• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generation of multiple Fano resonance and high FOM resonance based on the crescent cross nanostructure

    2020-12-11 00:50:12HouYiboHuoYipingJiangXueyingZhouChenGuoYiyuanNiuQiqiangHeQianHaoXiangxiang
    光電工程 2020年11期
    關(guān)鍵詞:中多十字架光子

    Hou Yibo, Huo Yiping, Jiang Xueying, Zhou Chen, Guo Yiyuan,Niu Qiqiang, He Qian, Hao Xiangxiang

    Generation of multiple Fano resonance and high FOM resonance based on the crescent cross nanostructure

    Hou Yibo, Huo Yiping*, Jiang Xueying, Zhou Chen, Guo Yiyuan,Niu Qiqiang, He Qian, Hao Xiangxiang

    School of Physics and Information Technology,Shaanxi Normal University, Xi’an, Shaanxi 710062, China

    Metal surface plasmon has many novel optical properties and important applications, and it is also a research hotspot. In this paper, a crescent cross (CC) nanostructure composed of a crescent and a crossis studied by the finite element method. New plasmon magnetic mode and multiple Fano resonancecan be induced by breaking structure symmetry through changing structure parameters. Meanwhile, by changing the angle between the two rods symmetrically, the figure of merit (FOM) can reach 61. Our structure has important applications in the fields of multi-wavelength sensor, ultra-sensitive biosensor, surface enhanced spectroscopy, and slow light transmission.

    multiple Fano resonance; surface plasmon; figure of merit

    1 Introduction

    In recent years, great progress has been made in the research based on surface plasmons (SPs). SPs has been widely used in nano-optoelectronic integration, optical imaging, biosensor, data storage, and has attracted great attention of researchers[1-2]. SPs is collective charge oscillation existing at the interface between conductor and dielectric. SPs is an electromagnetic wave in essence[3], and it can be divided into twotypes: one is propagating surface plasmon polaritons (SPPs),which can propagate along the interface between metal anddielectric;the other is limited by metal nanostructure and canonly be confined to the surface of metal nanoparticles, whichiscalledlocal surface plasmons (LSPs). SPs are favored by researchers for it canmanipulate and integrate photons at micro-nanoscale[4]. SPs not only can enhance the local electromagnetic field on the metal surface, but also break the optical diffraction limit, thus realizing the nanometer-scale regulation of light field[5]. SPs have extremely important application value in related aspects due to their novel optical properties, such as plasmon waveguides[6], surface enhanced Raman scattering[7], electromagnetic induced transparency, and Fano resonance effect[8-9].

    Fano resonance comes from the quantum system originally. When the discrete and the continuous energy level are superimposed, quantum interference occurs and low absorption happens at a specific optical frequency, which results in an asymmetric linetype. U Fano explained the mechanism of asymmetric linetype by using strict theory[10-11]. In the SPs system, Fano resonance can be formed by the coupling between the bright mode (superradiant) and the dark mode (subradiant), which results in the asymmetric spectrum[12]. Fano resonance is characterized by asymmetric linetype. A spectral dip is formed through coupling of bright mode and dark mode, where scattering is suppressed and absorption is enhanced[13-14]. The bright mode has a large net dipole moment, which can be excited directly by incident light and exhibits a wider line-width spectrum[14-15]. The net dipole moment of dark mode is almost zero, so it has a small radiation damping and shows a narrow line width[14-16]. Different from the bright mode, dark mode can only be excited by near-field coupling or symmetry breaking[13,17]. For example, Zhu's team studied the structure of silver nanorods with wedge-shaped parts, the Fano line shape arises from the coupling between a hybridized plasmon resonance of the disk and a narrower quadrupolar mode supported by the edge of the missing wedge slice. Fang's team made the structure of heptamer graphene type light probe, where the structure of heptamer is intermingled in the middle of monolayer graphene and Fano resonance is formed through the coupling of heptamer and graphene[13-14]. The radiation loss of Fano resonance is small, and the energy of the incident field can be better confined to the structure surface[18-20]. Based on these optical properties, Fano resonance effect can be widely used in biosensors[21], electromagnetic induction absorption[22], optical switches[23], photodetectors[24-25], etc.

    Due to the lack of natural magnetism, people initially focused on electric Fano resonance. However, the magnetic Fano resonance has advantages that the electrical Fano resonance does not have. A closed-loop current can be formed, which can limit the energy more locally, reduce the scattering loss, and strengthen the response of the magnetic field[26-27]. In nanostructures, artificial optical magnetism can be obtained by breaking the symmetry of nanostructure to form magnetic Fano resonance. The obvious characteristic of magnetic Fano resonance is a closed current loop. These features and advantages make magnetic Fano resonances have great potential application in metamaterials, stealth, and high-resolution lithography[28]. When the structure symmetry is destroyed, due to the generation of high order dark state, multiple Fano resonance effect can be induced[29]. Compared with single Fano resonance, multiple Fano resonance effects can adjust multiple waveband spectrum simultaneously[30-31]. The nanostructure parameter effects the modulation depth and resonance frequency of multiple Fano resonance greatly[32]. In addition, the spectrum of Fano resonance varies with the refractive index of environment, which is very suitable for sensing applications[32-33]. Many studies have been carried out to improve the figure of merit (FOM), which can measure the sensing properties of the structure. For example, the maximum FOM of the T-type nanorod dimer structure proposed by Feng team is 9.5[34]; the FOM value of Hu team's I-type trimer structure with two rods can reach 25.9[35]; the FOM value of the H-type nanostructure designed by Goncalves team is 30[36].

    The split ring is one of the most common structure in the study of plasmon. A cross is added on the split ring nanostructure, and the cross can be rotated, so the structure asymmetry degree can be adjusted conveniently in various ways. In theory, the cross and the crescent are coupled to form a magnetic pattern and generate magnetic Fano resonance. New plasmon modes and multiple Fano resonance can be induced by breaking structure symmetry through changing structure parameters. In addition, the FOM value can be modulated by changing the angle between two rods symmetrically and the maximum FOM value reaches 61. These optical properties make our structure have broad application prospects in surface enhanced Raman scattering, plasmon scale, multi-band sensing, etc.

    2 Structure and simulation method

    Figure 1 shows 2-D and 3-D views of the CC nanostructure. The cross is composed of bar1and bar2. The centers of the inner ring and the outer ring are1and2, respectively. The radius of the inner ring and outer ring areand0, respectively. The width and half length of the nanorods areand, respectively. The thickness of the whole nanostructure is. Figs. 1(c)~1(e) are the rotation angles of the cross, rod2and the whole structure around1, which are,andrespectively. The light incident along the negativeaxis and the polarization direction is alongaxis. Compared with other metal materials, silver has the lower loss in the visible light, so silver is selected as the material of the CC nanostructure. The dielectric constant of silver is taken from Johnson and Christy (JC), and the surrounding medium is air.

    Fig. 1 (a) 2-D structure and geometric parameters of the CC nanostructure; (b) 3-D schematic diagram of the CC nanostructure; The rotation angles of the cross (c), rod a2 (d)and the whole structure (e) around O1 are θ, α and β degrees respectively

    In this paper, a commercial software COMSOL Multiphysics based on the finite element method is used to calculate the optical response of the CC nanostructure. The extinction cross section of the CC nanostructure is calculated, which is equal to the sum of the absorption cross section and the scattering cross section. The total scattering cross section is calculated by integrating the scattered power flux on the outer closed surface of the CC nanostructure. A spherical perfect matching layer (PML) was designed to eliminate the interference of boundary reflections and absorb all of the emitted radiation.

    3 Results and discussion

    3.1 Optical response characteristic of the CC nanostructure

    Fig. 2(a) shows the extinction spectrum of the CC nanostructure, where=80 nm,0=100 nm,=60 nm,=20 nm and=20 nm. From the left to the right, there are three resonance peaks, which are named¢,and. A Fano dipis formed betweenand. In order to explore the formation of this Fano dip, we give the charge distributions, surface current density and magnetic field enhancement distributions of peak¢,,and dip. Figs. 2(b)~(e) show the charge distributions of¢,,and, and Figs. 2(f)~(i) show the surface current density and the magnetic field enhancement distributions of¢,,and. In Fig. 2(b), the charges of the crescent and the cross oscillate in phase, so¢is a bright electric mode. Similarly, modeis also a bright electric mode. Therefore, modes¢andhave a wide linewidth. In Fig. 2(e), the charges of crescent and cross oscillate out phase and the electric dipole moment is small.Two opposite current loops and magnetic hot spots are formed in the gap, sois a dark magnetic mode. Destructive interference between the bright electric modeand the dark magnetic modeforms the magnectic Fano dip. Fig. 2(d) and 2(h) show the charge distribution, magnetic field enhancement and surface current density distribution of dip.

    3.2 New magnetic mode generation by rotating the cross

    The optical properties of the CC with clockwise rotating cross are further studied. Fig. 3(a) is the extinction spectra when the cross rotate angle is0° , 10°, 20° and 30° respectively.Whenis 10°, a new modeappears near 950 nm, whose charge distributionis shown in Fig.3(b).It can be seen that it is a quadrupole-quadrupole mode and the electric dipole moment is large. Fig. 3(c) shows the magnetic field enhancement and surface current density distributions of mode. It can be seen that three circulations0,1,2and three hot spots are formed between the crescent and the cross. Therefore, modeis bright magnetic mode, which is induced by the symmetry breaking of the CC nanostructure. The region of circulation2can be seen as a series of inductance and capacitance, the magnetic resonance at modeis similar to LC resonance. The resonance frequency formula is showed by equation (1),

    Fig. 2 (a) Extinction spectrum of the CC nanostructure; (b)~(e) The charge distributions; (f)~(i) The magnetic field enhancement and surface current density distributions of modeE¢, E, m and M. Here, H represents the local magnetic field, and H0 represents the background magnetic field, where R=80 nm, R0=100 nm, L=60 nm, w=20 nm and T=20 nm

    hereis the resonance frequency,is the inductance andis the capacitance. As the rotating angle of the cross increases, the gap between the rod and the crescent is enlarged. The capacitancedecreases, and the resonance frequencyincreases, so modeblue shifts.

    3.3 Double Fano resonance generation by rotating rod a2

    Rotating the rod2anticlockwise by 15, 30, 45and 60,the optical property of the CC nanostructure were further studied. For the symmetry breaking, a new modeis created near 950 nmwhenis 15. According to LC resonance frequency formula, as the rod2rotates anticlockwise, angleincreases and the inductancedecreases, so the resonance frequencyincreases and modeblue shifts. At the same time, the distance between the two rods decreases, so the coupling between the two rods becomes stronger and the intensity of modeis enhanced. Fig.4(b) shows the charge distribution of mode, which is a quadrupole-quadrupole mode with a small electricdipole moment and can be judged as a dark mode.It’s magnetic field enhancement and current distributions are shown in Fig.4(c). Three hotspots and three circulations are formed between the crescent and the bars,so modeis a dark magnetic mode. The dark magnetic modeand the original bright electric modeare coupled to form a Fano dip. Fano dipandare called double Fano resonance.

    3.4 Multiple Fano resonance generation by breaking structure symmetry

    3.4.1 Reducing the length of rod1

    Fig. 5(a) showsthe extinction spectra of the CC nanostructure when the half length of bar1reduces from 60 nm to 35 nm with 5 nm intervals. Whenis 55 nm, a new modeappears. Whenis 50 nm, another new mode¢is induced, and whenis 45 nm, the third new modeappears. Figs. 5(b)~5(d) showthe charge distributions of the new modes,¢,. Figs. 5(e)~5(g) are magnetic field enhancements and surface currentdensity distributions of the new modes,¢,. Fig.5(d)shows that modeis a dipole-quadrupole mode with a large electric dipole moment,which is a bright state. In Fig.5(g), there are three current loops with opposite rotating directions and three magnetic hotspots in the gap betweenthe crescent and the cross, so modeis a bright magnetic mode. From Figs. 5(c) and 5(f), it can be seen that mode¢is a quadrupole-quadrupole mode, and the electric dipole moment is small, so it can be judged as dark mode. There isno circulation in the current distribution, so mode¢is a dark electric mode. The coupling of modesand¢induces the first Fano dip2near 850 nm.Mode¢coupledwith modeto form the second electric Fano resonance dip1near 800 nm. From Figs. 5(b) and 5(e), it can be judged that modeis also a dark mode. Modeandare coupled to form the third electric Fano resonancedipat 680 nm.So,,1and2are the multiple Fano resonance.

    Fig. 3 (a) Extinction spectra of the CC nanostructure with rotating cross; (b) The charge distribution of the new mode D when θ=10°; (c) The magnetic field enhancement and surface current density distribution of the new mode D when θ=10°

    Fig. 4 (a) Extinction spectra of the CC nanostructure with rotating rod a2; (b) The charge distribution of mode G when α=15°; (c) The magnetic field enhancement and current density distributions of mode G when α=15°

    3.4.2 Rotating the whole structure

    The optical properties of the rotating CC nanostructure were studied. Fig. 6(a) shows the extinction spectra of the entire CC nanostructure with different rotating angle. It can be seen that whenis 15°, new modesis generated. Continue to rotate the whole structure to 30°, new mode¢appears. Then, rotate the whole structure to 45°, new modeappears. Figs. 6(b)~6(d) are charge distributions of new modes¢,and. Figs. 6(e)~6(g) are magnetic field enhancement and surface current density distributions of new modes¢,,. As shown in Figs. 6(b) and 6(e), a high-order quadrupole-octupole mode¢is excited by rotating the overall structure, which can be judged as a bright electric mode. It can be seen from Figs. 6(c) and 6(f) that modeis a quadrupole-quadrupole mode and the electric dipole moment is small. There is no current loop in the structure, so it is judged to be a dark electric mode. Figs. 6(d) and 6(g) show that modeis a quadrupole-quadrupole mode with a small electric dipole moment and three current loops, so modeis a dark magnetic mode. Thus, the coupling of modesandinduces the first magnetic Fano dip2at 900 nm. The coupling of modes Eandproduces the second Fano dip1at 700 nm. And the coupling of modesand¢forms the third Fano dipnear 600 nm.2,1andare multiple Fano resonance.

    Asincreases, the intensity of modedecreases continuously until the modedisappears whenis 90°. This interesting phenomenon can be explained by Fig. 7. The black and red solid lines represent the symmetry axis of the CC nanostructure and the polarization direction of the electric field, respectively.is the angle between the symmetry axis of the CC naostructure and the polarization direction of the electric field. The polarization direction of the electric field can be decomposed along the symmetry axis () of the CC structure and decomposed perpendicular to the symmetry axis () (Fig. 7(b)). Ifincreases, the intensity of modewill be reduced, which can be interpreted as the decrease of the parallel component. Whenis 90°, the modedisappears because there is no parallel component(Fig. 7(c)).

    Fig. 5 (a) Extinction spectra of the CC nanostructure when bar a1 decreases; (b)~(d) The charge distributions of mode B, V', V when L=40 nm; (e)~(g) The magnetic field enhancement and surface current density distributions of modes B, V', V when L=40 nm

    Fig. 6 (a) The extinction spectra of the CC nanostructure with rotating the whole structure from 0°to 90°with 15°intervals; (b)~(d) The charge distributions of mode Z', Z and H when β= 60°; (e)~(g) The magnetic field enhancement and surface current distributions of mode Z', Z and Hwhen β = 60°

    Fig. 7 Schematic diagram when the angle between the polarization direction of the electric field and the symmetry axis of the CC nanostructure β is (a) 0°; (b) 45° and (c) 90° respectively. Ex and Ey are the parallel component and the vertical component of symmetry axis, respectively

    3.5 High FOM by changing the angle between the two bars

    The Fano resonance peak changes with the refractive index of the surrounding environment. As shown in Fig. 8(a), the extinction cross section and the resonance peak position of the CC nanostructure with different refractive index environments are simulated. The inset is the 2-D diagram of the structure, the angle between the two rods is 150°, and other parameters are the same as above. In order to study the sensitivity of the CC nanostructures to the surrounding environment, the position of modewith different refractive index environments are calculated. Whenis 1, modeis at 1090 nm, and whenis 1.05, modeis red shifted to 1140 nm, which is due to the influence of environmental change on far-field interference between different scatter paths. As we all know, device sensitivity is an important indicator for the performance of a sensor, which is calculated by the formula (2),

    theFWHMis the full width at half maximum of the resonance mode, theFOMof the CC nanostructure is 61.

    The FOM was studied when change the angle between two rods in a metal nanostructure. Fig. 8(b) shows that, as the angle between the two rods changes from 90° to 180° with 15° intervals, the FOM value increases firstly and then reduces sharply to 35 at 165° and finally increases to 48 at 180o. It can be found that the highest FOM value is 61. Compared with other plasma metal nanostructures, the FOM value of the CC metal nanostructures studied in this paper is relatively high, and it has applications in biosensors, optical switches, photodetectors, etc.

    4 Conclusions

    We designed a CC nanostructure to achieve multiple Fano resonance with high FOM magnetic resonance. Breaking the symmetry of the structure by rotating the cross and the single rod, a new magnetic mode can be created. The multiple Fano resonance can be generated by rotating the whole structure and reducing the length of rod1. High FOM can be implemented by changing the angle between the two rods in the structure. These excellent optical properties make the CC nanostructures have potential application prospects in ultra-sensitive biosensors, surface enhanced spectroscopy and so on.

    Fig. 8 (a) The extinction cross-section of the CC nanostructures varies with the refractive index of the surrounding environment. The angle between the two rods is 150o; (b) The FOM value of the structure changing with the angle between the two rods

    [1] Zhang J X, Zhang L D. Nanostructures for surface plasmons[J].2012, 4(2): 157–321.

    [2] Gao W T, Chen C Y, Sun Z J. Local field enhancement and its wavelength tuning in metal nanoparticle arrays[J].2019, 58(3): 030910.

    [3] Garcia M A. Surface plasmons in metallic nanoparticles: fundamentals and applications[J]., 2011, 44(28): 283001.

    [4] Lodewijks K, Ryken J, Van Roy W,Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications[J]., 2013, 8(3): 1379–1385.

    [5] Newman D M, Wears M L, Matelon R J,. Magneto-optic behaviour in the presence of surface plasmons[J]., 2008, 20(34): 345230.

    [6] Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration[J]., 2005, 13(17): 6645–6650.

    [7] Dong J, Qu S X, Zheng H R,. Simultaneous SEF and SERRS from silver fractal-like nanostructure[J]., 2014, 191: 595–599.

    [8] Ooi C H R, Tan K S. Controlling double quantum coherence and electromagnetic induced transparency with plasmonic metallic nanoparticle[J]., 2013, 8(2): 891–898.

    [9] Luk'Yanchuk B, Zheludev N I, Maier S A,. The fano resonance in plasmonic nanostructures and metamaterials[J]., 2010, 9(9): 707–715.

    [10] Kobayashi K, Aikawa H, Sano A,. Fano resonance in a quantum wire with a side-coupled quantum dot[J]., 2004, 70(3): 035319.

    [11] de Guevara M L L, Claro F, Orellana P A. Ghost fano resonance in a double quantum dot molecule attached to leads[J]., 2003, 67(19): 195335.

    [12] Hajebifard A, Berini P. Fano resonances in plasmonic heptamer nano-hole arrays[J]., 2017, 25(16): 18566–18580.

    [13] Fang Z Y, Liu Z, Wang Y M,. Graphene-antenna sandwich photodetector[J]., 2012, 12(7): 3808–3813.

    [14] Fang Z Y, Cai J Y, Yan Z B,. Removing a wedge from a metallic nanodisk reveals a fano resonance[J]., 2011, 11(10): 4475–4479.

    [15] Frimmer M, Coenen T, Koenderink A F. Signature of a fano resonance in a plasmonic metamolecule’s local density of optical states[J]., 2012, 108(7): 077404.

    [16] Chen S, Meng L Y, Hu J W,. Fano interference between higher localized and propagating surface plasmon modes in nanovoid arrays[J]., 2015, 10(1): 71–76.

    [17] Li J, Zhang Y, Jia T Q,. High tunability multipolar fano resonances in dual-ring/disk cavities[J]., 2014, 9(6): 1251–1256.

    [18] Kuznetsov M, Haus H. Radiation loss in dielectric waveguide structures by the volume current method[J]., 1983, 19(10): 1505–1514.

    [19] Huo Y Y, Jia T Q, Zhang Y,. Spaser based on fano resonance in a rod and concentric square ring-disk nanostructure[J]., 2014, 104(11): 113104.

    [20] Zhao Q, Yang Z J, He J. Fano resonances in heterogeneous dimers of silicon and gold nanospheres[J]., 2018, 13(3): 137801.

    [21] Lee K L, Wu S H, Lee C W,. Sensitive biosensors using fano resonance in single gold nanoslit with periodic grooves[J]., 2011, 19(24): 24530–24539.

    [22] Lee E, Zhou K, Gwon M,. Surface plasmon-induced absorption enhancement of silicon nanowire array[J]., 2012, 8457: 84572C.

    [23] Tasolamprou A C, Zografopoulos D C, Kriezis E E. Liquid crystal-based dielectric loaded surface plasmon polariton optical switches[J]., 2011, 110(9): 093102.

    [24] Gong X, Tong M H, Xia Y J,. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]., 2009, 325(5948): 1665–1667.

    [25] Berini P. Surface plasmon photodetectors and their applications[J]., 2014, 8(2): 197–220.

    [26] Bao Y J, Hu Z J, Li Z W,. Magnetic plasmonic fano resonance at optical frequency[J]., 2015, 11(18): 2177–2181.

    [27] Bao Y J, Zu S, Zhang Y F,. Active control of graphene-based unidirectional surface plasmon launcher[J]., 2015, 2(8): 1135–1140.

    [28] Bao Y J, Zhu X, Fang Z Y. Plasmonic toroidal dipolar response under radially polarized excitation[J]., 2015, 5: 11793.

    [29] Zhang Q, Wen X L, Li G Y,. Multiple magnetic mode-based fano resonance in split-ring resonator/disk nanocavities[J]., 2013, 7(12): 11071–11078.

    [30] Yang L, Wang J C, Yang L Z,. Characteristics of multiple fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory[J]., 2018, 8(1): 2560.

    [31] Kong Y, Cao J J, Qian W C,. Multiple fano resonance based optical refractive index sensor composed of micro-cavity and micro-structure[J]., 2018, 10(6): 6804410.

    [32] Li C, Li S L, Wang Y L,. Multiple fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor[J].2017, 9(6): 4801509.

    [33] Zhang Y Y, Li S L, Zhang X Y,. Evolution of fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor[J].2016, 370: 203–208.

    [34] Yun B F, Hu G H, Cong J W,Fano resonances induced by strong interactions between dipole and multipole plasmons in t-shaped nanorod dimer[J].2014, 9(3): 691–698.

    [35] Wang J Q, Fan C Z, He J N,. Double fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity[J].2013, 21(2): 2236–2244.

    [36] Gon?alves M R, Melikyan A, Minassian H,. Strong dipole-quadrupole coupling and fano resonance in h-like metallic nanostructures[J].2014, 22(20): 24516–24529.

    Generation of multiple Fano resonance and high FOM resonance based onthe crescent crossnanostructure

    Hou Yibo, Huo Yiping*, Jiang Xueying, Zhou Chen, Guo Yiyuan,Niu Qiqiang, He Qian, Hao Xiangxiang

    School of Physics and Information Technology, Shaanxi Normal University, Xi’an, Shaanxi 710062, China

    (a) 2-D structure and geometric parameters of the CC nanostructure; (b) 3-D schematic diagram of the CC nanostructure

    Overview:In recent years, great progress has been made in the research based on surface plasmons (SPs). SPs has been widely used in nano-optoelectronic integration, optical imaging, biosensor, data storage, and has attracted great attention of researchers. Fano resonance comes from the quantum system originally. When the discrete and the continuous energy level are superimposed, quantum interference occurs and low absorption happens at a specific optical frequency, which results in an asymmetric linetype. U Fano explained the mechanism of asymmetric linetype by using strict theory. In the SPs system, Fano resonance can be formed by the coupling between the bright mode (superradiant) and the dark mode (subradiant), which results in the asymmetric spectrum. Fano resonance is characterized by asymmetric linetype. A spectral dip is formed through coupling of bright mode and dark mode, where scattering is suppressed and absorption is enhanced. In order to explore the optical characteristics and application of surface plasmon resonance modes of composite metal nanostructures, a crescent cross (CC) nanostructure composed of a crescent and a cross is designed. A commercial software COMSOL Multiphysics based on the finite element method is used to calculate the optical response of the CC nanostructure. The direction of incident light is perpendicular to the surface of the nanostructure, and the polarization of light propagates parallel to the structure. By changing the structural parameters to break the symmetry of the nanostructure, rich optical properties can be obtained. The rotating cross can excite the surface plasmon resonance magnetic mode, and the electric mode and the magnetic mode are coupled to form the magnetic Fano resonance. The magnetic Fano resonance has advantages that the electrical Fano resonance does not have. A closed-loop current can be formed, which can limit the energy more locally, reduce the scattering loss and strengthen the response of the magnetic field. By rotating and shortening the single rod2, the structural symmetry is broken to generate multiple Fano resonance effects. Meanwhile, the optical characteristics of the plasmon resonance mode on the surface of the nanostructure are tuned by changing the polarization direction of light (rotating the entire structure) without changing the basic structure, and it is found that new Fano resonances occur continuously during the rotation process, thus forming multiple Fano resonances. In order to explore the application potential of crescent cross nanostructure in sensing field, we calculated its sensitivity. By changing the angle between the two rods symmetrically, the figure of merit (FOM) can reach 61. Our structure has important applications in the fields of multi-wavelength sensor, ultra-sensitive biosensor, surface enhanced spectroscopy and slow light transmission.

    Citation: Hou Y B, Huo Y P, Jiang X Y,. Generation of multiple Fano resonance andhigh FOM resonance based onthe crescent crossnanostructure[J]., 2020,47(11): 200010

    新月十字架納米結(jié)構(gòu)中多Fano共振的產(chǎn)生和高FOM共振

    侯藝博,霍義萍*,姜雪瑩,周 辰,郭懿圓,牛啟強(qiáng),何 倩,郝祥祥

    陜西師范大學(xué)物理學(xué)與信息技術(shù)學(xué)院,陜西 西安 710062

    金屬表面等離激元具有許多新穎的光學(xué)特性和重要的應(yīng)用,并且也是當(dāng)今研究的熱點(diǎn)。本文采用有限元方法研究了由新月和十字架組成的新月十字架納米結(jié)構(gòu)。通過改變結(jié)構(gòu)參數(shù)來打破結(jié)構(gòu)對(duì)稱性,可以產(chǎn)生新的等離激元磁模式和多重Fano共振。同時(shí),通過對(duì)稱地改變兩棒之間的夾角,F(xiàn)OM值可以達(dá)到61。我們的結(jié)構(gòu)在多波長傳感器、超靈敏生物傳感器、表面增強(qiáng)光譜和慢光傳輸?shù)阮I(lǐng)域有著重要的應(yīng)用。

    多Fano共振;表面等離激元;品質(zhì)因數(shù)

    TP212

    A

    侯藝博,霍義萍,姜雪瑩,等. 新月十字架納米結(jié)構(gòu)中多Fano共振的產(chǎn)生和高FOM共振[J]. 光電工程,2020,47(11): 200010

    2020-01-06;

    2020-03-31

    國家自然科學(xué)基金資助項(xiàng)目(11604198)

    侯藝博(1995-),男,碩士,主要從事表面等離激元光子學(xué)的研究。E-mail:hou994682946@qq.com

    霍義萍(1977-),女,博士,副教授,主要從事表面等離激元光子學(xué)的研究。E-mail:yphuo@snnu.edu.cn

    : Hou Y B, Huo Y P, Jiang X Y,Generation of multiple Fano resonance andhigh FOM resonance based onthe crescent crossnanostructure[J]., 2020, 47(11): 200010

    10.12086/oee.2020.200010

    Supported by National Natural Foundation of China (11604198)

    * E-mail: yphuo@snnu.edu.cn

    猜你喜歡
    中多十字架光子
    基于模式識(shí)別的圖像中多目標(biāo)自動(dòng)分割和分類研究
    《光子學(xué)報(bào)》征稿簡則
    AR全景圖像光照增強(qiáng)處理中多特征融合算法研究
    電子制作(2019年19期)2019-11-23 08:41:52
    人生十字架
    請(qǐng)將我釘在俗世的十字架上
    西湖(2019年1期)2019-01-07 11:04:44
    十字架
    通信認(rèn)知教學(xué)中多粒度可重用模型建模研究
    電子制作(2016年19期)2016-08-24 07:50:04
    在光子帶隙中原子的自發(fā)衰減
    光子晶體在兼容隱身中的應(yīng)用概述
    多光子Jaynes-Cummings模型中與Glauber-Lachs態(tài)相互作用原子的熵壓縮
    一区二区av电影网| 成人国语在线视频| 亚洲精品日本国产第一区| 在线观看免费日韩欧美大片| 涩涩av久久男人的天堂| 少妇人妻精品综合一区二区| 狠狠精品人妻久久久久久综合| 建设人人有责人人尽责人人享有的| 麻豆精品久久久久久蜜桃| 亚洲精品久久成人aⅴ小说| 韩国精品一区二区三区| 久久精品aⅴ一区二区三区四区| 一级毛片黄色毛片免费观看视频| 精品久久蜜臀av无| 国产精品熟女久久久久浪| 最近中文字幕高清免费大全6| 91精品国产国语对白视频| 国产无遮挡羞羞视频在线观看| av视频免费观看在线观看| 国产成人精品久久久久久| 极品人妻少妇av视频| 高清不卡的av网站| 在线亚洲精品国产二区图片欧美| 99久久人妻综合| 亚洲欧美精品综合一区二区三区| 国产亚洲最大av| 欧美最新免费一区二区三区| 免费看不卡的av| 少妇精品久久久久久久| 嫩草影视91久久| 久久久久精品性色| 午夜日韩欧美国产| 日本欧美国产在线视频| 9热在线视频观看99| www日本在线高清视频| 在线免费观看不下载黄p国产| 热re99久久精品国产66热6| 亚洲专区中文字幕在线 | 在线天堂中文资源库| 高清视频免费观看一区二区| 欧美xxⅹ黑人| 国产精品欧美亚洲77777| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 精品免费久久久久久久清纯 | 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 久久99一区二区三区| 久久久久视频综合| 欧美日韩精品网址| 熟女av电影| 亚洲精品久久久久久婷婷小说| 欧美中文综合在线视频| 麻豆乱淫一区二区| 久久鲁丝午夜福利片| 婷婷色综合大香蕉| 好男人视频免费观看在线| 免费黄网站久久成人精品| www.av在线官网国产| 国产熟女午夜一区二区三区| 国产1区2区3区精品| 熟妇人妻不卡中文字幕| 色94色欧美一区二区| 成人国产麻豆网| 天堂8中文在线网| 超碰97精品在线观看| 男女床上黄色一级片免费看| 人人妻人人澡人人看| 精品少妇内射三级| 亚洲第一av免费看| 久久天躁狠狠躁夜夜2o2o | 欧美日韩av久久| 午夜福利乱码中文字幕| 香蕉国产在线看| 久久久久久久久免费视频了| 韩国精品一区二区三区| 国产福利在线免费观看视频| 亚洲精品国产色婷婷电影| 99热全是精品| 亚洲精品美女久久久久99蜜臀 | 亚洲精品av麻豆狂野| 欧美 日韩 精品 国产| 男女床上黄色一级片免费看| 极品人妻少妇av视频| 一区二区三区乱码不卡18| 男女午夜视频在线观看| 精品福利永久在线观看| 91老司机精品| 三上悠亚av全集在线观看| 成人免费观看视频高清| 菩萨蛮人人尽说江南好唐韦庄| 王馨瑶露胸无遮挡在线观看| 精品一区二区三卡| 成人手机av| 精品少妇久久久久久888优播| 如何舔出高潮| 免费观看人在逋| 狂野欧美激情性xxxx| 99久国产av精品国产电影| 久久国产精品男人的天堂亚洲| 成人毛片60女人毛片免费| 国产亚洲欧美精品永久| 欧美成人午夜精品| 久久久国产精品麻豆| 国产一区二区在线观看av| 中文字幕精品免费在线观看视频| 欧美97在线视频| 男女边摸边吃奶| 久久热在线av| 女人精品久久久久毛片| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 国产探花极品一区二区| 国产成人欧美在线观看 | 国产一区有黄有色的免费视频| 国产成人精品无人区| 国产亚洲午夜精品一区二区久久| 国产成人欧美| 肉色欧美久久久久久久蜜桃| 中国国产av一级| 丝袜在线中文字幕| 高清黄色对白视频在线免费看| 亚洲免费av在线视频| 啦啦啦在线观看免费高清www| 七月丁香在线播放| 如日韩欧美国产精品一区二区三区| 天天躁夜夜躁狠狠久久av| a级毛片在线看网站| 街头女战士在线观看网站| 可以免费在线观看a视频的电影网站 | xxx大片免费视频| 91老司机精品| 下体分泌物呈黄色| 国产乱人偷精品视频| 91精品三级在线观看| av网站免费在线观看视频| 国产精品秋霞免费鲁丝片| 久久人人爽av亚洲精品天堂| 中文乱码字字幕精品一区二区三区| 国产精品久久久久久精品古装| 国产一区二区三区综合在线观看| 亚洲av福利一区| 国产亚洲av高清不卡| 看免费成人av毛片| 又大又黄又爽视频免费| 久久97久久精品| 曰老女人黄片| 亚洲欧美中文字幕日韩二区| 精品卡一卡二卡四卡免费| 欧美国产精品va在线观看不卡| 亚洲精品国产av成人精品| 夜夜骑夜夜射夜夜干| 老司机深夜福利视频在线观看 | 久久久久久久久久久免费av| 女人久久www免费人成看片| 看十八女毛片水多多多| 99精国产麻豆久久婷婷| 亚洲av国产av综合av卡| 久久国产亚洲av麻豆专区| 国产成人系列免费观看| 一区在线观看完整版| 国产免费一区二区三区四区乱码| 国产精品久久久人人做人人爽| 男人操女人黄网站| 久久久久精品性色| 波野结衣二区三区在线| 久久热在线av| 日韩视频在线欧美| 欧美日韩一级在线毛片| 狂野欧美激情性bbbbbb| 欧美最新免费一区二区三区| 国产一区二区 视频在线| 老熟女久久久| 大香蕉久久成人网| 午夜日韩欧美国产| 天天影视国产精品| 欧美xxⅹ黑人| 国产成人免费无遮挡视频| 韩国高清视频一区二区三区| 啦啦啦 在线观看视频| 可以免费在线观看a视频的电影网站 | 精品酒店卫生间| 啦啦啦在线观看免费高清www| 亚洲三区欧美一区| 51午夜福利影视在线观看| 久久午夜综合久久蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 别揉我奶头~嗯~啊~动态视频 | 卡戴珊不雅视频在线播放| 免费少妇av软件| 街头女战士在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 在线观看免费视频网站a站| 国产精品一国产av| 欧美日韩精品网址| 国产av码专区亚洲av| 亚洲精品国产色婷婷电影| 日韩制服丝袜自拍偷拍| 街头女战士在线观看网站| 美国免费a级毛片| 久久毛片免费看一区二区三区| 视频区图区小说| 老司机在亚洲福利影院| 美女脱内裤让男人舔精品视频| 国产亚洲最大av| 高清在线视频一区二区三区| 国产精品偷伦视频观看了| 国语对白做爰xxxⅹ性视频网站| 人妻 亚洲 视频| 成人国产麻豆网| 久热爱精品视频在线9| 大香蕉久久网| av天堂久久9| 久久精品国产a三级三级三级| 国产精品 国内视频| 久久 成人 亚洲| 男人添女人高潮全过程视频| 亚洲国产av影院在线观看| 777久久人妻少妇嫩草av网站| 日韩,欧美,国产一区二区三区| xxx大片免费视频| 欧美成人精品欧美一级黄| 国产免费福利视频在线观看| 观看美女的网站| 国产精品麻豆人妻色哟哟久久| 中文欧美无线码| 2021少妇久久久久久久久久久| 久久精品国产亚洲av涩爱| 成年女人毛片免费观看观看9 | 国产色婷婷99| 久久这里只有精品19| 少妇人妻精品综合一区二区| 最近最新中文字幕大全免费视频 | 亚洲专区中文字幕在线 | 亚洲专区中文字幕在线 | 久久久久久人妻| 久久免费观看电影| 日本欧美国产在线视频| 亚洲成人av在线免费| 久久热在线av| 亚洲精品av麻豆狂野| h视频一区二区三区| 日韩不卡一区二区三区视频在线| 97精品久久久久久久久久精品| 波野结衣二区三区在线| 久久97久久精品| 人妻 亚洲 视频| av片东京热男人的天堂| 欧美成人精品欧美一级黄| 亚洲av日韩在线播放| 亚洲色图综合在线观看| 亚洲国产精品999| 亚洲成国产人片在线观看| 老司机靠b影院| 日韩一本色道免费dvd| 女人爽到高潮嗷嗷叫在线视频| 99re6热这里在线精品视频| av网站在线播放免费| 中文字幕制服av| 国产成人精品久久二区二区91 | 亚洲久久久国产精品| 欧美日韩亚洲国产一区二区在线观看 | 超碰成人久久| 最近中文字幕2019免费版| 亚洲情色 制服丝袜| 精品国产一区二区三区四区第35| 成人国产av品久久久| 91国产中文字幕| 国产精品久久久久成人av| 亚洲精品美女久久av网站| 丰满乱子伦码专区| 午夜福利乱码中文字幕| 中文精品一卡2卡3卡4更新| www.自偷自拍.com| 在线观看免费午夜福利视频| 美女视频免费永久观看网站| 欧美亚洲 丝袜 人妻 在线| 超碰成人久久| 中文字幕另类日韩欧美亚洲嫩草| 毛片一级片免费看久久久久| 美女高潮到喷水免费观看| 男女国产视频网站| 久久精品熟女亚洲av麻豆精品| 亚洲国产av影院在线观看| 亚洲av综合色区一区| 久久天躁狠狠躁夜夜2o2o | 一级爰片在线观看| e午夜精品久久久久久久| 免费看av在线观看网站| 日韩大码丰满熟妇| 亚洲精品成人av观看孕妇| 国产成人精品久久久久久| 午夜日韩欧美国产| 成人亚洲精品一区在线观看| 日日摸夜夜添夜夜爱| 1024香蕉在线观看| 成人影院久久| 免费看不卡的av| 午夜激情久久久久久久| 国产野战对白在线观看| 国产麻豆69| 老汉色∧v一级毛片| 这个男人来自地球电影免费观看 | 亚洲天堂av无毛| 少妇 在线观看| 亚洲欧美精品自产自拍| av不卡在线播放| 国产精品一区二区在线观看99| 丰满迷人的少妇在线观看| 成年动漫av网址| 久久久久视频综合| 国产成人系列免费观看| 少妇的丰满在线观看| 国产深夜福利视频在线观看| 午夜老司机福利片| 丝瓜视频免费看黄片| 香蕉国产在线看| 国产亚洲av高清不卡| 交换朋友夫妻互换小说| 亚洲国产精品成人久久小说| 久久精品国产亚洲av高清一级| 国产免费一区二区三区四区乱码| 老司机影院毛片| 日日摸夜夜添夜夜爱| 亚洲成av片中文字幕在线观看| 中文字幕最新亚洲高清| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级| 国产午夜精品一二区理论片| 国产成人啪精品午夜网站| 国产又爽黄色视频| 国产精品人妻久久久影院| 人人妻,人人澡人人爽秒播 | 国产精品 欧美亚洲| 欧美97在线视频| 成年女人毛片免费观看观看9 | 久久亚洲国产成人精品v| 国产精品欧美亚洲77777| 美女中出高潮动态图| 精品国产一区二区久久| 最近的中文字幕免费完整| 亚洲在久久综合| 90打野战视频偷拍视频| 国产av码专区亚洲av| √禁漫天堂资源中文www| 女人被躁到高潮嗷嗷叫费观| 欧美在线一区亚洲| 亚洲国产最新在线播放| 久久av网站| 亚洲av男天堂| 亚洲欧美激情在线| 免费高清在线观看日韩| 成人18禁高潮啪啪吃奶动态图| 精品亚洲成国产av| 1024视频免费在线观看| 国产99久久九九免费精品| av线在线观看网站| 欧美日韩成人在线一区二区| 精品久久久精品久久久| 欧美黑人精品巨大| 日本wwww免费看| 亚洲欧美一区二区三区国产| 波野结衣二区三区在线| av一本久久久久| 99久久人妻综合| 国产一区二区三区av在线| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩亚洲高清精品| 久久久久久久久久久久大奶| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美成人精品一区二区| 日韩中文字幕视频在线看片| 啦啦啦中文免费视频观看日本| 80岁老熟妇乱子伦牲交| 日本av免费视频播放| 一级黄片播放器| 男女之事视频高清在线观看 | 99热网站在线观看| 男人舔女人的私密视频| 日本av免费视频播放| 亚洲国产精品成人久久小说| 伦理电影大哥的女人| 校园人妻丝袜中文字幕| 亚洲精华国产精华液的使用体验| 桃花免费在线播放| 国产黄色视频一区二区在线观看| 国产欧美亚洲国产| 国产成人啪精品午夜网站| 女人高潮潮喷娇喘18禁视频| 国产精品成人在线| 最近的中文字幕免费完整| 亚洲精品aⅴ在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲成色77777| 男女边吃奶边做爰视频| 无遮挡黄片免费观看| 欧美人与性动交α欧美精品济南到| 国产黄色视频一区二区在线观看| 亚洲欧美精品自产自拍| 91精品国产国语对白视频| 中文字幕人妻丝袜一区二区 | 中文字幕制服av| 精品福利永久在线观看| 好男人视频免费观看在线| 十八禁网站网址无遮挡| 啦啦啦在线观看免费高清www| 99久久人妻综合| 久久久亚洲精品成人影院| 久久精品久久精品一区二区三区| 搡老岳熟女国产| 别揉我奶头~嗯~啊~动态视频 | 国产99久久九九免费精品| 精品酒店卫生间| 9191精品国产免费久久| 国产精品一区二区在线观看99| 美女福利国产在线| 丝袜美腿诱惑在线| 国产片特级美女逼逼视频| av网站免费在线观看视频| 国产亚洲av高清不卡| 香蕉国产在线看| 在线亚洲精品国产二区图片欧美| 一级毛片 在线播放| 亚洲国产毛片av蜜桃av| svipshipincom国产片| 黄片小视频在线播放| 天堂8中文在线网| 九草在线视频观看| 美国免费a级毛片| 亚洲一码二码三码区别大吗| 亚洲熟女毛片儿| 哪个播放器可以免费观看大片| 久久人人97超碰香蕉20202| 菩萨蛮人人尽说江南好唐韦庄| 无遮挡黄片免费观看| 熟女少妇亚洲综合色aaa.| 午夜免费男女啪啪视频观看| 看免费av毛片| 成人亚洲欧美一区二区av| 国产精品熟女久久久久浪| 日韩av不卡免费在线播放| 一区二区三区激情视频| av天堂久久9| 欧美黄色片欧美黄色片| 亚洲成人手机| 欧美在线一区亚洲| 另类精品久久| 操美女的视频在线观看| 一区福利在线观看| 色视频在线一区二区三区| 久久女婷五月综合色啪小说| 一边摸一边抽搐一进一出视频| 最新的欧美精品一区二区| 如何舔出高潮| 国产成人欧美在线观看 | 一区二区三区精品91| 中文字幕制服av| 成人国产av品久久久| 国产精品三级大全| 亚洲男人天堂网一区| 卡戴珊不雅视频在线播放| 欧美日韩一区二区视频在线观看视频在线| 久热爱精品视频在线9| 亚洲天堂av无毛| 亚洲国产精品国产精品| 欧美日韩亚洲国产一区二区在线观看 | 亚洲少妇的诱惑av| 亚洲欧洲日产国产| 成年人免费黄色播放视频| 欧美日韩国产mv在线观看视频| 成人毛片60女人毛片免费| 一边摸一边做爽爽视频免费| 别揉我奶头~嗯~啊~动态视频 | 国产深夜福利视频在线观看| 久久久国产一区二区| 亚洲成人国产一区在线观看 | 亚洲av成人不卡在线观看播放网 | 亚洲伊人久久精品综合| 青春草视频在线免费观看| 亚洲国产精品一区三区| 久久久久久久久久久免费av| 久久久久精品性色| 国产熟女午夜一区二区三区| tube8黄色片| 国产人伦9x9x在线观看| 午夜福利免费观看在线| av女优亚洲男人天堂| 日本av免费视频播放| 新久久久久国产一级毛片| 免费av中文字幕在线| www.av在线官网国产| 亚洲精品国产av成人精品| 午夜日本视频在线| 18禁观看日本| 午夜激情久久久久久久| 十八禁网站网址无遮挡| 老司机深夜福利视频在线观看 | 美女大奶头黄色视频| 久久久久久免费高清国产稀缺| 极品人妻少妇av视频| 精品人妻在线不人妻| 亚洲,一卡二卡三卡| 亚洲七黄色美女视频| 在线观看www视频免费| 精品国产一区二区久久| 久久久精品免费免费高清| 啦啦啦在线免费观看视频4| 精品免费久久久久久久清纯 | 岛国毛片在线播放| 热99国产精品久久久久久7| 国产精品成人在线| 丝袜喷水一区| 久久综合国产亚洲精品| 在线天堂最新版资源| 国产精品国产三级国产专区5o| 午夜老司机福利片| av视频免费观看在线观看| 91精品国产国语对白视频| 交换朋友夫妻互换小说| 午夜精品国产一区二区电影| www.精华液| 黄色一级大片看看| 丝袜脚勾引网站| 免费在线观看黄色视频的| 欧美在线黄色| 国精品久久久久久国模美| 国产成人精品久久久久久| 婷婷成人精品国产| 亚洲国产欧美在线一区| 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 美女主播在线视频| 在线观看免费视频网站a站| 啦啦啦视频在线资源免费观看| 大话2 男鬼变身卡| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲国产一区二区在线观看 | av视频免费观看在线观看| 毛片一级片免费看久久久久| 麻豆av在线久日| 精品亚洲乱码少妇综合久久| 成人18禁高潮啪啪吃奶动态图| 叶爱在线成人免费视频播放| 日韩中文字幕欧美一区二区 | 日本欧美国产在线视频| av免费观看日本| 精品国产一区二区三区四区第35| 亚洲,一卡二卡三卡| av网站免费在线观看视频| 亚洲美女搞黄在线观看| 欧美精品av麻豆av| 一级毛片黄色毛片免费观看视频| 久久精品久久久久久久性| 国产一区亚洲一区在线观看| 99国产精品免费福利视频| 欧美 亚洲 国产 日韩一| 免费观看a级毛片全部| 国产淫语在线视频| 毛片一级片免费看久久久久| 亚洲精品久久久久久婷婷小说| 国产亚洲av片在线观看秒播厂| 91老司机精品| 亚洲国产精品一区二区三区在线| 亚洲国产欧美日韩在线播放| 午夜激情久久久久久久| 女性生殖器流出的白浆| 国产亚洲av高清不卡| 一本—道久久a久久精品蜜桃钙片| 亚洲久久久国产精品| 国产片特级美女逼逼视频| 日韩精品有码人妻一区| 国产成人午夜福利电影在线观看| 午夜福利影视在线免费观看| 免费观看a级毛片全部| 在线观看免费视频网站a站| 色播在线永久视频| 亚洲精品,欧美精品| 波多野结衣av一区二区av| 久久青草综合色| 免费看不卡的av| 人妻人人澡人人爽人人| 亚洲色图 男人天堂 中文字幕| 男女无遮挡免费网站观看| 色播在线永久视频| 青草久久国产| 日韩电影二区| 99九九在线精品视频| 免费人妻精品一区二区三区视频| 亚洲第一av免费看| 少妇猛男粗大的猛烈进出视频| 日韩大码丰满熟妇| 天天影视国产精品| 午夜福利视频精品| 久久精品亚洲av国产电影网| 在线观看一区二区三区激情| av国产精品久久久久影院| 久久久亚洲精品成人影院| 在线观看人妻少妇| 亚洲精品av麻豆狂野| 丝袜人妻中文字幕| 国产成人系列免费观看| 在线观看免费高清a一片| 亚洲av国产av综合av卡| 国产精品久久久av美女十八| 啦啦啦视频在线资源免费观看| 最新的欧美精品一区二区| 日本欧美视频一区| 精品少妇内射三级| 成人手机av| 久久精品aⅴ一区二区三区四区| 天天躁日日躁夜夜躁夜夜| 观看av在线不卡| 亚洲精华国产精华液的使用体验| 老司机亚洲免费影院| 久久久精品国产亚洲av高清涩受|