立的時間節(jié)點,對優(yōu)化養(yǎng)殖條件、完善苗種培育和健康養(yǎng)殖技術(shù)具有重要意義(Campoverde, 2019)。近年來,國內(nèi)外越來越多的學者針對魚類免疫淋巴器官的發(fā)生發(fā)育開展研究,如在大西洋白姑魚()、考氏鰭竺鯛()、斑馬魚()、牙鲆()、草魚()和斜帶石斑魚()等多種魚類已見報道(Campoverde, 2019;Fishelson, 2010; Danilova, 2004; Liu, 2004; 雷雪彬等, 2013; 吳金英等, 2003)。
四指馬鲅()俗稱馬友、午魚、午筍等,通常分布于熱帶和溫帶海區(qū),主要分布于印度洋和太平洋西部,在我國黃海、東海、南海和渤海均有分布(Moore, 2011; Wang, 2014)。其肉質(zhì)鮮美,營養(yǎng)價值高,具有良好的養(yǎng)殖前景。2012年我國規(guī)?;斯し庇宛B(yǎng)殖四指馬鲅屬魚類獲得成功,近年來先后在廣東、海南、福建、廣西、上海、江蘇、山東、浙江、河北等沿海地區(qū)開展了養(yǎng)殖技術(shù)推廣應用,四指馬鲅已成為海水魚類養(yǎng)殖的新品種(林先智等, 2015)。目前,四指馬鲅苗種培育和養(yǎng)殖技術(shù)已經(jīng)成功,但在仔稚魚變態(tài)發(fā)育階段常出現(xiàn)大量死亡現(xiàn)象,同時,在成魚養(yǎng)殖過程中對應激反應比較敏感,容易因手工操作受傷死亡,其中原因需要進一步研究(劉奇奇等, 2017)。魚類淋巴器官對病害具有重要的免疫作用,關(guān)于四指馬鲅淋巴器官發(fā)生發(fā)育的研究目前在國內(nèi)外尚未見報道。本研究采用石蠟組織連續(xù)切片和HE染色技術(shù)對人工培育的四指馬鲅淋巴器官發(fā)育進行研究,試從免疫器官發(fā)育的角度推測機體免疫活性建立的時間,并觀察淋巴器官發(fā)育過程中組織形態(tài)學特點,以豐富四指馬鲅的基礎(chǔ)生物學資料,為其苗種培育和成魚健康養(yǎng)殖提供理論參考。
實驗所用的四指馬鲅仔稚魚為2018年6~9月在中國水產(chǎn)科學研究院南海水產(chǎn)研究所珠海試驗基地培育所得。
魚苗孵化及培育參考區(qū)又君等(2017)的方法進行。孵化后2 dph (Days post hatching, dph)將魚苗置于1000 L白色塑料桶中培育,放苗前,水桶中預先接種小球藻和輪蟲,每天添加淡水降低鹽度0.5~1,直到鹽度降至9.0±0.5。培育水溫為(28±2)℃。7 dph投喂枝角類和橈足類幼體,25 dph起投喂鹵蟲無節(jié)幼體,30 dph起投喂粉狀配合飼料并逐漸過渡到人工顆粒飼料。1~ 18 dph,每天取樣1次;20~45 dph,每5 d取樣1次;45~ 60 dph,每7 d取樣1次,每次取15尾。取樣時,記錄魚苗日齡,并用數(shù)顯游標卡尺(精確度0.01 mm)測量全長,置于4%多聚甲醛中固定,24 h后轉(zhuǎn)入70%的乙醇中保存。參考馬定昌等(2014)的方法并稍作調(diào)整,將固定好的樣品進行流水沖洗12 h,經(jīng)50%~100%梯度乙醇脫水(50%乙醇2 h、70%乙醇4 h、80%乙醇2 h、85%乙醇2 h、95%乙醇45 min×2、100%乙醇45 min×2),二甲苯透明(1/2無水乙醇+1/2二甲苯混合液1 h、二甲苯15 min×2),浸蠟(石蠟2 h×2),石蠟包埋,以4~6 μm的厚度進行縱向連續(xù)切片,蘇木精?伊紅(HE)染色,中性樹脂封片,在ZEISS Axio Scope. A1型光學顯微鏡(德國)下觀察并攝影記錄。
3 dph,胸腺原基開始形成,位于鰓蓋骨背上角處,由4~6層未分化干細胞和淋巴母細胞樣的細胞組成,細胞較大,圓形或橢圓形,嗜堿性,核大且深染,原基外緣上皮鞘尚未形成(圖1A)。6 dph,胸腺個體增大,呈長橢圓形,胸腺細胞增多,染色加深,出現(xiàn)小淋巴細胞,呈紫紅色,上皮鞘形成(圖1B)。18 dph,胸腺外包結(jié)締組織被膜,淋巴細胞增多,密度增大 (圖1C)。20 dph,結(jié)締組織開始向胸腺實質(zhì)伸展把腺體分成若干小葉,小葉間結(jié)締組織形成的小梁將其分成數(shù)個小結(jié)(圖1D)。25 dph,胸腺與頭腎有結(jié)締組織連接(圖1E),胸腺分區(qū)明顯,皮質(zhì)區(qū)位于胸腺外層,淋巴細胞密集,著色較深,有許多微血管分布;髓質(zhì)區(qū)位于胸腺內(nèi)層,著色較淺,淋巴細胞數(shù)量較少。胸腺小葉明顯,由于小葉間隔不明顯,小結(jié)不完全隔開(圖1F)。胸腺主要由著色較深的淋巴母細胞和淋巴細胞所填充,偶見少量紅細胞。
另外,在早期發(fā)育過程中,胸腺外周有一些分散的淋巴細胞,胸腺與頭腎有細胞“橋”連接(圖2B),到發(fā)育基本完成,細胞“橋”衍變成結(jié)締組織,胸腺與頭腎獨立分開。
A:3dph (Days post hatching),示胸腺淋巴母細胞,400×;B:6 dph,示胸腺淋巴母細胞和小淋巴細胞,400×;C:18 dph,示胸腺淋巴細胞和結(jié)締組織被膜,200×;D:20 dph,示胸腺小葉、小梁及小結(jié)出現(xiàn),200×;E:25 dph,示頭腎和胸腺,100×;F:25 dph,示胸腺皮質(zhì)區(qū)、髓質(zhì)區(qū)、小葉、小梁,400×;CTC:結(jié)締組織被膜;CA:皮質(zhì)區(qū);DT:消化道;G:鰓弓;LB:淋巴母細胞;MA:髓質(zhì)區(qū);O:耳囊;OP:鰓蓋骨;PR:頭腎;PRT:前腎管;SL:小淋巴細胞;TH:胸腺;TL:胸腺小葉;TT:胸腺小梁;TN:胸腺小結(jié)
A: 3 dph, showing lymphoblasts of the thymus, 400×; B: 6 dph, showing lymphoblasts and small lymphocytic of the thymus, 400×; C: 18 dph, showing lymphocytes and connective tissue, 200×; D: 20 dph, showing thymic lobules, trabeculae, and nodules appear, 200×; E: 25 dph, showing thymus and pronephros; F: 25 dph, showing the cortical areas, medulla areas, lobule, trabecular, 400×; CTC: Connective tissue; CA: Cortical areas; DT: Digestive tract; G: Gill; LB: Lymphoblasts; MA: Medulla areas; O: Oticcapsule; OP: Operculum; PR: Pronephros; PRT: Pronephric tubules; SL: Small lymphocytic; TH: Thymus; TL: Thymic lobule; TT: Thymic trabecular; TN: Thymic nodules
1 dph,頭腎原基尚未形成,原腎管沿脊椎直抵軀干后部,開口于肛門。3 dph,原腎管前端分化成若干個前腎管,前腎管的管壁由單層上皮細胞組成,前腎管間有少量未分化的造血干細胞,此時頭腎原基形成(圖2A)。5 dph,前腎管由外向內(nèi)集中且管徑增大,頭腎外圍有紅色髓性細胞分布,邊緣出現(xiàn)淋巴樣組織,呈紫紅色(圖2B)。7 dph,前腎管管徑增大,管壁細胞紅色深染,細胞核偏位,腎管外緣出現(xiàn)淋巴母細胞和圓形的粒細胞,管間組織開始填充,前腎管之間有少量紅細胞分布(圖2C)。15 dph,頭腎的淋巴細胞分化明顯,淋巴細胞逐漸增多,前腎管之間的填充細胞增多,紅細胞數(shù)量增加(圖2D)。18 dph,前腎管開始退化,管壁細胞出現(xiàn)凋亡現(xiàn)象;淋巴細胞增多,著色加深,出現(xiàn)淋巴細胞集中區(qū)(圖2E)。20 dph,頭腎內(nèi)出現(xiàn)腎上腺,有少量圓形、紫紅色的腎上腺細胞分布,淋巴細胞集中區(qū)明顯,粒細胞增多,在腎管外緣偶見黃褐色的巨噬細胞(圖2F)。25 dph,大量前腎管退化,淋巴細胞比例增大,并出現(xiàn)大量嗜鉻細胞團,呈黃褐色,分布于頭腎外緣(圖2G)。30 dph,前腎管減少,腎上腺增大,腎上腺細胞及嗜鉻細胞團增多 (圖2H)。35 dph,頭腎中央靜脈出現(xiàn),只有少數(shù)前腎管和退化殘留的小腎管(圖2I)。40 dph,頭腎內(nèi)部紅細胞活躍,淋巴細胞和粒細胞相間分布,偶見著色較深的淋巴細胞集中區(qū)和著色較淺粒細胞集中區(qū) (圖2J)。53 dph,前腎管完全退化,僅有少量退化后的前腎管殘留(圖2L),靜脈腔直徑增大,內(nèi)有較多的血細胞(圖2K),此時與成魚頭腎的組織結(jié)構(gòu)接近。頭腎外緣由被膜包圍,實質(zhì)由大量的淋巴細胞、血細胞和粒細胞填充,僅見少數(shù)黑色素?巨噬細胞聚集中心,淋巴細胞集中區(qū)和粒細胞集中區(qū)比較明顯,其形態(tài)很不規(guī)則。
7 dph,脾原基出現(xiàn),位于腸壁背側(cè),并被胰臟組織包圍,卵圓形,由疏松的間充質(zhì)細胞索和毛細血管組成(圖3A)。16 dph,脾原基增大,梨形,內(nèi)含少量嗜堿性細胞或造血干細胞,并開始淋巴化(圖3B)。 20 dph,脾體積增大,淋巴細胞與紅細胞相間排列,可見活躍的紅細胞生成;著色較深的嗜堿性細胞、成纖維細胞與紅細胞排列較疏松,成索狀結(jié)構(gòu)(圖3C)。25 dph,脾外緣由漿膜包裹,淋巴細胞密度增大,毛細血管增多,偶見黑色素巨噬細胞聚集中心(圖3D)。30 dph,脾臟增大,小淋巴細胞增多,巨噬細胞出現(xiàn),黃褐色,形狀不規(guī)則;毛細血管增多,橢圓體結(jié)構(gòu)出現(xiàn)(圖3E)。35 dph,黑色素巨噬細胞聚集中心數(shù)量增多,體積增大;淋巴細胞和紅細胞增多,著色加深,出現(xiàn)明顯的淋巴細胞集中區(qū)(圖3F)。45 dph,結(jié)締組織被膜伸入脾實質(zhì)內(nèi)形成脾小梁,脾小葉開始形成,著色較深的白髄和著色較淺的紅髓開始區(qū)分,紅細胞增多,巨噬細胞明顯(圖3G)。53 dph,淋巴細胞數(shù)量增加,著色加深,呈紫紅色(圖3H),紅髓與白髄交錯排列,脾竇較明顯(圖3I)。此時,脾組織發(fā)育基本完成,但尚未成熟,往后繼續(xù)增大,脾細胞繼續(xù)淋巴化。脾的內(nèi)皮系統(tǒng)較頭腎發(fā)達,其發(fā)育速度較胸腺和頭腎慢,淋巴細胞明顯少于胸腺和頭腎。
A:3 dph,示頭腎的造血干細胞(↑)和前腎管,400×;B:5 dph,示增大的前腎管和淋巴組織,400×;C:7 dph,示繼續(xù)增大的前腎管,管間組織,淋巴母細胞,粒細胞,紅細胞,400×;D:15 dph,示前腎管,淋巴細胞,紅細胞,400×;E:18 dph,示淋巴細胞集中區(qū)和退化的腎管,凋亡細胞,200×;F:20 dph,示腎上腺細胞,前腎管,粒細胞,淋巴細胞,巨噬細胞,400×;G:25 dph,示大量前腎管退化(▲),嗜鉻細胞團,200×;H:30 dph,示前腎管,腎上腺,嗜鉻細胞團,200×;I:35 dph,示中央靜脈,血竇,前腎管,200×;J:40 dph,示前腎管,血竇,血細胞,淋巴細胞,粒細胞,400×;K:53 dph,示靜脈,400×;L:53 dph,示已退化的前腎管,400×;AC:凋亡細胞;AG:腎上腺;AGC:腎上腺細胞;ALY:淋巴細胞集中區(qū);BC:血細胞;BS:血竇;CCM:嗜鉻細胞團;CV:中央靜脈;DT:消化道;G:鰓弓;GA:粒細胞;IT:管間組織;LP:肝原基;LT:淋巴組織;LB:淋巴母細胞;LY:淋巴細胞;MA:巨噬細胞;ND:腎管;PR:前腎;PRT:前腎管;RBC:紅細胞;V:靜脈;VPRT:退化的前腎管
A: 3 dph, showing hematopoietic stem cells of head kidney(↑) and pronephric tubules, 400×; B: 5 dph, showing enlarged pronephric tubules and lymphatic tissue, 400×; C: 7 dph, showing pronephric tubules continues to enlarge, inter tubular tissue, lymphocytoblast, granulocytes, red blood cell, 400×; D: 15 dph, showing pronephric tubules, lymphocyte, red blood cell, 400×; E: 18 dph, showing lymphocytes accumulation, degenerated pronephric tubules and apoptotic cell, 200×; F: 20 dph, showing adrenal gland cells, pronephric tubules, granulocytes, lymphocyte, macrophage, 400×; G: 25 dph, showing a lot of pronephric tubules degenerate(▲), chromaffin cell mass, 200×; H: 30 dph, showing pronephric tubules, adrenal gland, chromaffin cell mass, 200×; I: 35 dph, showing central veins, blood sinus, pronephric tubules, 200×; J: 40 dph, showing pronephric tubules, blood sinus, blood cell, lymphocyte, granulocytes, 400×; K: 53 dph, showing vein, 400×; L: 53 dph, showing vestigial pronephric tubules, 400×; AC: Apoptotic cell; AG: Adrenal gland; AGC: Adrenal gland cells; ALY: Lymphocytes accumulation; BC: Blood cell; BS: Blood sinus; CCM: Chromaffin cell mass; CV: Central veins; DT: Digestive tract; G: Gill; GA: Granulocytes; IT: Inter tubular tissue; LP: Liver primordium; LT: Lymphoid tissue; LB: Lymphocytoblast; LY: Lymphocyte; MA: Macrophage; ND: Nephric ducts; PR: Pronephros; PRT: Pronephric tubules; RBC: Red blood cell; V: Vein; VPRT: Vestigial pronephric tubules
A:7 dph,示脾臟原基和胰臟,400×;B:16 dph,脾臟體積增大,細胞開始淋巴化,200×;C:20 dph,示淋巴母細胞,小淋巴細胞和紅細胞,400×;D:25 dph,示黑色素-巨噬細胞聚集中心,漿膜,血管,200×;E:30 dph,小淋巴細胞增多,示巨噬細胞,橢圓體,200×;F:35 dph,示中央靜脈,淋巴細胞聚集區(qū),200×;G:45 dph,示脾小梁,紅髓,白髄,200×;H:53 dph,200×;I:53 dph,示脾竇,紅髓,白髄,200×。BL:血管;E:橢圓體;IN:腸;LB:淋巴母細胞;LC:淋巴細胞聚集區(qū);M:巨噬細胞;MC:黑色素-巨噬細胞聚集中心;PA:胰臟;RBC:紅細胞;RP:紅髓;S:胃;SE:漿膜;SP:脾臟;SL:小淋巴細胞;ST:脾小梁;SI:脾竇;V:靜脈;WP:白髄
A: 7 dph, showing the spleen primordium and pancreas, 400×; B: 16 dph, showing the spleen bulked up, and the cells began to lymphatize, 200×; C: 20 dph, showing the lymphoblast, small lymphocytes and red blood cells, 400×; D: 25 dph, showing blood vessel, melano-macrophage centers and serosa, 200×; E: 30 dph, showing small lymphocytic increase, macrophage and ellipsoid, 200×; F: 35 dph, showing central veins, lymphocyte aggregation center, 200×; G: 45 dph, showing spleen trabecular, red pulp, white pulp, 200×; H: 53 dph, 200×; I: 53 dph, showing splenic sinus, red pulp, white pulp, 200×. BL: Blood vessel;CV: Central veins; E: Ellipsoid; IN: Intestines; LB: Lymphoblast; LC: Lymphocyte aggregation center; M: Macrophage;MC: Melano-macrophage centers; PA: Pancreas; RBC: Red blood cell; RP: Red pulp; S: Stomach; SE: Serosa; SP: Spleen;SL: Small lymphocytic; ST: Spleen trabecular; SI: Splenic sinus; V: Vein; WP: White pulp
在許多硬骨魚類發(fā)育過程中,胸腺是第一個發(fā)育成熟的淋巴器官,如斑馬魚在4 dph時,其胸腺在其他淋巴器官開始發(fā)育之前就已經(jīng)形成(Hansen, 1998; Willett, 1999)。本研究結(jié)果顯示,四指馬鲅胸腺原基及頭腎原基均在3 dph出現(xiàn),但胸腺原基發(fā)育較快,25 dph基本發(fā)育完成,而頭腎淋巴化速度較慢;脾臟原基則在7 dph形成,發(fā)育過程較為緩慢。四指馬鲅淋巴器官淋巴化的順序是胸腺、頭腎、脾臟,可見胸腺作為魚類中樞免疫器官在維系機體早期發(fā)育階段的免疫機能具有重要作用(Rauta, 2012)。這與斜帶石斑魚、軍曹魚()等海水魚類的研究結(jié)果一致(吳金英等, 2003; 蘇友祿等, 2008)。四指馬鲅的胸腺與鰓咽腔由組織被膜相隔,與咽上皮密切相關(guān),這有利于口咽腔和鰓組織抵抗病原入侵,促進和調(diào)節(jié)淋巴細胞和非淋巴細胞的相互作用,發(fā)揮免疫防御功能(Boehm, 2003)。胸腺組織結(jié)構(gòu)的分化在硬骨魚類中是高度可變的,在許多魚類中胸腺的皮質(zhì)和髓質(zhì)沒有明顯的分化(Liu, 2004)。25 dph胸腺皮質(zhì)和髓質(zhì)區(qū)分明顯,髓質(zhì)可以看成是一個次級淋巴器官,因為,它可以被外源性抗原和淋巴細胞所利用(Schuurman, 1997)。不同的魚類其免疫能力存在差異可能與胸腺的組織結(jié)構(gòu)特征有一定的關(guān)系。
本研究發(fā)現(xiàn),在四指馬鲅早期發(fā)育過程中,胸腺外周有一些分散的淋巴細胞;胸腺與頭腎互相靠攏,有細胞“橋”連接。同樣,在金頭鯛()、羅非魚(spp)、虹鳉()、鰈()等魚類中也有關(guān)于胸腺與頭腎存在細胞“橋”相連的報道(Jósefsson, 1993)。 3 dph時,四指馬鲅頭腎原基中未分化的造血干細胞在形態(tài)特征與胸腺的干細胞相似,此時,胸腺和頭腎均未開始淋巴化;5 dph時胸腺淋巴細胞有往頭腎遷移的跡象,頭腎的造血干細胞開始分化,出現(xiàn)淋巴樣組織。這為“頭腎的淋巴細胞是從胸腺遷移而來”這一觀點提供佐證(Jósefsson, 1993; Bowden, 2005)。但與斜帶石斑魚(吳金英等, 2003)及卵形鯧鲹() (蔡文超等, 2012)的研究結(jié)果不盡相同,可見不同的魚類其頭腎淋巴細胞的起源存在差別。四指馬鲅頭腎在發(fā)育早期有較多的腎小管,隨著魚體的生長,淋巴細胞增多,18 dph時腎小管開始退化,直到53 dph腎小管才完全消失,后來主要由淋巴細胞、粒細胞和血細胞等填充,此時頭腎形成了具有免疫和造血功能的淋巴樣器官。這與牙鲆、斜帶石斑魚、草魚、鱖()、黃顙魚()等多種魚類的研究結(jié)果類似(吳金英等, 2003; 雷雪彬等, 2013; 田敬云等, 2005; 劉小玲等, 2009)。20 dph時頭腎開始出現(xiàn)少量巨噬細胞和腎上腺細胞,巨噬細胞可吞噬和消滅入侵的病原體,還有助于釋放對宿主免疫應答啟動起重要作用的促炎細胞因子,表明此時四指馬鲅的頭腎可能開始具有免疫防御功能(Pressley, 2005; Nayak, 2007; Fishelson, 2010)。25 dph時頭腎淋巴細胞增多,邊緣出現(xiàn)大量黃褐色或黑色的嗜鉻細胞團,而成熟的嗜鉻細胞和腎上腺細胞可分泌兒茶酚胺類激素和皮質(zhì)類固醇激素,從而參與水鹽代謝及應激反應(Geven, 2017)。脾臟原基在7 dph時出現(xiàn),淋巴化的時間最遲,30 dph時有黑色素–巨噬細胞聚集中心出現(xiàn),往后不斷增多,因其有從循環(huán)系統(tǒng)中清除可溶性和顆粒物質(zhì)的作用,常被廣泛用作監(jiān)測水質(zhì)和魚體健康狀況的生物標記(劉小玲等, 2009)。53 dph時紅髓與白髄相間排列,區(qū)分不明顯,此時,脾臟尚未具備強大的造血和免疫功能,需要繼續(xù)發(fā)育完善。在脾臟發(fā)育過程中,紅細胞較為活躍,數(shù)量明顯增長,血管系統(tǒng)發(fā)達,表明脾臟具有很強的造血、血液過濾及儲存功能(區(qū)又君等, 2015)。相對于胸腺和頭腎,脾臟淋巴化過程較為緩慢,淋巴細胞也明顯少于胸腺和頭腎,可見脾臟在體液免疫中處于相對次要的地位(Rauta, 2012)。
對于脊椎動物而言,免疫活性的建立依賴于免疫淋巴器官的發(fā)育成熟。研究表明,魚類淋巴細胞的出現(xiàn)并不代表其功能成熟,而淋巴細胞的功能成熟往往比淋巴器官的出現(xiàn)遲,一般要到幼魚期以后才發(fā)育完成,而免疫功能的完善則更遲(吳金英等, 2003)。此外,魚類淋巴器官的形態(tài)及功能發(fā)育受營養(yǎng)及環(huán)境的影響較大,如環(huán)境溫度會影響胸腺形態(tài)結(jié)構(gòu)的發(fā)育以及淋巴細胞的生成(Bowden, 2005),礦物質(zhì)缺乏(如鐵、磷、硒)會損害幼魚免疫器官的功能和結(jié)構(gòu)完整性(Guo, 2017; Chen, 2017; Lin, 2018);擁擠應激會對魚類的非特異性免疫反應產(chǎn)生負面影響,增加脾臟的不適當?shù)蛲?,使魚類更易受到病原體的侵襲,最終影響魚類的生存(Zheng, 2018)。相對其他魚類而言,四指馬鲅淋巴器官原基出現(xiàn)的時間較早,胸腺淋巴化也較迅速,但頭腎和脾臟發(fā)育較滯后。四指馬鲅從出膜經(jīng)過仔魚期、稚魚期再到幼魚期需要較長的一段時間過渡。從稚魚到幼魚這一變態(tài)發(fā)育階段,魚體的形態(tài)結(jié)構(gòu)與器官的發(fā)育尚處于演變和完善過程,加上環(huán)境因子和營養(yǎng)因素對免疫淋巴器官結(jié)構(gòu)及功能發(fā)育的影響,導致其免疫防御機能較弱,這可能是變態(tài)期間魚苗脆弱,容易患病,死亡率高的主要原因。針對該問題亟待進一步往免疫調(diào)控機制方面深入研究,這對苗種培育和成魚健康養(yǎng)殖具有重要意義。
Boehm T, Bleul CC, Schorpp M. Genetic dissection of thymus development in mouse and zebrafish. Immunological Reviews, 2003, 195(1): 15–27
Boehm T, Hess I, Swann JB. Evolution of lymphoid tissues. Trends in Immunology, 2012, 33(6): 315–321
Bowden TJ, Cook P, Rombout JHWM. Development and function of the thymus in teleosts. Fish and Shellfish Immunology, 2005, 19(5): 413–427
Cai WC, Ou YJ, Li JE,Development of immune organs at early stages of. South China Fisheries Science, 2012, 8(5): 39–45 [蔡文超, 區(qū)又君, 李加兒, 等.卵形鯧鲹免疫器官的早期發(fā)育. 南方水產(chǎn)科學, 2012, 8(5): 39–45]
Campoverde C, Andree KB, Milne DJ,. Ontogeny of lymphoid organs and mucosal associated lymphoid tissues in meagre (). Fish and Shellfish Immunology, 2019, 84: 509–520
Chen K, Jiang WD, Wu P,. Effect of dietary phosphorus deficiency on the growth, immune function and structural integrity of head kidney, spleen and skin in young grass carp (). Fish and Shellfish Immunology, 2017, 63: 103–126
Danilova N, Hohman VS, Sacher F,. T cells and the thymus in developing zebrafish. Developmental and Comparative Immunology, 2004, 28(7): 755–767
Espinosa C, García Beltrán JM, Esteban MA,. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environmental Pollution, 2018, 235: 30–38
Geven EJW, Klaren PHM. The teleost head kidney: Integrating thyroid and immune signalling. Developmental and Comparative Immunology, 2017, 66: 73–83
Guo YL, Jiang WD, Wu P,. The decreased growth performance and impaired immune function and structural integrity by dietary iron deficiency or excess are associated with TOR, NF-κB, p38MAPK, Nrf2 and MLCK signaling in head kidney, spleen and skin of grass carp (). Fish and Shellfish Immunology, 2017, 65: 145–168
Hansen JD, Zapata AG. Lymphocyte development in fish and amphibians. Immunological Reviews, 1998, 166(1): 199–220
Hu LL, Li JE, Ou YJ,. Study on microstructure of head-kedney and speed of. South China Fisheries Science, 2010, 6(3): 41–45 [胡玲玲, 李加兒, 區(qū)又君, 等. 條石鯛頭腎和脾臟的顯微結(jié)構(gòu)觀察. 南方水產(chǎn), 2010, 6(3): 41–45]
Jósefsson S, Tatner MF. Histogenesis of the lymphoid organs in sea bream (L.). Fish and Shellfish Immunology, 1993, 3(1): 35–49
Lei XB, Chang OQ, Shi CB,Histological and immunohistochemical observations on the early development of head kidney in. Journal of Fisheries of China, 2013, 37(6): 840–850 [雷雪彬, 常藕琴, 石存斌, 等. 草魚頭腎發(fā)生組織學與免疫組織化學觀察.水產(chǎn)學報, 2013, 37(6): 840–850]
Lin W, Li L, Chen J,. Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (). Fish and Shellfish Immunology, 2018, 80: 540–545
Lin XZ, Ou YJ, Li JE,Present status and foreground of family threadfin fishes (Polynemidae).Journal of Biology,2015(4): 83–87 [林先智, 區(qū)又君, 李加兒, 等. 馬鲅科(Polynemidae)魚類的研究現(xiàn)狀及展望. 生物學雜志, 2015(4): 83–87]
Liu QQ, Wen JF, Ou YJ,. The effects of acute off-water handling stress on the tissue structure and oxidative stress of juvenile. Progress in Fishery Sciences, 2017, 38(6): 48–55 [劉奇奇, 溫久福, 區(qū)又君, 等. 急性離水操作脅迫對四指馬鲅()幼魚組織結(jié)構(gòu)和氧化應激的影響. 漁業(yè)科學進展, 2017, 38(6): 48–55]
曾鳴:企業(yè)的在線化,包括中后臺、傳統(tǒng)供應鏈環(huán)節(jié)的在線化,是未來很大的發(fā)展領(lǐng)域。在這個意義上,B2B肯定是有巨大的發(fā)展?jié)摿Φ?。但我認為不能機械地把B2C和B2B的合作割裂開。B2C的發(fā)展會拉動B2B市場的發(fā)展。B2B市場的發(fā)展又會推動B2C市場的創(chuàng)新。這兩者會是一個波浪式的螺旋上升的過程,任何時候都有新的機會。
Liu XL, Ge HY, Gu ZM. Ontogeny and structure of head kidney of. Journal of Hydroecology, 2009, 2(3): 108–110 [劉小玲, 葛海燕, 顧澤茂. 黃顙魚頭腎的組織發(fā)生與組織結(jié)構(gòu)研究. 水生態(tài)學雜志, 2009, 2(3): 108–110]
Liu Y, Zhang SC, Jiang GL,. The development of the lymphoid organs of flounder,, from hatching to 13 months. Fish and Shellfish Immunology, 2004, 16(5): 621–632
Ma DC, Ye LH, Xu AY,. A histological study of. South China Fisheries Science, 2014, 10(4): 58–63 [馬定昌, 葉柳荷, 許愛娛, 等. 疣吻沙蠶組織切片的觀察研究. 南方水產(chǎn)科學, 2014, 10(4): 58–63]
Moore BR, Stapley J, Allsop Q,. Stock structure of blue threadfinacross northern Australia, as indicated by parasites. Journal of Fish Biology, 2011, 78(3): 923–936
Nakanishi T, Shibasaki Y, Matsuura Y. T cells in fish. Biology, 2015, 4: 640–663
Nayak AS, Lage CR, Kim CH. Effects of low concentrations of arsenic on the innate immune system of the zebrafish (). Toxicological Sciences, 2007, 98(1): 118–124
Ou YJ, Liu JH, Li JE,. Morphology and histology of head-kidney and spleen in.Journal of Southern Agriculture, 2015, 46(11): 2034–2039 [區(qū)又君, 劉江華, 李加兒, 等. 駝背鱸頭腎和脾臟的形態(tài)組織學觀察. 南方農(nóng)業(yè)學報, 2015, 46(11): 2034–2039]
Ou YJ, Xie MJ, Li JE,. First maturation and mass seedling propagation of culturedin Guangdong Province. South China Fisheries Science, 2017, 13(4): 97–104 [區(qū)又君, 謝木嬌, 李加兒, 等. 廣東池塘培育四指馬鲅親魚初次性成熟和苗種規(guī)?;庇夹g(shù)研究. 南方水產(chǎn)科學, 2017, 13(4): 97–104]
Pressley ME, PhelanⅢ PE, Witten PE. Pathogenesis and inflammatory response toinfection in the zebrafish. Developmental and Comparative Immunology, 2005, 29(6): 501–513
Rauta PR, Nayak B, Das S. Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunology Letters, 2012, 148(1): 23–33
Schuurman HJ, Kuper CF, Kendall MD. Thymic microenvironment at the light microscopic level. Microscopy Research and Technique, 1997, 38(3): 216–226
Su YL, Feng J, Guo ZX,Morphological studies on the development of lymphoid organs in Cobia. Marine Fisheries Research, 2008, 29(4): 7–14 [蘇友祿, 馮娟, 郭志勛, 等. 軍曹魚淋巴器官發(fā)育的形態(tài)學研究. 海洋水產(chǎn)研究, 2008, 29(4): 7–14]
Tian JY, Xie HX, Yao WJ,Ontogenetic development of the pronephros and the distribution of B-lymphocytes in adult pronephros of the mandarin fish. Acta Zoologica Sinica, 2005, 51(3): 440–446 [田敬云, 謝海俠, 姚衛(wèi)建, 等. 鱖魚頭腎的組織發(fā)生及成魚頭腎B淋巴細胞的分布. 動物學報, 2005, 51(3): 440–446]
Wang JJ, Peng S, Fei Y. Low mtDNA Cytb diversity and shallow population structure ofin the East China Sea and the South China Sea. Biochemical Systematics and Ecology, 2014, 55(2): 268–274
Willett CE, Cortes A, Zuasti A,. Early hematopoiesis and developing lymphoid organs in the zebrafish. Developmental Dynamics, 1999, 214(4): 323–336
Wu JY, Lin HR.Ontogeny of lymphoid organs in the orange- spotted grouper ().Acta Zoologica Sinica, 2003, 49(6): 819–828 [吳金英, 林浩然. 斜帶石斑魚淋巴器官個體發(fā)育的組織學. 動物學報, 2003, 49(6): 819–828]
Xing HF, Gao FT, Zhang YZ,. Molecular cloning, expression and SNP screening of natural resistance- associated macrophage protein (Nramp) gene cDNA from half smooth tongue sole (). Progress in Fishery Sciences, 2016, 37(4): 116–127 [邢賀飛, 高峰濤, 張永珍, 等. 半滑舌鰨()基因克隆與表達分析及SNP篩選. 漁業(yè)科學進展, 2016, 37(04): 116–127]
Zheng L, Jiang WD, Feng L,. Selenium deficiency impaired structural integrity of the head kidney, spleen and skin in young grass carp (). Fish and Shellfish Immunology, 2018, 82: 408–420
Histological Observations on the Early Development of Lymphoid Organs in
LAN Junnan1,2, WEN Jiufu1, LI Junwei1, OU Youjun1①, ZHOU Hui1, LI Jiaer1,LI Huo3
(1. Key Laboratory of South China Sea Fishery Resources Exploitation &Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300; 2. Shanghai Ocean University, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; National Demonstration Center for Experimental Fisheries, Science Education; Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306;3. Maoming Jinyang Tropical Fish Breeding Co. Ltd, Maoming 525444)
This work focused on the histological study of the ontogeny of lymphoid organs by paraffin tissue sections and HE staining techniques in, from 1 to 60 dph (day post hatching). The results showed that in the conditions of salinity 9.0±0.5 and water temperature (28±2)℃, thymus primordium appears at 3 dph that composed of 4~6 layers of undifferentiated stem cells and lymphocyte-like cells; thymus differentiated rapidly and mainly filled with lymphocytes; at 25 dph, the cortex and medulla are clearly distinguished and thymus development was basically completed. Similarly, the head kidney primordium formed at 3 dph, it consists of pronephric tubules and a few of hematopoietic stem cells; at 5 dph, the head kidney began to lymphatize when the thymic lymphocytes migrate there, and hematopoietic stem cells differentiated into different types of cells as the fish grew; at 18 dph, pronephric tubules began to degenerate and disappeared completely until 53 dph, when the head kidney is mainly composed of lymphopoietic tissue supported by reticular endothelial system. At 7 dph, the spleen primordium appears and begins to lymphatize obviously until 16 dph. The endothelial system of spleen is more developed than that of head kidney, but its development speed is significantly slower than thymus and head kidney, and lymphocytes are less than in the thymus and head kidney. These observations suggested that the respective lymphoid organs primordium becomes the thymus, head kidney and spleen successively. The structure and function of the lymphatic organs inhave not been fully developed and maybe one of the main causes of high mortality during the metamorphosis period. This study is of great significance for optimizing breeding conditions, improving juvenile cultivation and healthy aquaculture technology.
; Lymphoid organs; Development; Histology
Q954.6
A
2095-9869(2020)03-0070-08
10.19663/j.issn2095-9869.20190314003
區(qū)又君,研究員,E-mail: ouyoujun@126.com
2019-03-14,
2019-04-03
* 國家重點研發(fā)計劃“藍色糧倉科技創(chuàng)新”重點專項(2018YFD0900200)、廣東省“揚帆計劃”引進創(chuàng)新創(chuàng)業(yè)團隊項目(2016YT03H038)、廣東省省級科技計劃項目(2017B020204002)和廣東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(海水魚產(chǎn)業(yè))創(chuàng)新團隊建設專項資金(2019KJ143)共同資助 [This work was supported by Special Fund for "Blue Granary Science and Technology Innovation" of National Key Research and Development Program (2018YFD0900200), Guangdong “Yang Fan” Innovative & Entrepreneurial Research Team Program (2016YT03H038), Provincial Science and Technology Project of Guangdong Province (2017B020204002), and Guangdong Provincial Special Fund For Modern Agriculture Industry Technology (Marine Fish Industry) Innovation Teams(2019KJ143)]. 藍軍南,E-mail: ljn009@126.com
http://www.yykxjz.cn/
藍軍南, 溫久福, 李俊偉, 區(qū)又君, 周慧, 李加兒, 李活. 四指馬鲅淋巴器官發(fā)育組織學觀察. 漁業(yè)科學進展, 2020, 41(3): 70–77
Lan JN, Wen JF, Li JW, Ou YJ, Zhou H, Li JE, Li H. Histological observations on the early development of lymphoid organs in. Progress in Fishery Sciences, 2020, 41(3): 70–77
OU Youjun, E-mail: ouyoujun@126.com
(編輯 馬璀艷)