李 磊 平仙隱 宋 煒 蔣 玫 黃 艇 王魯民
基于IBR模型的Cu2+對(duì)厚殼貽貝的毒性效應(yīng)研究*
李 磊1平仙隱1宋 煒1蔣 玫1黃 艇2王魯民1①
(1. 中國(guó)水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所 上海 200090;2. 美國(guó)國(guó)際銅專業(yè)協(xié)會(huì)上海代表處 上海 200020)
為了研究Cu2+對(duì)厚殼貽貝()的毒性效應(yīng),開展了厚殼貽貝幼體在Cu2+水溶液中的96 h急性毒性效應(yīng)實(shí)驗(yàn)及7 d脅迫實(shí)驗(yàn),將厚殼貽貝內(nèi)臟團(tuán)、鰓組織中的超氧化物歧化酶(Superoxide dismutase, SOD)、過(guò)氧化氫酶(Catalase, CAT)、脂質(zhì)過(guò)氧化水平(Lipid peroxidation, LPO)以及金屬硫蛋白(Metallothioneins, MT)作為生物標(biāo)志物,應(yīng)用綜合生物標(biāo)志物響應(yīng)(Integrated biomarker response, IBR)指數(shù)整合4種生物標(biāo)志物。結(jié)果顯示,Cu2+對(duì)厚殼貽貝幼體的96 h半致死濃度為1.55 mg/L,內(nèi)臟團(tuán)、鰓組織各個(gè)生物標(biāo)志物指標(biāo)呈現(xiàn)出不同的變化趨勢(shì),內(nèi)臟團(tuán)、鰓組織SOD、CAT活性以及鰓組織MT含量均呈先上升后下降的趨勢(shì),內(nèi)臟團(tuán)組織MT含量及內(nèi)臟團(tuán)、鰓組織MDA含量均呈持續(xù)上升的趨勢(shì)。IBR值呈先上升后下降的趨勢(shì),內(nèi)臟團(tuán)組織IBR值高于鰓組織。研究表明,生物標(biāo)志物的變化與Cu2+暴露濃度有關(guān),IBR分析可以辨別不同暴露濃度之間的差異,可以作為量化污染物暴露效應(yīng)的有效工具。
厚殼貽貝;銅離子;毒性效應(yīng);IBR模型
人類對(duì)重金屬的開發(fā)利用歷史悠久,隨著現(xiàn)代工業(yè)的發(fā)展,大量的重金屬被排入水體環(huán)境中,由于重金屬不能被生物降解,因此,已經(jīng)成為一類典型的傳統(tǒng)環(huán)境污染物,主要包括鉛(Pb)、鎘(Cd)、鉻(Cr)、汞(Hg)、類金屬砷(As)等毒性較強(qiáng)的重金屬,也包括銅(Cu)、鋅(Zn)、鎳(Ni)等有一定毒性的一般重金屬(Bhuyan, 2017; J?rup, 2003)。重金屬通過(guò)生物富集在海洋生物體內(nèi)累積并最終通過(guò)食物鏈途徑轉(zhuǎn)移到人體體內(nèi),危害人類健康(Apeti, 2005; 孫元芹等, 2013)。Cu是一種存在于各種巖石和礦物中的微量金屬元素,由于其使用廣泛,不能被生物降解,易在生物體內(nèi)積累且對(duì)水生生物具有致毒效應(yīng)毒性而受到廣泛關(guān)注(Sloman, 2005)。水體中溶解態(tài)Cu2+對(duì)海洋魚類(Johnson, 2007; Monteiro, 2009)、微藻(Cid, 1995)、甲殼類(Hansen, 1992; Young, 1979)、無(wú)脊椎動(dòng)物(Iwinski, 2016)、貝類(Chang, 1996)等會(huì)產(chǎn)生氧化應(yīng)激、DNA損傷、細(xì)胞凋亡、蛋白質(zhì)變性等各類毒性效應(yīng)。
相比較其他海洋生物,海洋貝類由于其濾食性特點(diǎn),更容易從周圍環(huán)境中富集Cu2+等重金屬,常被用作重金屬污染的指示生物,因此,研究重金屬對(duì)海洋貝類的毒性效應(yīng)有重要的現(xiàn)實(shí)意義(Nsofor, 2014)。厚殼貽貝()主要分布于中國(guó)的渤海、黃東海等地,日本、朝鮮部分區(qū)域也有分布,屬于濾食性附著生活的雙殼貝類。國(guó)內(nèi)外學(xué)者利用分子生物標(biāo)志物研究了Cu2+對(duì)厚殼貽貝的毒性效應(yīng),Xu等(2016)、Li等(2012)、Wu等(2017)、王昊盛等(2017)、劉慧慧等(2014)從不同角度研究了厚殼貽貝不同組織酶活性及相關(guān)基因表達(dá)對(duì)Cu2+暴露脅迫的響應(yīng)。張翼飛(2017)研究了Cu2+和苯并芘(BaP)對(duì)厚殼貽貝的聯(lián)合毒性效應(yīng)。但各類生物標(biāo)志物對(duì)Cu2+的敏感程度不同,誘導(dǎo)程度、變化趨勢(shì)也存在差異,單獨(dú)依據(jù)個(gè)別生物標(biāo)志物對(duì)Cu2+暴露的響應(yīng)不能有效的評(píng)估Cu2+的毒性效應(yīng),需要一種能夠評(píng)估生物標(biāo)志物整體變化的方法。綜合生物標(biāo)志物響應(yīng)(Integrated biomarker response, IBR)指數(shù)能夠綜合所有的生物標(biāo)志物對(duì)污染物的響應(yīng),轉(zhuǎn)換成一個(gè)“壓力指數(shù)”值,已經(jīng)應(yīng)用于評(píng)估各類污染物的生物毒性效應(yīng)研究中(Kim, 2016; Xia, 2014; Zheng, 2013)。
本研究通過(guò)Cu2+對(duì)厚殼貽貝的暴露實(shí)驗(yàn),比較分析了厚殼貽貝的鰓、內(nèi)臟團(tuán)組織超氧化物歧化酶(Superoxide dismutase, SOD)、過(guò)氧化氫酶(Catalase, CAT)、脂質(zhì)過(guò)氧化水平(Lipid peroxidation, LPO)、金屬硫蛋白(Metallothioneins, MT)含量等生物標(biāo)志物在不同Cu2+暴露下的變化及相關(guān)關(guān)系,應(yīng)用IBR指數(shù)評(píng)價(jià)組織對(duì)Cu2+暴露的響應(yīng)差異,探討Cu2+對(duì)厚殼貽貝的致毒機(jī)理及其生理響應(yīng),為基于雙殼貝類的重金屬污染監(jiān)測(cè)預(yù)警提供更多的技術(shù)支持。
厚殼貽貝取自浙江省嵊泗縣枸杞島養(yǎng)殖區(qū),平均體重為(6.06±0.34) g,參考養(yǎng)殖區(qū)水環(huán)境條件并使用海水晶(溶解于純凈水中,Cu2+濃度為1.3×10–3mg/L)、純凈水配制實(shí)驗(yàn)用海水(鹽度為32.5,pH為8.10),水質(zhì)指標(biāo)符合《漁業(yè)水質(zhì)標(biāo)準(zhǔn)》(國(guó)家環(huán)境保護(hù)局,1989)的要求。實(shí)驗(yàn)容器為10 L的玻璃容器。Cu2+實(shí)驗(yàn)?zāi)敢簽?00 mg/ml的Cu2+標(biāo)準(zhǔn)溶液(中國(guó)標(biāo)準(zhǔn)物質(zhì)網(wǎng)),實(shí)驗(yàn)時(shí)稀釋到所需濃度。厚殼貽貝在實(shí)驗(yàn)開始前暫養(yǎng)3 d,每天投喂角毛藻(),每24 h 100%換水1次,水溫為(19.0±0.3)℃。
1.2.1 96 h急性毒性實(shí)驗(yàn) 采用半靜態(tài)實(shí)驗(yàn)方法,先進(jìn)行預(yù)實(shí)驗(yàn),確定厚殼貽貝全部死亡的最低濃度(LC0)和96 h全部存活的最高濃度(LC100),在預(yù)實(shí)驗(yàn)的基礎(chǔ)上,設(shè)置6組實(shí)驗(yàn)濃度(8.0、4.0、2.0、1.0、0.5、0.25 mg/L,配制海水中的Cu2+濃度極低,忽略不計(jì)),同時(shí),設(shè)置1組海水對(duì)照組,每組3個(gè)重復(fù),分別放置30個(gè)厚殼貽貝。實(shí)驗(yàn)期間,光照比為12∶12,水溫為(19.0±0.3)℃,容器加入5 L海水,每24 h 100%換水1次,實(shí)驗(yàn)期間不投喂餌料,使用微型充氣泵充氧,溶解氧(DO)的范圍為7.0~7.5 mg/L。及時(shí)將死亡的厚殼貽貝撈出,死亡標(biāo)準(zhǔn)是用玻璃棒重復(fù)觸碰,若厚殼貽貝沒(méi)有反應(yīng)確認(rèn)為死亡。分別于第24、48、72、96小時(shí)記錄厚殼貽貝的死亡情況。
利用SPSS16.0軟件進(jìn)行數(shù)據(jù)處理,采用概率單位算法計(jì)算96 h LC50,根據(jù)公式:SC=96 h LC50×0.1,計(jì)算Cu2+的安全濃度。
1.2.2 7 d毒性實(shí)驗(yàn) 根據(jù)96 h急性毒性實(shí)驗(yàn)結(jié)果(96 h LC50=1.55 mg/L),設(shè)置0.04、0.08、0.16 mg/L共3組實(shí)驗(yàn)濃度(1/10急性毒性實(shí)驗(yàn)濃度),實(shí)驗(yàn)進(jìn)行7 d時(shí),實(shí)驗(yàn)條件與96 h急性毒性實(shí)驗(yàn)相同,實(shí)驗(yàn)前與第0、1、3、7天分別采集8個(gè)樣品,取鰓、內(nèi)臟團(tuán)組織,保存在液氮中。
使用超純水(Millipore,美國(guó))配制與厚殼貽貝生理鹽度相同的冰水,取約0.5 g鰓、內(nèi)臟團(tuán)樣品置于4.5 ml生理鹽水中,在15000 r/min條件下,使用自動(dòng)勻漿機(jī)(Ika T10b,德國(guó))勻漿,勻漿樣品在4℃、1431 r/min條件下,離心20 min,取上清液(Lowe, 1995),使用南京建成生物工程研究所試劑盒測(cè)定SOD、CAT酶活性及MDA含量(代表LPO水平)。
將鰓、內(nèi)臟團(tuán)樣品按照1∶4的比例(體重/體積比)加入Tris-HCl緩沖液(pH為8.3),冰浴條件下勻漿,然后,將勻漿液在0℃、10000 r/min下離心30 min,取上清液,采用鎘–血紅蛋白飽和法測(cè)定MT含量(Onosaka, 1982)。利用原子吸收儀(SOLAARM6, Thermo Fisher Scientific, 美國(guó))分析Cd2+濃度,按照 1個(gè)MT分子結(jié)合6個(gè)Cd2+和MT分子量為7000 Da的原則(Narula, 1995)計(jì)算MT的含量(μg/g)。
各階段生物標(biāo)志物的得分B值計(jì)算公式:
式中,|min|為各階段生物標(biāo)志物均一化處理后的數(shù)據(jù)最小值的絕對(duì)值,B值的大小在星狀圖中以輻射線的長(zhǎng)度代表,星狀圖面積(即圖中由相鄰生物標(biāo)志物的輻射線圍成的三角形面積A之和)按照下列公式計(jì)算:
式中,為生物標(biāo)志物數(shù)量;為相鄰的2條輻射線夾角,=2π/;n+1=1。當(dāng)=4時(shí),=π/2,A計(jì)算公式可以簡(jiǎn)化為:
A=BB+1/2
所有數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)差(Means±SD)表示,應(yīng)用SPSS 16.0軟件對(duì)數(shù)據(jù)進(jìn)行分析,采用單因素方差(One-way ANOVA)對(duì)數(shù)據(jù)進(jìn)行分析,差異顯著時(shí)進(jìn)行Duncan’s test多重比較,顯著性水平設(shè)為0.05。
Cu2+濃度與厚殼貽貝的死亡率之間表現(xiàn)為正相關(guān)的劑量效應(yīng)關(guān)系,劑量效應(yīng)關(guān)系公式為:
=0.834+4.634
相關(guān)系數(shù)2=0.958,96 h LC50濃度為1.55 mg/L,安全濃度為0.16 mg/L。
2.2.1 Cu2+對(duì)厚殼貽貝鰓、內(nèi)臟團(tuán)組織SOD活性的影響 各實(shí)驗(yàn)組中,厚殼貽貝鰓組織、內(nèi)臟團(tuán)的SOD活性均表現(xiàn)為先上升后下降的趨勢(shì)(圖1)。各實(shí)驗(yàn)組厚殼貽貝鰓組織的SOD活性在第1天即達(dá)到最高值,其中,0.16、0.08 mg/L組鰓組織的SOD活性均顯著高于對(duì)照組(<0.05),分別為對(duì)照組的2.93、2.20倍,0.04 mg/L組中鰓組織的SOD活性與對(duì)照組之間無(wú)顯著差異(>0.05);第3天時(shí),僅有0.16 mg/L組鰓組織的SOD活性顯著高于對(duì)照組(<0.05);第7天時(shí),3組實(shí)驗(yàn)組中鰓組織的SOD活性與對(duì)照組間均無(wú)顯著差異(>0.05)(圖1a)。0.16 mg/L實(shí)驗(yàn)組厚殼貽貝內(nèi)臟團(tuán)的SOD活性在3個(gè)取樣階段均顯著高于對(duì)照組(<0.05),第3天達(dá)到峰值,分別為對(duì)照組的2.45、3.32、2.80倍;0.08 mg/L組內(nèi)臟團(tuán)的SOD活性在第3、7天顯著高于對(duì)照組,分別為對(duì)照組的2.48和2.11倍;0.04 mg/L組鰓組織的SOD活性與對(duì)照組間無(wú)顯著差異(>0.05)(圖1b)。
圖1 Cu2+對(duì)鰓(a)、內(nèi)臟團(tuán)(b)SOD活性的影響
*為與對(duì)照組相比差異顯著(<0.05),下同
Single asterisk (*) indicates significant difference between treatment groups and control group (<0.05), the same as below
2.2.2 Cu2+對(duì)厚殼貽貝鰓、內(nèi)臟團(tuán)CAT活性的影響
各實(shí)驗(yàn)組中,厚殼貽貝鰓組織、內(nèi)臟團(tuán)的CAT活性變化呈先上升后下降的趨勢(shì)(圖2)。各實(shí)驗(yàn)組厚殼貽貝鰓組織的CAT活性在第1天即達(dá)到最高值,但僅有0.16 mg/L實(shí)驗(yàn)組鰓組織的CAT活性顯著高于對(duì)照組(<0.05),為對(duì)照組的3.02倍,其余實(shí)驗(yàn)組與對(duì)照組間均無(wú)顯著差異(>0.05)(圖2a)。各實(shí)驗(yàn)組厚殼貽貝內(nèi)臟團(tuán)的CAT活性也在第1天即達(dá)到最高值,其中,0.16、0.08 mg/L實(shí)驗(yàn)組內(nèi)臟團(tuán)的CAT活性均顯著高于對(duì)照組(<0.05),分別為對(duì)照組的3.50、2.65倍;0.04 mg/L實(shí)驗(yàn)組內(nèi)臟團(tuán)的SOD活性與對(duì)照組間無(wú)顯著差異(>0.05)。第3 天僅有0.16 mg/L實(shí)驗(yàn)組內(nèi)臟團(tuán)組織的CAT活性顯著高于對(duì)照組(<0.05),第7天各實(shí)驗(yàn)組內(nèi)臟團(tuán)的CAT活性與對(duì)照組之間均無(wú)顯著差異(>0.05)(圖2b)。
圖2 Cu2+對(duì)鰓(a)、內(nèi)臟團(tuán)(b)CAT活性的影響
2.2.3 Cu2+對(duì)厚殼貽貝鰓、內(nèi)臟團(tuán)MDA含量的影響
各實(shí)驗(yàn)組厚殼貽貝鰓組織、內(nèi)臟團(tuán)的MDA含量均呈逐漸上升的趨勢(shì)(圖3)。第3天開始,0.16、 0.08 mg/L實(shí)驗(yàn)組鰓組織的MDA含量均顯著高于對(duì)照組(<0.05),0.04 mg/L實(shí)驗(yàn)組鰓組織的MDA含量與對(duì)照組間無(wú)顯著差異(>0.05)(圖3a)。第1天開始,0.16、0.08 mg/L實(shí)驗(yàn)組內(nèi)臟團(tuán)的MDA含量均顯著高于對(duì)照組(<0.05),0.04 mg/L實(shí)驗(yàn)組內(nèi)臟團(tuán)組織的MDA含量與對(duì)照組間無(wú)顯著差異(>0.05);第3、7天時(shí),3個(gè)實(shí)驗(yàn)組內(nèi)臟團(tuán)組織的MDA含量均顯著高于對(duì)照組(<0.05)(圖3b)。
2.2.4 Cu2+對(duì)厚殼貽貝鰓、內(nèi)臟團(tuán)MT含量的影響
各實(shí)驗(yàn)組厚殼貽貝鰓組織的MT含量變化呈先上升后下降的趨勢(shì)(圖4a)。厚殼貽貝鰓組織的MT含量在第1天即達(dá)到最高值,其中,0.16、0.08 mg/L實(shí)驗(yàn)組鰓組織的MT含量均顯著高于對(duì)照組(<0.05);分別為對(duì)照組的5.25、3.12倍,0.04 mg/L實(shí)驗(yàn)組內(nèi)鰓組織的MT含量與對(duì)照組間無(wú)顯著差異(>0.05);第3、7天僅有0.16 mg/L實(shí)驗(yàn)組中鰓組織的MT含量均顯著高于對(duì)照組(<0.05),其余2個(gè)實(shí)驗(yàn)組與對(duì)照組間無(wú)顯著差異(>0.05)(圖4a)。各實(shí)驗(yàn)組厚殼貽貝內(nèi)臟團(tuán)的MT含量變化呈逐漸上升的趨勢(shì)(圖4b)。第1天開始,僅有0.16 mg/L實(shí)驗(yàn)組內(nèi)臟團(tuán)的MT含量顯著高于對(duì)照組(<0.05),為對(duì)照組的2.76倍,其余2個(gè)實(shí)驗(yàn)組內(nèi)臟團(tuán)的MT含量與對(duì)照組間無(wú)顯著差異(>0.05);第3天時(shí),0.16、0.08 mg/L實(shí)驗(yàn)組內(nèi)臟團(tuán)組織的MT含量均顯著高于對(duì)照組(<0.05),分別為對(duì)照組的4.21、2.86倍,0.04 mg/L實(shí)驗(yàn)組內(nèi)臟團(tuán)組織的MT含量與對(duì)照組間無(wú)顯著差異(>0.05);第7天時(shí),3個(gè)實(shí)驗(yàn)組中內(nèi)臟團(tuán)組織的MT含量均顯著高于對(duì)照組(<0.05)。
圖3 Cu2+對(duì)鰓(a)、內(nèi)臟團(tuán)(b)MDA含量的影響
圖4 Cu2+對(duì)鰓(a)、內(nèi)臟團(tuán)(b)MT含量的影響
各實(shí)驗(yàn)組厚殼貽貝鰓組織、內(nèi)臟團(tuán)組織IBR值隨暴露時(shí)間的變化見圖5。從圖5可以看出,1~7 d各實(shí)驗(yàn)組厚殼貽貝鰓組織、內(nèi)臟團(tuán)組織IBR值均呈先上升后下降的趨勢(shì)。其中,0.16、0.08 mg/L實(shí)驗(yàn)組中鰓組織均在第3天達(dá)到峰值,0.04 mg/L實(shí)驗(yàn)組中鰓組織在第1天達(dá)到峰值,IBR峰值分別為2.23、1.24、0.41(圖5a)。0.16、0.08、0.04 mg/L實(shí)驗(yàn)組內(nèi)臟團(tuán)組織均在第3天達(dá)到峰值,IBR峰值分別為12.24、5.98、3.22(圖5b)。相同濃度下,內(nèi)臟團(tuán)組織IBR值高于鰓組織,各實(shí)驗(yàn)組厚殼貽貝鰓組織、內(nèi)臟團(tuán)組織IBR值均隨實(shí)驗(yàn)濃度的下降而下降。
圖5 IBR值隨時(shí)間的變化
Zn、Cu、Cd、Hg等重金屬能誘導(dǎo)MT的合成,并與重金屬相結(jié)合,誘導(dǎo)程度與重金屬濃度、種類具有一定的相關(guān)性,是生物體解毒代謝重金屬的重要途徑之一,MT含量的變化可以預(yù)測(cè)機(jī)體組織受重金屬脅迫的壓力,已經(jīng)在眾多研究中證實(shí)(Ridlington, 1979; Thirumoorthy, 2007)。Cu2+是生物體新陳代謝必需的元素之一,但過(guò)量的Cu2+對(duì)生物體組織會(huì)造成損傷。在本研究中,各實(shí)驗(yàn)組中鰓組織、內(nèi)臟團(tuán)組織MT含量第1天即開始上升,且高濃度暴露組均顯著高于對(duì)照組(<0.05)(圖4)。此時(shí),機(jī)體組織通過(guò)MT的合成并與Cu2+結(jié)合,減少Cu2+與機(jī)體細(xì)胞中具有高親和力的巰基(-SH)基團(tuán)非特異性結(jié)合,最終利用溶酶體將結(jié)合物從細(xì)胞質(zhì)中排出,降低Cu2+的毒性(Isani, 2000)。同時(shí),各實(shí)驗(yàn)組鰓組織、內(nèi)臟團(tuán)組織MT含量變化趨勢(shì)存在差異,鰓組織MT含量在第1天峰值后開始逐漸下降,而內(nèi)臟團(tuán)組織MT含量呈逐漸上升趨勢(shì),這與不同組織對(duì)重金屬的富集能力及組織之間的蛋白質(zhì)代謝變化差異有關(guān),相比較鰓組織,內(nèi)臟團(tuán)組織中的蛋白質(zhì)水平更高(Legras, 2000),同時(shí),由于生物體自身的屏障屬性,不同組織間的重金屬分布狀況存在差異,內(nèi)臟團(tuán)組織對(duì)重金屬的富集能力高于鰓組織,MT的含量與重金屬含量有一定的正相關(guān)關(guān)系(Domouhtsidou, 2004),上述2個(gè)因素共同決定了內(nèi)臟團(tuán)組織中MT的含量高于鰓組織。
使用生物標(biāo)志物評(píng)估毒性物質(zhì)的毒性效應(yīng)及作用途徑是一個(gè)常用手段,通常情況下,多種生物標(biāo)志物會(huì)同時(shí)出現(xiàn),以解釋不同的毒性效應(yīng),但過(guò)多的生物標(biāo)志物混合就使整體的毒性效應(yīng)及其變化趨勢(shì)難以解釋。本研究中,各濃度實(shí)驗(yàn)組生物標(biāo)志物相比較對(duì)照組均表現(xiàn)出一定的變化,從不同角度反映出Cu2+對(duì)厚殼貽貝內(nèi)臟團(tuán)組織、鰓組織的影響。為了更準(zhǔn)確地比較Cu2+對(duì)厚殼貽貝的整體脅迫壓力,使IBR指數(shù)可以通過(guò)量化的數(shù)值直觀比較Cu2+對(duì)厚殼貽貝不同組織的暴露毒性。在本研究中,厚殼貽貝的鰓組織、內(nèi)臟團(tuán)組織表現(xiàn)出不同的劑量–毒性效應(yīng)結(jié)果(圖5),對(duì)相同組織,高濃度實(shí)驗(yàn)組的IBR值高于低濃度實(shí)驗(yàn)組,而對(duì)相同實(shí)驗(yàn)濃度,內(nèi)臟團(tuán)組織的IBR值高于鰓組織。這個(gè)結(jié)果不僅驗(yàn)證了內(nèi)臟團(tuán)組織的主要解毒代謝功能,更量化了其與鰓組織的差異,表明IBR可以作為一種定量評(píng)價(jià)污染物毒性效應(yīng)的有效工具。
Alzbeta S, Jana M, Josef V. Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (L.). Pesticide Biochemistry and Physiology, 2012, 33(2): 334–343
Apeti DA, Johnson E, Robinson L. A model for bioaccumulation of metals infrom Apalachicola Bay, Florida. American Journal of Environmental Sciences, 2005, 1(3): 239–248
Bhuyan MS, Bakar MA, Akhtar A,. Heavy metal contaminationin surface water and sediment of the Meghna River, Bangladesh.Environmental Nanotechnology, Monitoring and Management, 2017, 8: 273–279
Chang EY, Coon SL, Walch M,. Effects of hyphomonas PM-1 biofilms on the toxicity of copper and zinc toandlarval set. Journal of Shellfish Research, 1996, 15(3): 589–595
Cid A, Herrero C, Torres E,. Copper toxicity on the marine microalga: Effects on photosynthesis and related parameters. Aquatic Toxicology, 1995, 31(2): 165–174
Domouhtsidou GP, Dailianis S, Kaloyianni M,. Lysosomal membrane stability and metallothionein content in(L.), as biomarkers: Combination with trace metal concentrations. Marine Pollution Bulletin, 2004, 48(5): 572–586
Hansen JI, Mustafa T, Depledge M. Mechanisms of copper toxicity in the shore crab,. Marine Biology, 1992, 114(2): 253–257
Isani G, Andreani G, Kindt M,. Metallothioneins (MTs) in marine molluscs. Cellular and Molecular Biology, 2000, 46(2): 311–330
Iwinski KJ, Mcqueen AD, Kinley CM,. Sediment copper concentrations, in situ benthic invertebrate abundance, and sediment toxicity: Comparison of Treated and Untreated Coves in a Southern Reservoir. Water Air and Soil Pollution, 2016, 227(3): 85
J?rup L. Hazards of heavy metal contamination. British Medical Bulletin, 2003, 68(1): 167–182
Johnson A, Carew E, Sloman KA. The effects of copper on the morphological and functional development of zebrafish embryos. Aquatic Toxicology, 2007, 84(4): 431–438
Kim JH, Kim WK. Use of the integrated biomarker response to measure the effect ofshort-term exposure to dibenz [a, h] anthracene in common carp (). Bulletin of Environmental Contamination and Toxicology, 2016, 96(4): 1–6
Legras S, Mouneyrac C, Amiard JC,. Changes in metallothionein concentrations in response to variation in natural factors (salinity, sex, weight) and metal contamination in crabs from a metal-rich estuary. Journal of Experimental Marine Biology and Ecology, 2000, 246(2): 259–279
Li YF, Gu ZQ, Liu H,. Biochemical response of the mussel(Mytiloida: Mytilidae) exposed to in vivo sub-lethal copper concentrations. Chinese Journal of Oceanology and Limnology, 2012, 30(5): 738–745
Liu HH, He JY, Zhao RT,. Molecular expression pattern of glutathione S-transferase gene inexposed to heavy metals.Oceanologia et Limnologia Sinica, 2014, 45(2): 274–280 [劉慧慧, 何建瑜, 趙榮濤, 等. 重金屬脅迫下厚殼貽貝谷胱甘肽S-轉(zhuǎn)移酶基因表達(dá)分析. 海洋與湖沼, 2014, 45(2): 274–280]
Lowe DM, Soverchia C, Moore MN. Lysosomal membrane responses in the blood and digestive cells of mussels experimentally exposed to fluoranthene. Aquatic Toxicology, 1995, 33(2): 105–112
Masseroli M, Galati O, Pinciroli F. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation.reduction of phospholipid and cholesterol hydroperoxides. Journal of Biological Chemistry, 1990, 265(1): 454–461
Modesto KA, Martinez CBR. Roundup?causes oxidative stress in liver and inhibits acetylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere, 2010, 78(3): 294–299
Monteiro SM, Dos Santos NM, Calejo M,. Copper toxicity in gills of the teleost fish,Effects in apoptosis induction and cell proliferation. Aquatic Toxicology, 2009, 94(3): 219–228
Narula SS, Brouwer MY, Armitage IM. Three-dimensional solution structure ofmetallothionein-1 determined by homonuclear and heteronuclear magnetic resonance spectroscopy. Biochemistry, 1995, 34(2): 620–631
Nsofor CI, Igwilo IO, Ikpeze OO,. Bioaccumulation of heavy metals in shellfishin Niger River at Onitsha, Anambra State, Nigeria. International Journal of Agriculture and Biosciences, 2014, 3(1): 38–40
Onosaka S, Cherian MG.Comparison of metallothionein determination by polarographic and cadmium-saturation methods. Toxicology and Applied Pharmacology, 1982, 63(2): 270–274
Oost RVD, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 2003, 13(2): 57–149
Ridlington JW, Fowler BA. Isolation and partial characterization of a cadmium-binding protein from the American oyster (). Chemico-Biological Interactions, 1979, 25(2–3): 127–138
Sloman KA, Wilson RW. Anthropogenic impacts upon behaviour and physiology. Fish Physiology, 2005, 24(5): 413–468
Solé M, Porte C, Albaigés J. The use of biomarkers for assessing the effects of organic pollution in mussels. Science of the Total Environment, 1995, 159(2–3): 147–153
Solé M. Assessment of the results of chemical analyses combined with the biological effects of organic pollution on mussels. TrAC Trends in Analytical Chemistry, 2000, 19(1): 1–9
State Environmental Protection Agency. Fishery water quality standards. Beijing: Chinese Specification Press, 1989 [國(guó)家環(huán)境保護(hù)局. 漁業(yè)水質(zhì)標(biāo)準(zhǔn). 北京:中國(guó)標(biāo)準(zhǔn)出版社, 1989]
Sun YQ, Wu ZH, Sun FX,. Accumulation and elimination ofto copper. Progress in Fishery Sciences, 2013, 34(1): 126–132 [孫元芹, 吳志宏, 孫福新, 等. 文蛤?qū)χ亟饘貱u的富集與排出特征. 漁業(yè)科學(xué)進(jìn)展, 2013, 34(1): 126–132]
Thirumoorthy N, Manisenthil KK, Shyam SA,. Metallothionein: An overview. World Journal Gastroenterology, 2007, 13(7): 993–996
Velisek J, Stara A, Li ZH,. Comparison of the effects of four anaesthetics on blood biochemical profiles and oxidative stress biomarkers in rainbow trout. Aquaculture, 2011, 310(3): 369–375
Wang HS, Song XJ, Dong WQ,. The cDNA cloning and characterization ofmetallothionein 10 as well as its mRNA expression under the Cu2+stress. Oceanologia et Limnologia Sinica, 2017, 48(4): 864–869 [王昊盛, 宋鑫金, 董文強(qiáng), 等. 厚殼貽貝()金屬硫蛋白MT-10: cDNA克隆、結(jié)構(gòu)分析及銅離子脅迫下的表達(dá). 海洋與湖沼, 2017, 48(4): 864–869]
Wu J, Bao M, Ge D,. The expression of superoxide dismutase inunder various stressors. Fish and Shellfish Immunology, 2017, 70: 361–371
Xia B, Chen B, Sun X,. Toxicological effects of crude oil: Integrated biomarker responses in the hepatopancreas of clam. Asian Journal of Chemistry, 2014, 26(12): 3631–3638
Xu M, Jiang L, Shen KN,. Transcriptome response to copper heavy metal stress in hard-shelled mussel (). Genomics Data, 2016, 7(C): 152–154
Young JS, Gurtisen JM, Apts CW,. The relationship between the copper complexing capacity of sea water and copper toxicity in shrimp zoeae. Marine Environmental Research, 1979, 2(4): 265–273
Zhang YF. Complex toxic impacts of heavy metals and benzo (a) pyrene on marine mussels. Master′s Thesis of Zhejiang University, 2017 [張翼飛. 重金屬與苯并芘在貽貝體內(nèi)的復(fù)合毒性效應(yīng). 浙江大學(xué)碩士研究生學(xué)位論文, 2017]
Zheng Q, Feng M, Dai Y. Comparative antioxidant responses in liver ofexposed to phthalates: An integrated biomarker approach. Environmental Toxicology and Pharmacology, 2013, 36(3): 741–749
Toxic Effects of Copper Ion in: An Integrated Biomarker Approach
LI Lei1, PING Xianyin1, SONG Wei1, JIANG Mei1, HUANG Ting2, WANG Lumin1①
(1. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090; 2. International Copper Association, Ltd. (ICA), Shanghai 200020)
Heavy metal contamination of the natural environment has always been a great concern, because of toxicity and non-biodegradability of the metals. Copper (Cu) is an abundant trace element found in a variety of rocks and minerals and has
much attention due to its widespread use, persistence in nature, tendency to accumulate in and toxicity to aquatic organisms. There are many documented physiological effects of waterborne Cu2+exposure in a variety of shellfish species, but further research is needed to explain the relationship between Cu2+and shellfish species. To study the toxicological effects of Cu2+on mussel, juvenilewere exposed to aqueous solutions of Cu2+. Ninety-six-hour acute toxicity effect experiments and 7 days stress experiments were carried out. Biomarkers including superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), and metallothioneins (MT) in gill and visceral mass were determined after seven days of exposure. Integrated biomarker response (IBR) was calculated by combining multiple biomarkers into a single value in order to assess the responses of different tissues. The acute toxicity experiments showed 1.55 mg/L to be the 96 h median lethal concentration in juvenile. The 7 days stress experimental results showed that the activity of biomarkers were inhibited by all test concentrations and each index hadits own variation trend.Biomarkers SOD and CAT showed activity in gill and visceral mass, MT content in the gill firstly increased and then tended to decrease later, while the MT content in visceral mass and MDA content in gill and visceral mass exhibited an upward tendency. IBR values exhibited an increase at first then tended to decrease later, the IBR value in the visceral mass was higher than that in the gill. Changes of biomarkers’ activity were related to different exposure concentrations. IBR analysis allowed good discrimination between the different exposure concentrations and might be a useful tool for the quantification of various biomarker responses induced by toxic chemicals.
; Copper ion; Toxic effects; Integrated biomarker response model
WANG Lumin, E-mail: lmwang@eastfishery.ac.cn
X171.5
A
2095-9869(2020)03-0032-08
* 中國(guó)水產(chǎn)科學(xué)研究院基本科研業(yè)務(wù)費(fèi)(2017HY-ZD0606)、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)資金(CARS-47-G25)和中國(guó)水產(chǎn)科學(xué)研究院科技創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2020TD14)共同資助[This work was supported by the Central Public-Interest Scientific Institution Basal Research Fund (2017HY-ZD0606), and Modern Agro–Industry Technology Research System (CARS-47-G25), and Central Public-Interest Scientific Institution Basal Research Fund (2020TD14)]. 李 磊,E-mail: zheyilee@126.com
王魯民,研究員,E-mail: lmwang@eastfishery.ac.cn
2019-03-22,
2019-04-12
(編輯 陳 嚴(yán))