單秀娟 胡芷君 邵長(zhǎng)偉 唐 政
捕撈誘導(dǎo)魚類生物學(xué)特征進(jìn)化研究進(jìn)展*
單秀娟1,2①胡芷君1,3邵長(zhǎng)偉1,2唐 政1,3
(1. 中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室 山東省漁業(yè)資源與生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室 青島 266071;2. 青島海洋科學(xué)與技術(shù)試點(diǎn)國(guó)家實(shí)驗(yàn)室海洋漁業(yè)科學(xué)與食物產(chǎn)出過(guò)程功能實(shí)驗(yàn)室 青島 266071;3. 上海海洋大學(xué)海洋科學(xué)學(xué)院 上海 201306)
隨著捕撈強(qiáng)度加大,漁業(yè)生物為了應(yīng)對(duì)捕撈壓力、維持種族繁衍,逐漸產(chǎn)生適應(yīng)性進(jìn)化,這一過(guò)程稱為捕撈誘導(dǎo)進(jìn)化(Fishing-induced evolution, FIE),通常表現(xiàn)為漁業(yè)生物個(gè)體變小、性成熟提前,個(gè)體對(duì)捕撈的敏感性增強(qiáng),進(jìn)一步導(dǎo)致漁業(yè)種群結(jié)構(gòu)簡(jiǎn)單、生態(tài)系統(tǒng)穩(wěn)定性下降和漁業(yè)經(jīng)濟(jì)效益降低。認(rèn)知捕撈誘導(dǎo)的漁業(yè)生物適應(yīng)性進(jìn)化,掌握捕撈對(duì)漁業(yè)種群的作用機(jī)制,有利于制定科學(xué)合理的漁業(yè)資源養(yǎng)護(hù)與管理策略。雖然FIE方面已進(jìn)行了大量研究,但FIE在生理、生態(tài)及基因?qū)用嫔蠈?duì)漁業(yè)生物的具體影響過(guò)程尚未明確,尤其是在氣候變化、多物種相互作用等的動(dòng)態(tài)環(huán)境中,F(xiàn)IE的作用方式更為復(fù)雜。作者綜述了魚類FIE的主要研究方法,總結(jié)了捕撈對(duì)大個(gè)體的選擇性在魚類生長(zhǎng)、性成熟和行為方面的影響,并分析了這種影響對(duì)漁業(yè)種群恢復(fù)與管理產(chǎn)生的效應(yīng),以及今后需要解決的關(guān)鍵科學(xué)問(wèn)題,旨在為FIE的進(jìn)一步深入研究和漁業(yè)資源的科學(xué)管理提供幫助。
魚類;捕撈誘導(dǎo)進(jìn)化;漁業(yè)資源;生物學(xué)特征;進(jìn)化影響評(píng)估
漁業(yè)資源是人類食物的重要來(lái)源之一。但是,隨著捕撈強(qiáng)度加大,全球已有超過(guò)30%的漁業(yè)資源遭受過(guò)度捕撈,約60%處于完全開(kāi)發(fā)階段(FAO, 2016)。為了適應(yīng)捕撈壓力、維持種群繁衍,漁業(yè)生物會(huì)在短時(shí)間內(nèi)發(fā)生適應(yīng)性進(jìn)化,這個(gè)過(guò)程稱為捕撈誘導(dǎo)進(jìn)化(Fishing-induced evolution, FIE) (J?rgensen, 2007)。Rutter (1902)首次提出捕撈可能使魚類退化,但由于不符合當(dāng)時(shí)物種進(jìn)化緩慢的觀念,且缺乏相關(guān)理論支撐,同一時(shí)期很多類似研究都未受到重視,如Cooper等(1953)、Handford等(1977)和Borisov (1978)。20世紀(jì)末,研究發(fā)現(xiàn)過(guò)度捕撈導(dǎo)致大西洋鱈()生物量嚴(yán)重下降、性成熟年齡提前和體長(zhǎng)變小(Olsen, 2004; Hutchings, 2004),恢復(fù)過(guò)程也變得十分緩慢(Sinclair, 2002),人們開(kāi)始認(rèn)識(shí)到捕撈可能誘導(dǎo)海洋生物發(fā)生快速進(jìn)化并阻礙種群恢復(fù)(Kuparinen, 2007)。21世紀(jì)初,F(xiàn)IE逐漸成為漁業(yè)資源研究的熱點(diǎn)問(wèn)題之一。我國(guó)關(guān)注到FIE問(wèn)題是在20世紀(jì)60年代,研究人員從“四大家魚”中觀察到“魚類小型化”現(xiàn)象(朱成德等, 1979)。此后,在海洋捕撈和人工繁殖過(guò)程中,漁業(yè)生物也被發(fā)現(xiàn)存在小型化和性早熟現(xiàn)象(詹秉義等, 1986; 陳景元, 1985)。截止目前,F(xiàn)IE已經(jīng)是一個(gè)普遍的生態(tài)學(xué)現(xiàn)象,影響著漁業(yè)生物的生物學(xué)、生理、行為和遺傳結(jié)構(gòu)等(付輝云等, 2015; Uusi-Heikkil?, 2008; Kokkonen, 2015),進(jìn)而對(duì)漁獲物質(zhì)量、產(chǎn)量以及整個(gè)生態(tài)系統(tǒng)產(chǎn)生重要影響(J?rgensen, 2013; Kuparinen, 2016)。
為了掌握捕撈對(duì)漁業(yè)生物進(jìn)化的作用機(jī)制,制定合理的漁業(yè)資源管理策略,需要對(duì)FIE進(jìn)行深入研究。近年來(lái),F(xiàn)IE的研究有很多,主要以魚類作為研究對(duì)象,研究?jī)?nèi)容集中在捕撈對(duì)魚類生活史特征和遺傳結(jié)構(gòu)的影響(Walraven, 2010; Diaz, 2015; Cuveliers, 2011)、探索多種研究方法在捕撈進(jìn)化效應(yīng)的應(yīng)用(Pauli, 2014; 李莉等, 2016; Laugen, 2014)、FIE在種群和生態(tài)系統(tǒng)水平上的影響及其對(duì)漁業(yè)經(jīng)濟(jì)和管理的意義(Enberg, 2009; Eikeset, 2013)等。然而,由于受到氣候變化、污染和圍填海等多種因素影響(樊偉等, 2001),研究FIE的具體過(guò)程與機(jī)制難度較大,多數(shù)研究結(jié)論只是理論或?qū)嶒?yàn)預(yù)測(cè),還缺少確切的野外觀測(cè)證據(jù)(Heino, 2015; Hard, 2008)。我國(guó)尚未進(jìn)行FIE的系統(tǒng)研究,少量相關(guān)研究主要探究魚類生物學(xué)特征、種群結(jié)構(gòu)變動(dòng)及其管理對(duì)策(李忠義等, 2017; 朱曉光等, 2009),以及網(wǎng)具選擇性、捕撈和環(huán)境變化對(duì)魚類生物學(xué)特征和種群結(jié)構(gòu)的影響(林群等, 2016; 孫鵬, 2013)等。本文綜述了國(guó)內(nèi)外FIE的相關(guān)研究結(jié)果,總結(jié)了FIE的主要研究方法和主要的捕撈方式(底拖網(wǎng))在魚類生長(zhǎng)、性成熟和行為方面的影響,分析了其對(duì)種群恢復(fù)及漁業(yè)資源管理的意義,旨在為FIE的進(jìn)一步研究和漁業(yè)資源管理提供參考資料。
研究FIE的難點(diǎn)之一在于如何厘清環(huán)境和捕撈壓力、區(qū)分表型可塑性和進(jìn)化作用,至今還沒(méi)有一個(gè)十分有效的方法。20世紀(jì)末以前,主要利用簡(jiǎn)單的回歸統(tǒng)計(jì)方法分析野外調(diào)查數(shù)據(jù),但不能有效排除環(huán)境作用(Bigler, 1996)。之后的研究方法可大致分為4種,分別應(yīng)用于不同方面的FIE研究,并各有其優(yōu)缺點(diǎn)(Conover, 2009a) (表1)。
一是野外生態(tài)學(xué)的方法,利用野外調(diào)查數(shù)據(jù)構(gòu)建統(tǒng)計(jì)模型,用于排除環(huán)境影響。其中,使用最多的是概率成熟反應(yīng)范式(Probabilistic maturation reaction norms, PMRN),該模型假設(shè)環(huán)境變化通過(guò)生長(zhǎng)作用于性成熟,即未成熟魚類在發(fā)育到性成熟的生長(zhǎng)過(guò)程中已包含了影響性成熟的所有因素,其性成熟概率變化反映的是魚類自身的變化——遺傳進(jìn)化。因此,PMRN方法可以在缺少遺傳數(shù)據(jù)的情況下揭示魚類的進(jìn)化可能性,而且所需的年齡、體長(zhǎng)和性成熟數(shù)據(jù)較容易獲取、使用方法簡(jiǎn)單(Dieckmann, 2007)。但是,由于魚類性成熟所受的部分外界影響因素可能并不影響其生長(zhǎng),因此,并未包含在此性成熟概率中,概率變化未能完全證實(shí)適應(yīng)性進(jìn)化的存在(Kraak, 2007)。
表1 捕撈誘導(dǎo)進(jìn)化(FIE)的研究方法及其優(yōu)缺點(diǎn)
Tab.1 Research methods of fishing-induced evolution (FIE) and their advantages and shortages
二是實(shí)驗(yàn)生態(tài)學(xué)方法,已廣泛且有效地應(yīng)用于各個(gè)研究領(lǐng)域。在FIE研究上也不例外,其應(yīng)用范圍包括探究捕撈對(duì)魚類行為的影響(Sutter, 2012)、量化生物學(xué)特征的演化速率(Audzijonyte, 2013)、觀測(cè)特征之間的共同演變(Cooke, 2007)和結(jié)合分子技術(shù)探究捕撈選擇的遺傳機(jī)制(Wijk, 2013; Uusi-Heikkil?, 2017)等。在人為控制的不同捕撈壓力條件下,Conover等(2002)首次為海洋魚類的FIE提供了實(shí)驗(yàn)證據(jù)。
三是數(shù)值模擬,得益于數(shù)據(jù)分析技術(shù)的發(fā)展,使用計(jì)算機(jī)模擬魚類生活史動(dòng)態(tài)有利于從中得出FIE的作用規(guī)律。如今,數(shù)值模擬方法多用于探究網(wǎng)具選擇性的影響程度(J?rgensen, 2009)、過(guò)度開(kāi)發(fā)時(shí)魚類的恢復(fù)情況(Dunlop, 2009; Kuparine, 2012)以及量化FIE對(duì)漁業(yè)經(jīng)濟(jì)效益的影響(Zimmermann, 2015)等,但模擬結(jié)果與野外情況的一致性還需進(jìn)一步驗(yàn)證。
四是遺傳學(xué)方法,由于野外遺傳數(shù)據(jù)缺乏,該方法一般結(jié)合實(shí)驗(yàn)生態(tài)學(xué)方法進(jìn)行。根據(jù)已有的物種遺傳信息,使用微衛(wèi)星(Simple Sequence Repeats, SSR)和單核苷酸多態(tài)(Single nucleotide polymorphism, SNP)等基因標(biāo)記,進(jìn)行種內(nèi)不同個(gè)體的比較,從而探究捕撈對(duì)魚類遺傳組成產(chǎn)生的影響(李莉等, 2016)。隨著第二代測(cè)序技術(shù)的發(fā)展,采用基因組學(xué)的方法可以實(shí)現(xiàn)群體間大量位點(diǎn)的序列分析,識(shí)別出與選擇作用相關(guān)的位點(diǎn),并通過(guò)分析位點(diǎn)在個(gè)體內(nèi)的功能,推測(cè)適應(yīng)性進(jìn)化機(jī)制,這將成為日后FIE研究的最有力的手段(Elmer, 2016; 柳瑩等, 2016)。
使用具有選擇性的捕撈網(wǎng)具以及在漁場(chǎng)、漁汛期定點(diǎn)定時(shí)作業(yè)都可能對(duì)漁業(yè)生物產(chǎn)生選擇性,使生物種群向著適應(yīng)選擇壓力的方向演變(Hsieh, 2010; Heino, 2015)。這里所說(shuō)的選擇性與漁業(yè)管理上的有所不同,后者以漁獲的種類數(shù)區(qū)分,漁獲種類多則選擇性小,而這里所說(shuō)是以生物的某一特征(體型、行為等)進(jìn)行分類,如刺網(wǎng)較多選擇體高且在一定體長(zhǎng)范圍內(nèi)的個(gè)體,因此,刺網(wǎng)捕撈都具有高選擇性,而且由于選擇對(duì)象不同,其誘導(dǎo)進(jìn)化方向和速率也有差異。捕撈誘導(dǎo)進(jìn)化,一方面是因?yàn)椴稉拼罅恳瞥鲶w型較大的個(gè)體,同時(shí)也對(duì)基因型進(jìn)行了定向選擇(Liang,2014);另一方面捕撈使物種組成、棲息環(huán)境和種群密度等發(fā)生變化,從而通過(guò)改變營(yíng)養(yǎng)關(guān)系、生活環(huán)境和生活習(xí)性間接影響魚類生活史特征(Ricker, 1981),其特征進(jìn)化主要表現(xiàn)在生長(zhǎng)、性成熟和行為等方面(圖1) (Heino, 2015)。
大多數(shù)捕撈網(wǎng)具是對(duì)魚類個(gè)體大小的直接選擇,往往導(dǎo)致魚類向個(gè)體變小的方向演變(Rutter, 1902)。多數(shù)水域都出現(xiàn)了魚類小型化現(xiàn)象,如小個(gè)體漁獲物的比例不斷增加等(劉其根等, 2005)。有關(guān)捕撈影響魚類生長(zhǎng)的研究已有許多報(bào)道,但是,由于個(gè)體生長(zhǎng)是魚體內(nèi)部生理?xiàng)l件和能量分配的體現(xiàn),也受溫度、餌料、棲息環(huán)境和捕食者等多種外部因素影響,研究難度較大,研究結(jié)果的差異也較大(Enberg, 2012)。
Ricker (1981)通過(guò)分析1951~1979年的漁業(yè)捕撈數(shù)據(jù),發(fā)現(xiàn)5種太平洋鮭(spp.)在不同時(shí)期都存在不同程度的平均體長(zhǎng)、體重下降現(xiàn)象,與溫度、鹽度之間沒(méi)有顯著的相關(guān)關(guān)系,指出捕撈是導(dǎo)致魚類生長(zhǎng)變化的最主要原因,這與之后的大部分研究結(jié)論一致(Enberg, 2012)。Conover等(2002)利用實(shí)驗(yàn)生態(tài)學(xué)的方法,發(fā)現(xiàn)捕撈90%大個(gè)體使銀漢魚()在4個(gè)世代內(nèi)體重下降了0.8 g,生長(zhǎng)率下降了0.1 mm/d。Conover等(2002)認(rèn)為,魚類為了適應(yīng)捕撈壓力,把更多能量投入到性成熟和繁殖,使其用于生長(zhǎng)的能量減少,導(dǎo)致生長(zhǎng)變慢。同時(shí),捕撈總是選擇生長(zhǎng)快、體長(zhǎng)大的個(gè)體,可能導(dǎo)致生長(zhǎng)快的基因型減少,生長(zhǎng)慢的基因更多地遺傳給后代。但也有大量研究表明,大規(guī)模捕撈使魚類生長(zhǎng)率增加,如伊利湖鱸魚() (Spangler, 1977)、北海鰈() (Walraven, 2010)、小黃魚() (單秀娟等, 2011)等。根據(jù)已有研究,造成結(jié)果差異的可能原因:一是研究對(duì)象的生活史策略不同,魚類用于繁殖和生長(zhǎng)的能量分配有所差異,生長(zhǎng)快、壽命短的魚類更傾向于增加自身繁殖力來(lái)維持種群繁衍(Silva, 2013; Morbey, 2018);二是研究方法不同,實(shí)驗(yàn)生態(tài)學(xué)方法模擬的捕撈強(qiáng)度往往過(guò)大,且未考慮物種相互作用、密度效應(yīng)、生境變化等影響因素(Andersen, 2009),而在自然環(huán)境中捕撈使種群密度降低、相對(duì)餌料豐度增加可能掩蓋魚類生長(zhǎng)減慢的現(xiàn)象(Edeline, 2007);三是捕撈的選擇性使魚類生物學(xué)特征發(fā)生共同演變(Walsh, 2006),如某些魚類攝食率下降、覓食行為減少等(Walsh, 2006)。由于影響魚類生長(zhǎng)的因素很多,且過(guò)程復(fù)雜,不能單從表型特征分析中得出結(jié)論,需從生理和分子層面上進(jìn)一步研究。
如今,研究普遍認(rèn)為,捕撈可能誘導(dǎo)魚類發(fā)生適應(yīng)性進(jìn)化,而不是以往所認(rèn)為的表型可塑性變化(J?rgensen, 1990)。Hauser等(2002)對(duì)新西蘭笛鯛()群體的研究發(fā)現(xiàn),遭受捕撈后其SSRs的雜合度和等位基因頻率不斷下降,群體遺傳多樣性隨生物量的減少而下降。van Wijk等(2013)對(duì)孔雀魚()進(jìn)行的捕撈生態(tài)學(xué)實(shí)驗(yàn)發(fā)現(xiàn),持續(xù)3個(gè)世代捕撈75%大個(gè)體,雄性孔雀魚的進(jìn)化速率是自然種群的2~5倍,平均體長(zhǎng)下降了6.5%,位于Y染色體上的體長(zhǎng)調(diào)控基因發(fā)生顯著變化。最近的研究發(fā)現(xiàn),斑馬魚()的多個(gè)基因?qū)Σ稉谱鞒鲰憫?yīng),與其胚胎代謝、晝夜節(jié)律、壓力響應(yīng)、免疫系統(tǒng)等過(guò)程有關(guān)(Uusi-Heikkil?, 2015)。同時(shí),捕撈還通過(guò)影響胰島素通路的能量代謝調(diào)控基因,影響魚類壽命(Roff, 2007)。Uusi-Heikkil?等(2017)認(rèn)為,在捕撈過(guò)程中的魚類遺傳響應(yīng)方面,基因表達(dá)變化比基因序列變化更有說(shuō)服力。研究表明,選擇性捕撈大個(gè)體使魚類種群的差異表達(dá)基因增加了20%,其平均等位基因頻率變化普遍高于非差異表達(dá)基因,魚類可能在RNA加工和代謝、蛋白質(zhì)代謝、核糖體合成和氮化合物代謝等方面響應(yīng)捕撈。但基因差異表達(dá)的具體機(jī)制尚未明確,捕撈誘導(dǎo)魚類遺傳進(jìn)化的對(duì)應(yīng)關(guān)系還不清楚。除此之外,有研究表明,在某些情況下,氣候等環(huán)境變化對(duì)魚類生長(zhǎng)的影響超過(guò)捕撈因素(Perez- Rodriguez, 2013),甚至改變魚類遺傳結(jié)構(gòu)(Edeline, 2007)。氣候變化(Brander, 2007)、魚類種間競(jìng)爭(zhēng)(Gobin, 2015)和生境變化(楊吝, 2005)等多方面因素可能加快或減弱FIE,需要進(jìn)行綜合考慮。
魚類性成熟的主要影響因素包括體長(zhǎng)、溫度和捕撈(陳新軍, 2004)。在捕撈誘導(dǎo)的特征演變中,魚類性成熟相關(guān)的研究最多,一方面是因?yàn)樾猿墒焯卣鞯母淖儗?duì)種群繁殖、恢復(fù)和漁業(yè)經(jīng)濟(jì)效益有重要意義(詹秉義, 1995; Conover, 2002);另一方面,性成熟方面數(shù)據(jù)較多。眾多研究都表明,魚類為了適應(yīng)捕撈壓力而提前性成熟(Heino, 2015)。這種變化可以用生活史進(jìn)化理論來(lái)解釋,魚類性成熟年齡和體長(zhǎng)大小與其生命活動(dòng)中的權(quán)衡和適合度有關(guān)(聶海燕等, 2007)。魚類進(jìn)化成性早熟個(gè)體能縮短生長(zhǎng)時(shí)間,降低發(fā)育至性成熟的死亡風(fēng)險(xiǎn),并且有更多的能量用于繁殖,增加繁殖力(Conover, 2002),從而提高適合度,但同時(shí)個(gè)體競(jìng)爭(zhēng)力和后代存活率會(huì)相應(yīng)降低(Swain, 2011)。對(duì)魚類而言,在高強(qiáng)度的捕撈壓力下增加繁殖投入獲得的收益遠(yuǎn)大于增加生長(zhǎng)獲得的收益,因此,捕撈可能促使魚類向初次性成熟年齡和體長(zhǎng)變小的方向演變(Kokkonen, 2015; Heino, 2013)。但也有學(xué)者認(rèn)為,捕撈引起的魚類性成熟進(jìn)化程度不明顯或不存在進(jìn)化,其研究對(duì)象大多為短生命周期種群,如沙丁魚() (Silva, 2013)、鯡() (Engelhard, 2004),可能是由于短生命周期魚類在自然環(huán)境中也經(jīng)歷著較高的死亡率并且性成熟較早,捕撈作用對(duì)其影響較小,可在短時(shí)間內(nèi)恢復(fù)(Feiner, 2015)。
捕撈誘導(dǎo)的魚類性成熟特征變化是否可遺傳的問(wèn)題仍存在爭(zhēng)議,如何區(qū)分溫度、餌料、物種相互作用等引起的表型可塑性變化和捕撈誘導(dǎo)的適應(yīng)性進(jìn)化還沒(méi)有有效的方法(Perez-Rodriguez, 2013)。目前,使用PMRN方法進(jìn)行了大量研究(Kuparinen, 2007),其中,大部分結(jié)果表明,魚類性成熟體長(zhǎng)和年齡的變化存在進(jìn)化可能性(Haugen, 2001)。如Pardoe等(2009)使用PMRN方法分析了1964~1999年大西洋鱈的性成熟變化,發(fā)現(xiàn)其成熟體長(zhǎng)和年齡的降低不完全依賴于密度效應(yīng)、生長(zhǎng)可塑性變化和環(huán)境因子(溫度、餌料豐度等)。結(jié)合遺傳學(xué)方法,研究表明,捕撈過(guò)程中大西洋鱈在某些位點(diǎn)表現(xiàn)出高度分化,與PMRN中點(diǎn)的變化趨勢(shì)存在相關(guān)性,而且其等位基因頻率變化不能完全解釋為群體洄游過(guò)程中的雜交或基因流,更多的是捕撈作用(Therkildsen, 2013)。但也有部分研究表明,魚類遺傳結(jié)構(gòu)變化與溫度存在一定相關(guān)性,魚類生物學(xué)特性進(jìn)化可能同時(shí)受到捕撈和環(huán)境的影響,二者間的相對(duì)影響程度及相互作用還需要更多關(guān)注(Perez-Rodriguez, 2013)。
魚類性成熟提前可能導(dǎo)致多種后果,如繁殖力變化(Walsh, 2006)、卵徑變小、孵化率降低、幼體存活率下降等(Conover, 2002)。其中,魚類的繁殖力變化主要表現(xiàn)為魚類相對(duì)性腺重變化、產(chǎn)卵前后體重差值變化和親體體重變化等。以能量密度作為繁殖輸出指標(biāo),有研究發(fā)現(xiàn),親體在繁殖期間體重顯著下降,蛋白質(zhì)和脂肪比例存在雌雄差異,更多能量被用于繁殖(Walraven, 2010)。但還沒(méi)有足夠證據(jù)能說(shuō)明繁殖力的變化是由捕撈造成的,相反這些變化更可能與溫度變化有關(guān)(O'Malley, 2013)。雖然捕撈引起魚類繁殖力的適應(yīng)性進(jìn)化還未得到證實(shí),但由于魚類繁殖直接影響種群補(bǔ)充量,如果管理不當(dāng)可能導(dǎo)致種群滅絕(詹秉義, 1995),因此,需要對(duì)漁業(yè)資源進(jìn)行針對(duì)性管理。
捕撈的選擇性還體現(xiàn)在魚類行為上,包括攝食、求偶、育幼和洄游等(Cooke, 2007; Quinn, 2007),這些行為的改變?cè)谝欢ǔ潭壬嫌绊戶~類生長(zhǎng)、繁殖和分布。目前,這方面還鮮有研究,主要原因是魚類行為的觀測(cè)難度較大、缺乏有效數(shù)據(jù)(Leclerc, 2017)。雖然已有較多技術(shù)用于追蹤魚類的洄游路線(Walsh, 2006; Handegard, 2005),如體外和體內(nèi)標(biāo)記、數(shù)據(jù)儲(chǔ)存式標(biāo)記、聲吶和回聲探測(cè)儀追蹤等,但很少應(yīng)用到FIE研究上。已有研究大多使用實(shí)驗(yàn)生態(tài)學(xué)方法進(jìn)行,研究比較深入的是大口黑鱸()實(shí)驗(yàn)(Philipp, 2015)。由于捕撈往往選擇較活躍、大膽和受影響程度高的魚類個(gè)體(Diaz, 2015),經(jīng)過(guò)多個(gè)世代的釣捕選擇,大口黑鱸留存?zhèn)€體對(duì)網(wǎng)具的敏感性增強(qiáng),并將其遺傳給后代(Philipp, 2009)。此外,伴隨著生長(zhǎng)變化、食物需求降低、代謝減慢、對(duì)捕食者的警惕性降低等多種生理和行為特征變化(Redpath, 2009; Cooke, 2007)。斑馬魚的生態(tài)學(xué)實(shí)驗(yàn)表明,捕撈使控制血清素合成的調(diào)控基因發(fā)生變化,從而影響了褪黑色素合成量,最終影響魚類的攝食能力和攻擊性(Uusi- Heikkil?, 2015),這可能是捕撈影響魚類行為的內(nèi)在機(jī)制。由于魚類的行為習(xí)慣與體長(zhǎng)相關(guān),并具有一定遺傳能力,因此,捕撈也可能通過(guò)直接影響魚類行為(如攝食、活躍度、棲息地選擇等)作用于其生長(zhǎng)和性成熟(Biro, 2008)。
持續(xù)高強(qiáng)度的捕撈會(huì)使魚類生活史、生理、行為和遺傳等特征發(fā)生變化,進(jìn)一步改變種群動(dòng)態(tài)(Dunlop, 2015),降低種群穩(wěn)定性(Kuparinen, 2016),最終影響種群恢復(fù)。但是,早在20世紀(jì)末關(guān)于海洋魚類滅絕風(fēng)險(xiǎn)評(píng)估,研究人員沒(méi)有考慮魚類生物學(xué)特征和遺傳進(jìn)化,導(dǎo)致當(dāng)今漁業(yè)種群可能正面臨著潛在的滅絕風(fēng)險(xiǎn)(Musick, 1999)。據(jù)Hutchings (2000)統(tǒng)計(jì),11科38種魚類中大多數(shù)種類在15年內(nèi)生物量降低了45%~99%,而且在之后的15年內(nèi),其生物量幾乎沒(méi)有恢復(fù)。
FIE對(duì)種群恢復(fù)影響的研究較少,主要采用實(shí)驗(yàn)生態(tài)學(xué)和數(shù)值模擬方法,大部分研究結(jié)果表明,F(xiàn)IE對(duì)魚類生物學(xué)特征的恢復(fù)起阻礙作用。Conover等(2009b)通過(guò)生態(tài)學(xué)實(shí)驗(yàn)發(fā)現(xiàn),在相同的捕撈和恢復(fù)時(shí)間間隔內(nèi),銀漢魚幼魚生長(zhǎng)幾乎完全恢復(fù),成魚體長(zhǎng)只恢復(fù)了50%。這是首次使用實(shí)驗(yàn)生態(tài)學(xué)方法探究遭受捕撈后魚類的恢復(fù)能力,但實(shí)驗(yàn)只簡(jiǎn)單考慮了幼魚和成魚的體長(zhǎng)恢復(fù)情況,且實(shí)驗(yàn)中較少的產(chǎn)卵群體數(shù)量(約100尾)可能影響實(shí)驗(yàn)結(jié)果。Uusi-Heikkil?等(2017)研究發(fā)現(xiàn),在捕撈過(guò)程中差異表達(dá)的基因,在恢復(fù)階段仍差異表達(dá),涉及蛋白質(zhì)的轉(zhuǎn)運(yùn)和定位、胰島素信號(hào)通路等過(guò)程,可能因此影響種群恢復(fù)?;诖笪餮篦L生態(tài)和演變動(dòng)態(tài)(個(gè)體生長(zhǎng)繁殖、密度依賴效應(yīng)和環(huán)境變化)模擬捕撈,Enberg等(2009)發(fā)現(xiàn),種群生物量恢復(fù)時(shí)間隨捕撈強(qiáng)度和作用時(shí)間的增加而增加,當(dāng)捕撈時(shí)間少于100年、捕撈率低于50%時(shí),才能在較短時(shí)間內(nèi)恢復(fù)到初始水平?;谖锓N保護(hù)目的,且不考慮環(huán)境因素,Kuparinen等(2012)的模擬結(jié)果與Enberg等(2009)的基本一致,此外還發(fā)現(xiàn),由于發(fā)生進(jìn)化,大西洋鱈的成熟體長(zhǎng)和年齡恢復(fù)十分緩慢,恢復(fù)水平也低于捕撈前。但是,在捕撈進(jìn)化作用下,魚類親體與補(bǔ)充量的恢復(fù)可能加快,保證了種群繁衍。為進(jìn)一步探究捕撈對(duì)種群恢復(fù)的影響程度,今后可考慮在模型中加入性別選擇(Hutchings, 2010)、棲息地指數(shù)(楊吝, 2005)及基因交流(Pukk, 2013)等影響因素。
捕撈誘導(dǎo)魚類生活史特征和行為等發(fā)生適應(yīng)性進(jìn)化,不僅增加種群恢復(fù)時(shí)間而且加大種群恢復(fù)的不確定性(Neubauer, 2013)。為了加快種群恢復(fù),首先需要全面了解漁業(yè)資源動(dòng)態(tài)(Heino, 2015),考慮采用聲學(xué)探測(cè)技術(shù)監(jiān)測(cè)種群動(dòng)態(tài)、分子標(biāo)記評(píng)估種群遺傳變化以及在模型中考慮自然因素及遺傳因素等(Langard, 2015;Marty, 2015),從而對(duì)漁業(yè)資源進(jìn)行有效管理。
FIE,一方面改變魚類生物學(xué)特征和種群豐度,影響其經(jīng)濟(jì)價(jià)值和產(chǎn)量(Eikeset, 2013);另一方面降低物種多樣性和遺傳多樣性,影響生態(tài)系統(tǒng)穩(wěn)定和健康(Pinsky, 2014)。雖然FIE的作用機(jī)制還不明確,但不可否認(rèn)的是,F(xiàn)IE影響著海洋生態(tài)系統(tǒng)服務(wù),特別是食物的可持續(xù)產(chǎn)出。值得注意的是,在捕撈實(shí)驗(yàn)中,捕撈目標(biāo)為重復(fù)產(chǎn)卵群體中的大個(gè)體時(shí),漁獲量逐漸下降,而捕撈目標(biāo)為小個(gè)體時(shí),漁獲量幾乎不變(Edley, 1988)。而對(duì)單次產(chǎn)卵群體,捕撈大個(gè)體和小個(gè)體都會(huì)使?jié)O業(yè)產(chǎn)量下降(Conover, 2002)。由于實(shí)驗(yàn)處理方法不同,捕撈是否會(huì)對(duì)不同魚種的漁獲量產(chǎn)生不同的影響,還需要涉及更多魚種的研究。總結(jié)已有研究,F(xiàn)IE使?jié)O業(yè)經(jīng)濟(jì)效益下降的原因主要有以下幾點(diǎn):(1) 捕撈導(dǎo)致魚類體長(zhǎng)變小,在限定最小網(wǎng)目的政策下,能捕撈到的個(gè)體更少,而且魚類平均體重普遍下降(Conover, 2002); (2) 捕撈導(dǎo)致親體數(shù)量大量減少(Walsh, 2006),補(bǔ)充能力下降。雖然有研究表明,魚類把能量更多地投入到繁殖中(Rijnsdorp, 2005),如懷卵量增加,但性成熟提前,導(dǎo)致卵質(zhì)量下降、孵化率和幼體存活率降低,使補(bǔ)充量遠(yuǎn)低于捕撈死亡(Conover, 2002);(3) 捕撈使魚類對(duì)網(wǎng)具的敏感性增強(qiáng)且具有遺傳能力,使魚類更難捕獲(Philipp, 2015)。
為了減弱和避免FIE產(chǎn)生不良影響,需要把捕撈誘導(dǎo)的已知和未知的生物、非生物因素及其之間的相互作用納入漁業(yè)管理的范疇,使?jié)O業(yè)經(jīng)濟(jì)效益和生態(tài)效益都保持在可持續(xù)范圍內(nèi),這樣的管理稱為基于生態(tài)系統(tǒng)水平的漁業(yè)管理(Ecosystem approach to fisheries, EAF) (Garcia, 2003)。應(yīng)用這種管理辦法,首先要對(duì)各種因素及其產(chǎn)生的效應(yīng)進(jìn)行定量。定量FIE影響效應(yīng)的方法稱為進(jìn)化影響評(píng)估(Evolutionary impact assessment, EvoIA) (Laugen, 2014),評(píng)估內(nèi)容包括捕撈對(duì)魚類生物學(xué)特征的影響、種群進(jìn)化動(dòng)態(tài)、社會(huì)經(jīng)濟(jì)動(dòng)態(tài)和管理策略評(píng)估(圖1)。由于實(shí)現(xiàn)種群、生態(tài)和經(jīng)濟(jì)效應(yīng)的定量評(píng)估十分困難,已有研究不多。較早使用這種方法的是Mollet (2010),其研究發(fā)現(xiàn),考慮種群的生態(tài)和遺傳過(guò)程時(shí),現(xiàn)行的捕撈參考點(diǎn)并不是真正可持續(xù)的,長(zhǎng)期實(shí)施會(huì)導(dǎo)致漁業(yè)產(chǎn)量隨時(shí)間不斷下降。隨后,結(jié)合生態(tài)遺傳模型和經(jīng)濟(jì)模型提出了生物經(jīng)濟(jì)模型(Bioeconomic model),模型中增加了魚類價(jià)格隨漁獲量和需求量波動(dòng)的過(guò)程,研究發(fā)現(xiàn),忽略進(jìn)化效應(yīng)會(huì)高估捕撈產(chǎn)量和效益,并得出錯(cuò)誤的管理目標(biāo)(Zimmermann, 2015)。但是,使用不同的模型和參數(shù)估算方法,可能產(chǎn)生不同甚至相反的結(jié)果(Pinsky, 2014),需要對(duì)模型進(jìn)行更多的敏感性分析和驗(yàn)證。
圖1 捕撈誘導(dǎo)進(jìn)化(FIE)影響過(guò)程及進(jìn)化影響評(píng)估(EvoIA)內(nèi)容(Laugen et al, 2014)
*指被選擇后剩余群體的特征平均值與選擇前群體特征平均值的差值(朱偉俊等, 2007)
* Refers to the average value difference of characteristics between surplus stock after being selected and stock before being selected (Zhu, 2007)
結(jié)合魚類生物學(xué)特性和生態(tài)效應(yīng)制定漁業(yè)資源管理策略,建議:(1) 改進(jìn)漁具結(jié)構(gòu),使?jié)O獲物體長(zhǎng)組成符合的大個(gè)體,這主要應(yīng)用于休閑漁業(yè)、釣具、陷阱類漁具;(2) 增加種群遺傳和生態(tài)系統(tǒng)水平上的研究,合理規(guī)劃捕撈水域和設(shè)置生物學(xué)參考點(diǎn); (3) 降低捕撈力量,建立保護(hù)區(qū)。制定漁業(yè)管理政策時(shí),還需要注意兩點(diǎn),一是不同生活史策略的魚類受FIE影響可能不同;二是FIE也可能通過(guò)營(yíng)養(yǎng)關(guān)系作用于沒(méi)有遭受捕撈的魚類(張波, 2018)。
FIE是漁業(yè)生物應(yīng)對(duì)過(guò)度捕撈所作出的適應(yīng)性響應(yīng)。由于其影響范圍廣、作用過(guò)程復(fù)雜,不能僅僅依靠單一技術(shù)手段和單一物種研究,需結(jié)合進(jìn)化種群統(tǒng)計(jì)學(xué)和數(shù)量遺傳學(xué)等方法,建議以功能群為單位,利用基因標(biāo)記進(jìn)行長(zhǎng)期野外監(jiān)測(cè)并盡早開(kāi)展相關(guān)實(shí)驗(yàn)研究。目前,盡管FIE在魚類生物學(xué)特征和漁業(yè)資源管理意義方面已經(jīng)有較多研究,但如何準(zhǔn)確預(yù)測(cè)FIE?其作用方式是改變漁業(yè)種類的生物學(xué)特征、種群豐度、行為特征還是遺傳結(jié)構(gòu)?捕撈效應(yīng)與氣候變化(如溫度升高、極端天氣)之間的相互作用對(duì)漁業(yè)生物進(jìn)化的影響如何?漁業(yè)生物進(jìn)化對(duì)其個(gè)體、種群、群落、生態(tài)系統(tǒng)等影響如何進(jìn)行量化?又是如何進(jìn)一步影響社會(huì)經(jīng)濟(jì)效益?這些問(wèn)題尚需進(jìn)一步探究。
Andersen KH, Brander K. Expected rate of fisheries-induced evolution is slow. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(28): 11657–11660
Audzijonyte A, Kuparinen A, Fulton EA. How fast is fisheries- induced evolution? Quantitative analysis of modelling and empirical studies. Evolutionary Applications, 2013, 6(4): 585–595
Barrett RDH, Hoekstra HE. Molecular spandrels: Tests of adaptation at the genetic level. Nature Reviews Genetics, 2011, 12(11): 767–780
Bigler BS, Welch DW, Helle JH. A review of size trends among North Pacific salmon (spp.). Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53(2): 455–465
Biro PA, Post JR. Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 2919–2922
Borisov VM. The selective effect of fishing on the population structure of species with long life cycle. 1978, 18
Brander KM. The role of growth changes in the decline and recovery of North Atlantic cod stocks since 1970. ICES Journal of Marine Science, 2007, 64(2): 211–217
Chebib J, Renaut S, Bernatchez L,. Genetic structure and within-generation genome scan analysis of fisheries-induced evolution in a lake whitefish () population. Conservation Genetics, 2016, 17(2): 473–483
Chen JY. Discussion on the degeneration of fish characters in artificial propagation. China Fisheries, 1985(5): 6–7 [陳景元. 關(guān)于人工繁殖魚類的性狀退化問(wèn)題探討. 中國(guó)水產(chǎn), 1985(5): 6–7]
Chen XJ. Fisheries resource and fishing ground. Beijing: China Ocean Press, 2004 [陳新軍. 漁業(yè)資源與漁場(chǎng)學(xué). 北京: 海洋出版社, 2004]
Conover DO, Baumann H. The role of experiments in understanding fishery-induced evolution. Evolutionary Applications, 2009a, 2(3): 276–290
Conover DO, Munch SB, Arnott SA. Reversal of evolutionary downsizing caused by selective harvest of large fish. Proceedings Biological Sciences, 2009b, 276(1664): 2015– 2020
Conover DO, Munch SB. Sustaining fisheries yields over evolutionary time scales. Science, 2002, 297(5578): 94–96
Cooke SJ, Suski CD, Ostrand KG,. Physiological and behavioral consequences of long-term artificial selection for vulnerability to recreational angling in a teleost fish. Physiological and Biochemical Zoology, 2007, 80(5): 480
Cooper, Edwin L. Growth of brook trout () and brown trout () in the Pigeon River. Michigan Academy of Science, 1953, 38: 151–161
Cuveliers EL, Volckaert FA, Rijnsdorp AD,. Temporal genetic stability and high effective population size despite fisheries-induced life-history trait evolution in the North Sea sole. Molecular Ecology, 2011, 20(17): 3555–3568
Dercole F, Rossa FD. A deterministic eco-genetic model for the short-term evolution of exploited fish stocks. Ecological Modelling, 2017, 343: 80–100
Diaz PB, Wiech M, Heino M,. Opposite selection on behavioural types by active and passive fishing gears in a simulated guppyfishery. Journal of Fish Biology, 2015, 86(3): 1030–1045
Dieckmann U, Heino M. Probabilistic maturation reaction norms: Their history, strengths, and limitations. Marine Ecology Progress, 2007, 335(4): 253–269
Dunlop ES, Eikeset AM, Stenseth NC. From genes to populations: How fisheries-induced evolution alters stock productivity? Ecological Applications, 2015, 25(7): 1860– 1868
Dunlop ES, Heino M, Dieckmann U. Eco-genetic modeling of contemporary life-history evolution. Ecological Applications: A Publication of the Ecological Society of America, 2009, 19(7): 1815–1834
Edeline E, Carlson SM, Stige LC,. Trait changes in a harvested population are driven by a dynamic tug-of-war between natural and harvest selection. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(40): 15799–15804
Edley MT, Law R. Evolution of life histories and yields in experimental populations of. Biological Journal of the Linnean Society, 1988, 34(4): 309–326
Eikeset AM, Richter A, Dunlop ES,. Economic repercussions of fisheries-induced evolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12259–12264
Elmer KR. Genomic tools for new insights to variation, adaptation, and evolution in the salmonid fishes: A perspective for charr. Hydrobiologia, 2016, 783(1): 191–208
Enberg K, J?rgensen C, Dunlop ES,. Fishing-induced evolution of growth: Concepts, mechanisms and the empirical evidence. Marine Ecology, 2012, 33(1): 1–25
Enberg K, J?rgensen C, Dunlop ES,. Implications of fisheries-induced evolution for stock rebuilding and recovery. Evolutionary Applications, 2009, 2(3): 394–414
Engelhard GH, Heino M. Maturity changes in Norwegian spring-spawning herring: Compensatory or evolutionary responses? Marine Ecology Progress, 2004, 272(3): 245–256
Fan W, Cheng YH, Shen XQ. Effects of global environment change and human activity on fishery resources. Journal of Fishery Sciences of China, 2001, 8(4): 91–94 [樊偉, 程炎宏, 沈新強(qiáng). 全球環(huán)境變化與人類活動(dòng)對(duì)漁業(yè)資源的影響. 中國(guó)水產(chǎn)科學(xué), 2001, 8(4): 91–94]
Feiner ZS, Chong SC, Knight CT,. Rapidly shifting maturationschedules following reduced commercial harvest in a freshwater fish. Evolutionary Applications, 2015, 8(7): 724–737
Food and Agriculture Organization of the United Nations (FAO). The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Rome: 2016, 1–45
Fu HY, Zhang YP, Fang CL,. Growth and structure analysis ofexploited population in Poyang Lake. Jiangxi Fishery Science and Technology, 2015(3): 17–20 [付輝云, 張燕萍, 方春林, 等. 鄱陽(yáng)湖日本沼蝦捕撈種群生長(zhǎng)與結(jié)構(gòu)分析. 江西水產(chǎn)科技, 2015(3): 17–20]
Garcia SM. The ecosystem approach to fisheries: Issues, terminology, principles, institutional foundations, implementation and outlook. FAO Fisheries Technical Paper, 2003, 443: 71
Gobin J, Lester NP, Cottrill A,. Trends in growth and recruitment of Lake Huron lake whitefish during a period of ecosystem change, 1985 to 2012. Journal of Great Lakes Research, 2015, 41(2): 405–414
Handegard NO, Tj?stheim D. When fish meet a trawling vessel: Examining the behaviour of gadoids using a free-floating buoy and acoustic split-beam tracking. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(10): 2409–2422
Handford P, Bell G, Reimchen T. A gillnet fishery considered as an experiment in artificial selection. Journal of the Fisheries Research Board of Canada, 1977, 34(7): 954–961
Hard JJ, Gross MR, Heino M,. Evolutionary consequences of fishing and their implications for salmon. Evolutionary Applications, 2008, 1(2): 388–408
Haugen TO, V?llestad LA. A century of life-history evolution in grayling. Genetica, 2001, 112–113(1): 475–491
Hauser L, Adcock GJ, Smith PJ,. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11742–11747
Heino M, Baulier L, Boukal DS,. Can fisheries-induced evolution shift reference points for fisheries management? ICES Journal of Marine Science, 2013, 70(4): 707–721
Heino M, Pauli BD, Dieckmann U. Fisheries-induced evolution. Annual Review of Ecology Evolution and Systematics, 2015, 46: 461–480
Hsieh C, Yamauchi A, Nakazawa T,. Fishing effects on age and spatial structures undermine population stability of fishes. Aquatic Sciences, 2010, 72(2): 165–178
Hutchings JA, Sherrylynn R. Consequences of sexual selection for fisheries-induced evolution: An exploratory analysis. Evolutionary Applications, 2010, 1(4): 645–649
Hutchings JA. Collapse and recovery of marine fishes. Nature, 2000, 406(6798): 882–885
Hutchings JA. Evolutionary biology: The cod that got away. Nature, 2004, 428(6986): 899–900
J?rgensen C, Enberg K, Dunlop ES,. Managing evolving fish stocks. Science, 2007, 318(5854): 1247–1248
J?rgensen C, Ernande B, Fiksen ?. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evolutionary Applications, 2009, 2(3): 356–370
J?rgensen C, Holt RE. Natural mortality: Its ecology, how it shapes fish life histories, and why it may be increased by fishing. Journal of Sea Research, 2013, 75: 8–18
J?rgensen T. Long-term changes in age at sexual maturity of Northeast Arctic cod (L.). ICES Journal of Marine Science, 1990, 46(3): 235–248
Kokkonen E, Vainikka A, Heikinheimo O. Probabilistic maturation reaction norm trends reveal decreased size and age at maturation in an intensively harvested stock of pikeperch. Fisheries Research, 2015, 167: 1–12
Kraak SBM. Does the probabilistic maturation reaction norm approach disentangle phenotypic plasticity from genetic change? Marine Ecology Progress, 2007, 335(2007): 295– 300
Kuparinen A, Boit A, Valdovinos FS,. Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Scientific reports, 2016, 6: 22245–22253
Kuparinen A, Hutchings JA. Consequences of fisheries-induced evolution for population productivity and recovery potential. Proceedings Biological Sciences, 2012, 279(1738): 2571– 2579
Kuparinen A, Meril? J. Detecting and managing fisheries-induced evolution. Trends in Ecology and Evolution, 2007, 22(12): 652–629
Langard L, Skaret G, Jensen KH,. Tracking individual herring within a semi-enclosed coastal marine ecosystem: 3-dimensional dynamics from pre- to post-spawning. Marine Ecology Progress, 2015, 518: 267–279
Laugen AT, Engelhard GH, Whitlock R,. Evolutionary impact assessment: Accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management. Plant Systematics and Evolution, 2014, 15(1): 65–96
Leclerc M, Zedrosser A, Pelletier F. Harvesting as a potential selective pressure on behavioural traits. Journal of Applied Ecology, 2017, 54: 1941–1945
Li L, Zhang GF. The stress adaptation of the marine fishery organisms under the view of genome and its key scientific problems. Bulletin of Chinese Academy of Sciences, 2016, 31(12): 1347–1354 [李莉, 張國(guó)范. 基因組視域下海洋漁業(yè)生物對(duì)脅迫環(huán)境的適應(yīng)策略研究. 中國(guó)科學(xué)院院刊, 2016, 31(12): 1347–1354]
Li ZY, Wu Q, Shan XJ,. Interannual variations in fish community structure in the Bohai Sea. Journal of Fishery Sciences of China, 2017, 24(2): 403–413 [李忠義, 吳強(qiáng), 單秀娟, 等. 渤海魚類群落結(jié)構(gòu)的年際變化. 中國(guó)水產(chǎn)科學(xué), 2017, 24(2): 403–413]
Liang ZL, Sun P, Yan W,. Significant effects of fishing gear selectivity on fish life history. Journal of Ocean University of China, 2014, 13(3): 467–471
Lin Q, Wang J, Yuan W,. Effects of fishing and environmental change on the ecosystem of the Bohai Sea. Journal of Fishery Sciences of China, 2016, 23(3): 619–629 [林群, 王俊, 袁偉, 等. 捕撈和環(huán)境變化對(duì)渤海生態(tài)系統(tǒng)的影響. 中國(guó)水產(chǎn)科學(xué), 2016, 23(3): 619–629]
Liu QG, Shen JZ, Chen MK,. Advances of the study on the miniaturization of natural economical fish resources. Journal of Shanghai Fisheries University, 2005, 14(1): 79–83 [劉其根, 沈建忠, 陳馬康, 等. 天然經(jīng)濟(jì)魚類小型化問(wèn)題的研究進(jìn)展. 上海海洋大學(xué)學(xué)報(bào), 2005, 14(1): 79–83]
Liu Y, Gao L, Feng JR. Research progress on population genomics of marine fishes. Biotechnology Bulletin, 2016, 32(11): 30–37 [柳瑩, 高麗, 馮俊榮. 海洋魚類種群基因組學(xué)研究進(jìn)展. 生物技術(shù)通報(bào), 2016, 32(11): 30–37]
Marty L, Dieckmann U, Ernande B. Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential. Evolutionary Applications, 2015, 8(1): 47–63
Mollet FM. Evolutionary effects of fishing and implications for sustainable management: A case study of North Seas plaice and sole. Doctoral Dissertation of Wageningen University, 2010
Morbey YE, Mema M. Size-selective fishing and the potential for fisheries-induced evolution in lake whitefish. Evolutionary Applications, 2018, 11(8): 1412–1424
Musick JA. Criteria to define extinction risk in marine fishes: American fisheries society initiative. Fisheries, 1999, 24(12): 6–14
Ne HY, Liu JK, Su JP,. Progress in the study of animal life history evolution. Acta Ecologica Sinica, 2007, 27(10): 4267–4277 [聶海燕, 劉季科, 蘇建平, 等. 動(dòng)物生活史進(jìn)化理論研究進(jìn)展. 生態(tài)學(xué)報(bào), 2007, 27(10): 4267–4277]
Neubauer P, Jensen OP, Hutchings JA,. Resilience and recovery of overexploited marine populations. Science, 2013, 340(6130): 347–349
Olsen EM, Heino M, Lilly GR,. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature, 2004, 428(6986): 932–935
O'Malley KG, Jacobson DP, Kurth R,. Adaptive genetic markers discriminate migratory runs of Chinook salmon () amid continued gene flow. Evolutionary Applications, 2013, 6(8): 1184–1194
Pardoe H, Vainikka A, Thórdarson G,. Temporal trends in probabilistic maturation reaction norms and growth of Atlantic cod () on the Icelandic shelf. Journal Canadien Des Sciences Halieutiques et Aquatiques, 2009, 66(10): 1719–1733
Pauli BD, Heino M. What can selection experiments teach us about fisheries-induced evolution? Biological Journal of the Linnean Society, 2014, 111(3): 485–503
Perez-Rodriguez A. Morgan J,. Disentangling genetic change from phenotypic response in reproductive; parameters of Flemish Cap cod. Fisheries Research, 2013, 138(3): 62–70
Philipp DP, Claussen JE, Koppelman JB,. Fisheries-induced evolution in largemouth bass: Linking vulnerability to angling, parental care, and fitness. Black Bass Diversity: Multidisciplinary Science for Conservation, 2015, 83: 223–234
Philipp DP, Cooke SJ, Claussen JE,. Selection for vulnerability to angling in largemouth bass. Transactions of the American Fisheries Society, 2009, 138(1): 189–199
Pinsky ML, Palumbi SR. Meta-analysis reveals lower genetic diversity in overfished populations. Molecular Ecology, 2014, 23(1): 29–39
Pukk L, Kuparinen A, J?rv L,. Genetic and life-history changes associated with fisheries-induced population collapse. Evolutionary Applications, 2013, 6(5): 749–760
Quinn TP, Hodgson S, Flynn L,. Directional selection by fisheries and the timing of sockeye salmon () migrations. Ecological Applications, 2007, 17(3): 731
Redpath TD, Cooke SJ, Robert A,. Life-history traits and energetic status in relation to vulnerability to angling in an experimentally selected teleost fish. Evolutionary Applications, 2009, 2(3): 312–323
Ricker WE. Changes in the average size and average age of Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38: 1636–1656
Rijnsdorp AD, Grift RE, Kraak SB. Fisheries-induced adaptive change in reproductive investment in North Sea plaice ()? Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(4): 833–843
Roff DA. Contributions of genomics to life-history theory. Nature Reviews Genetics, 2007, 8(2): 116–125
Rutter C. Natural history of the Quinnat salmon: A report on investigations in the Sacramento River, 1896–1901. Bulletin of the United States Fish Commission, 1902, 22: 65–141
Shan XJ, Li ZL, Dai FQ,. Seasonal and annual variations in biological characteristics of small yellow croakerin the central and southern Yellow Sea. Progress in Fishery Sciences, 2011, 32(6): 7–16 [單秀娟, 李忠爐, 戴芳群, 等. 黃海中南部小黃魚種群生物學(xué)特征的季節(jié)變化和年際變化. 漁業(yè)科學(xué)進(jìn)展, 2011, 32(6): 7–16]
Silva A, Faria S, Nunes C. Long-term changes in maturation of sardine,, in Portuguese waters. Scientia Marina, 2013, 77(3): 429–438
Sinclair AF, Swain DP, Hanson JM. Disentangling the effects of size-selective mortality, density, and temperature on length- at-age. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(2): 372–382
Spangler GR, Payne NR, Thorpe JE,. Responses of percids to exploitation. Canadian Journal of Fisheries and Aquatic Sciences, 1977, 34(10): 1972–1982
Sun P. A simulation study of impact of trawl selectivity on traits of fish life history. Doctoral Dissertation of Ocean University of China, 2013 [孫鵬. 拖網(wǎng)選擇性對(duì)魚類生活史性狀影響的模擬研究. 中國(guó)海洋大學(xué)博士研究生學(xué)位論文, 2013]
Sutter DAH, Suski CD, Philipp DP,. Recreational fishing selectively captures individuals with the highest fitness potential. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(51): 20960–20965
Swain DP. Life-history evolution and elevated natural mortality in a population of Atlantic cod (). Evolutionary Applications, 2011, 4(1): 18–29
Therkildsen NO, Hemmer-Hansen J, Als TD,. Microevolution in time and space: SNP analysis of historical DNA reveals dynamic signatures of selection in Atlantic cod. Molecular Ecology, 2013, 22(9): 2424–2440
Uusi-Heikkil? S, Savilammi T, Leder E,. Rapid, broad-scale gene expression evolution in experimentally harvested fish populations. Molecular Ecology, 2017, 26(15): 3954–3967
Uusi-Heikkil? S, Whiteley AR, Kuparinen A,. The evolutionary legacy of size‐selective harvesting extends from genes to populations. Evolutionary Applications, 2015, 8(6): 597–620
Uusi-Heikkil? S, Wolter C, Klefoth T,. A behavioral perspective on fishing-induced evolution. Trends in Ecology and Evolution, 2008, 23(8): 419–421
van Wijk SJ, Taylor MI, Creer S,. Experimental harvesting of fish populations drives genetically based shifts in body size and maturation. Frontiers in Ecology and the Environment, 2013, 11(4): 181–187
Walraven LV, Mollet FM, Damme CJGV,. Fisheries-induced evolution in growth, maturation and reproductive investment of the sexually dimorphic North Sea plaice (L.). Journal of Sea Research, 2010, 64(1–2): 85–93
Walsh MR, Munch SB, Chiba S,. Maladaptive changes in multiple traits caused by fishing: Impediments to population recovery. Ecology Letters, 2006, 9(2): 142–148
Wang HY, H??k TO. Eco-genetic model to explore fishing-induced ecological and evolutionary effects on growth and maturation schedules. Evolutionary Applications, 2009, 2(3): 438–455
Yang L. Effect of fishing gear and fishing method on benthic community and habitat. Modern Fisheries Information, 2005, 20(3): 15–17 [楊吝. 漁具漁法對(duì)底棲群落(Benthic Community)及其棲息地(Habitat)的影響. 漁業(yè)信息與戰(zhàn)略, 2005, 20(3): 15–17]
Zhan BY, Lou DC, Zhong JSAn assessment of the filefish population and rational exploitation of the resource. Journal of Fisheries of China, 1986, 10(4): 409–418 [詹秉義, 樓冬春, 鐘俊生. 綠鰭?cǎi)R面鲀資源評(píng)析與合理利用. 水產(chǎn)學(xué)報(bào), 1986, 10(4): 409–418]
Zhan BY. Fishery resources assessment. Beijing: China Agriculture Press, 1995 [詹秉義. 漁業(yè)資源評(píng)估. 北京: 中國(guó)農(nóng)業(yè)出版社, 1995]
Zhang B. Feeding ecology of fishes in the Bohai Sea. Progress in Fishery Sciences, 2018, 39(3): 11–22 [張波. 渤海魚類的食物關(guān)系. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(3): 11–22]
Zhu CD, Zhong S. Biology and fishery significance of fish breeding and conservation in large and medium lakes in China. Fisheries Science and Technology Information, 1979, 8: 2–5 [朱成德, 鐘世. 論我國(guó)大中型湖泊魚類資源繁殖保護(hù)的生物學(xué)及其漁業(yè)意義. 水產(chǎn)科技情報(bào), 1979, 8: 2–5]
Zhu XG, Fang YY, Yan LJ,. The ecological strategy evolution of marine fishes under high intensity fishing environment. Bulletin of Science and Technology, 2009, 25(1): 51–55 [朱曉光, 房元勇, 嚴(yán)力蛟, 等. 高捕撈強(qiáng)度環(huán)境下海洋魚類生態(tài)對(duì)策的演變. 科技通報(bào), 2009, 25(1): 51–55]
Zhu WJ, Liang ZL, Xu BD. Preliminary study on the trawl fishing induced phenotypic traits selection differential in fish. Transactions of Oceanology and Limnology, 2007(1): 95–102 [朱偉俊, 梁振林, 徐賓鐸. 拖網(wǎng)選擇性引起的魚類表型性狀選擇差的初步研究. 海洋湖沼通報(bào), 2007(1): 95–102]
Zimmermann F, J?rgensen C. Bioeconomic consequences of fishing-induced evolution: A model predicts limited impact on net present value. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(4): 612–624
Progress in the Study of Fishing-Induced Evolution of Fish Biological Characteristics
SHAN Xiujuan1,2①, HU Zhijun1,3, SHAO Changwei1,2, TANG Zheng1,3
(1.Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs; Shandong Provincial Key Laboratory of Fishery Resources and Eco-Environment, Qingdao 266071; 2. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071; 3. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306)
With the increase of fishing intensity, fish gradually evolve to adapt in response to fishing pressures to maintain the reproduction of the population. This process is called fishing-induced evolution (FIE). Nowadays, many fish in the world have evolved these biological characteristics. For example, Atlantic cod (), small yellow croaker () and other fish became smaller size and earlier mature. These lead to further the simplification of fish population structure, the decline of ecosystem stability and the reduction of fishing economic benefits, finally FIE seriously affects the sustainable development of fish resources in many countries. Therefore, it is essential to recognize the fishing-induced adaptive evolution and grasp the mechanism of fishing effects on fish resources, in order to formulate a scientific and rational strategy for recovery and management of fishing resources. Although FIE has caused wide concerns, the mechanisms underlying the impact of fishing on physiological, ecological and genetic characteristics of fish are not clear, especially in the dynamic environment of climate change and multi-species interactions. The role of FIE is more complex due to a number of influencing factors and the complex evolutionary process. The existing studies mainly focus on fishing-induced changes in fish biological traits, computer-simulated population resilience and fish resource management strategies, but rarely on the mechanisms of FIE. Here, we reviewed the main research methods of fish FIE including methods of field ecology, experimental ecology, numerical simulation, and genetics. We summarized the related research results that fishing affects fish body length, sexual maturity, behavior and other factors, by selecting the larger individuals caught by the most important kind of fishing, bottom trawling, and analyzed the effects on the fish population recovery and management of fish stocks. Finally, we concluded that the key scientific problems to be solved, in order to provide help for further FIE research and scientific management of fish resources.
Fish;FIE; Fisheries resource; Biological characteristics; Evolutionary impact assessment
SHAN Xiujuan, E-mail: shanxj@ysfri.ac.cn
10.19663/j.issn2095-9869.20190221006 http://www.yykxjz.cn/
S937
A
2095-9869(2020)03-0165-11
單秀娟, 胡芷君, 邵長(zhǎng)偉, 唐政. 捕撈誘導(dǎo)魚類生物學(xué)特征進(jìn)化研究進(jìn)展. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(3): 165–175
Shan XJ, Hu ZJ, Shao CW, Tang Z. Progress in the study of fishing-induced evolution of fish biological characteristics. Progress in Fishery Sciences, 2020, 41(3): 165–175
* 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFE0104400)、山東省泰山學(xué)者專項(xiàng)基金項(xiàng)目和青島海洋科學(xué)與技術(shù)試點(diǎn)國(guó)家實(shí)驗(yàn)室“鰲山計(jì)劃”優(yōu)秀青年學(xué)者專項(xiàng)(2017ASTCP-ES07)共同資助 [This work was supported by the National Key Research Program ofChina (2017YFE0104400), Special Funds for Taishan Scholar Project of Shandong Province, and Aoshan Talents CultivationProgram Supported by Pilot National Laboratory for Marine Science and Technology (Qingdao) (2017ASTCP-ES07)].
單秀娟,研究員,E-mail: shanxj@ysfri.ac.cn
2019-02-21,
2019-04-10
(編輯 馮小花)