• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Error-based observer control of an optic-electro tracking control system

    2020-12-11 00:46:00XuTianrongRuanYongZhaoZhiqiangWangZongyouTangTao
    光電工程 2020年11期
    關(guān)鍵詞:觀測(cè)器中國科學(xué)院濾波器

    Xu Tianrong, Ruan Yong, Zhao Zhiqiang,Wang Zongyou, Tang Tao*

    Error-based observer control of an optic-electro tracking control system

    Xu Tianrong1,2,3, Ruan Yong1,2, Zhao Zhiqiang1,2,Wang Zongyou1,2, Tang Tao1,2,3*

    1Key Laboratory of Beam Control, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;3University of Chinese Academy of Sciences, Beijing 100049, China

    For an optic-electro tracking system, an image sensor such as charge-coupled device (CCD) cannot provide target trajectories except for line-of-sight (LOS) error. Thus, it is difficult to achieve direct feedforward control for the tracking loop, which determines the closed-loop performance. An error-based observer (EBO) control of a CCD-based tracking loop is proposed to enhance the tracking performance for an optic-electro tracking system on moving platforms. The EBO control can be plugged into an existing feedback control loop. The closed-loop performance of the CCD-based control system can be improved by optimizing the feedforward filter(). Because this EBO method relies only on the final LOS error, it benefits the control system both in disturbance suppression and target tracking and it can be applied to an optic-electro tracking system in moving platforms as well as in ground platforms. An optimal31filter rather than a low-pass filter is improved for this EBO control. Simulations and experiments show that the tracking performance is effectively enhanced in low frequency compared to traditional control methods.

    line of sight error; moving platforms; feedforward control; optic-electro tracking systems

    1 Introduction

    Image sensors (such as charge-coupled device, CCD) are usually used to detect the line of sight (LOS) error in an optic-electro tracking control system, which is used for monitoring and positioning as well as tracking an interesting target. High control bandwidth facilitates good closed-loop performance. However, sampling frequency and time delay of CCD (mainly include exposure time, image process time and transmit time) are the main factors that restrict tracking bandwidth, resulting in reducing tracking accuracy. How to improve closed-loop performance and compensate time delay of CCD with a limited sampling frequency is important research. Using a high-gain feedback controller or improving the order of the control system is a common method, but it has an impact on the dynamic performance of the system, even lead to instability[1-4]. Experiments verified that feedforward control is an effective way to improve tracking performance. Theoretically, it has little influence on closed-loop stability due to its independence from the feedback loop. However, an image sensor such as CCD cannot provide target trajectories except LOS error, which leads to difficulty in achieving feedforward control for image tracking loop[5-6]. A direct feedback loop is still utilized to control LOS in many cases. In addition, motivated by application requirements, more and more optoelectronic tracking systems are equipped on moving vehicles such as ships, aircraft, and spacecraft for diverse missions which makes optical tracking devices more flexible. But this change also brings problems for control systems. The carrier motion at different frequencies such as the sway of the ship or vibration of the satellite will produce direct influence on the line of sight which may affect the tracking performance or even lead to instability. Many methods have been developed to isolate the line of sight from carrier motion[7-12]. In most cases, extra inertial sensors are needed to detect the carrier motion relative to inertial space. It brings difficulties to the implementation of some methods that can be utilized on ground tracking. For example, a method based on data fusion, which combines the line of sight error and angular position to generate feedforward control[13]. It cannot be directly applied to a moving platform, because the platform motion cannot be measured by the non-inertial encoder it used. Extra sensor is necessary. When an inertial measurement unit (IMU) is added, the effectiveness is affected by the attitude accuracy. Generally, the effectiveness of generating feedforward control through data fusion depends on the effectiveness of the synthesized feedforward signal which is determined by the precision of the sensors and the prediction accuracy[14-16]. Inaccurate feedforward signal willreduce the tracking accuracy and even lead to system instability. Based on this situation, an error-based observer (EBO) control of a CCD-based tracking loop is proposed to enhance the tracking performance on the moving platform. The EBO control method does not need extra sensors. It combines the LOS error and output of the position controller to achieve high gain, forwarding into the original closed-loop control system to achieve equivalent feed forward control. Simulations and experiments verified that the EBO control benefits the control system both in disturbance suppression and target tracking. It is based on Youla–Kuˇcera parameterization and its performance can be optimized by the feedforward filter Q. Section 2 gives a detailed analysis of a classical feedforward control and the error-based observer control (EBO) on the moving platform, and makes some remarks on the advantage of the EBO method as compared to the classical feedback control. Section 3 analyzes the system stability and focuses on the parameter design, mainly including the proportional-integral (PI) controller and the low-pass filter(). Section 4 presents the simulation results and the experiment results. Concluding remarks are presented in Section 5.

    2 Analysis of control methodologies

    2.1 Classical controller for the moving platform

    On the moving platform, pointing control is usually implemented via two servo loops, the outer tracking or pointing loop to control LOS error and an inner stabilization or rate loop to isolates the LOS from platform motion. The stabilization loop bandwidth must be high enough to reject the platform disturbance spectrum[17-18]. A classical feedback control structure of Fig. 1 is shown in Fig. 2 where inertial sensors such as gyros feedback the carrier motion to isolate the LOS from platform motion and an image sensor such as CCD detects the LOS error to achieve object tracking.0is the time-delay of CCD,p() is the position controller,v() is the velocity controller,v() is the control plant,() is the target trajectory, and() represents the outer disturbance. The characteristic of the controlled plant for the outer loop is

    Fig. 1 The basic structure of the control system based on CCD vision tracking

    Fig. 2 Con?guration of classical feedback control on the moving platform

    When the velocity closed loop has a much higher bandwidth than that of the position closed loop,v()v()/[1+v()v()]≈1 andp()≈1/are reasonable to some extent. In this case, the outer position loop plays a decisive part in tracking performance. The transform functionorgand sensitivity functionorgof the control scheme is given by Eqs. (2) and (3).

    It is not hard to find thatorg+org=1, which means that there is a conflict between tracking performance and disturbance rejection. Obviously, increasing the gain ofp() which means a higher bandwidth is an effective way to improve the tacking performance. But, the tracking bandwidth of the actual optical-electro devices cannot be increased unlimited due to the mechanical resonance and system noise. Besides, high gain may affect the robustness of the control system. From another point, it is meaningless to increasing the bandwidth without limit when the time delay of CCD cannot be cut to zero[19].

    A classical feedforward control scheme for object tracking and disturbance rejection is shown in Fig. 3 where0is the time delay of CCD,() is the position controller,() is the control plant,() is the target trajectory,() is the outer disturbance, and() andf() are the feedforward controllers for object tracking and disturbance suppression, respectively. The transfer function of the control scheme is given by:

    Obviously, whenf()=-1/(),() is independent of(), and when()=1/(),()=() which means perfect real-time tracking. However, it cannot be realized in most cases. First of all, trackers like CCD could not detect the trajectory() except for LOS error(). Second, the accurate detection of() is not easy to realize. Besides, inaccuracy detection of() especially in high frequency also having an influence. Recovering the trajectory() by data fusion and velocity prediction are effective ways to achieve equivalent feedforward control. But some methods cannot be applied to the moving platform directly due to carrier motion and characteristic of sensors and its effectiveness relies on the effectiveness of the synthesized feedforward signals which is determined by the precision of the sensors and the prediction accuracy. Inaccurate feedforward signal will reduce the tracking accuracy and even lead to system instability. So, there is a need of a new control method that can be applied to the moving platform and do not rely excessively on extra sensors.

    Fig. 3 A classical feedforward control scheme

    2.2 The error-based observer (EBO) control method

    An error-based observer (EBO) control method which is based on Youla–Kuˇcera parameterization is shown in Fig. 4. It feedforwards the combination of the LOS error from the CCD and the controller output into the originally closed-loop control system.0is the time-delay of CCD,() is the control plant,() is the position controller,-1() is the inverse of(),() is a low-pass filter,() represents the target trajectory,() is the LOS error from the CCD, and() is the outer disturbance which is small when the system in inertial stable status through stabilization control of the inner loop. The sensitive functions for trajectory() and disturbance() of Fig. 4 are given as follow:

    3 Optimal design of parameter

    where

    Fig. 4 The error-based observer (EBO) control scheme

    The sensitive function decides that() has to be a low-pass filter. A general form of low-pass filters is generally given by[3]:

    here,、are positive integer. It is easy to know excessive order and bandwidth of() can lead to destruction of the stability condition by plant uncertainty and phase loss in the high-frequency region. To meet the requirement of robustness condition which is affected by phase margin and magnitude margin of the open-loop transfer function, a Q31-filter with an appropriate parameteris a compromise solution. When=3,

    An equivalent controllereq() of Fig. 4 is

    After mathematical calculations of Eq. (7), we find it is not easy to satisfym>π/4 andm>6 dB strictly. Several groups of parameters that can satisfy the requirement of robustness condition is shown in Table 1. In order to get better performance,=0.05 is finally chosen.

    4 Simulations and experiments

    4.1 Simulation results

    According to the previous parameter design, the bode response of the transfer function and the sensitive function of classical feedback control and the EBO method is shown in Figs. 6(a) and 6(b) respectively. It is easy to find that although the tracking bandwidth is not improved with the EBO method, it enhances the tracking performance in the low frequency compared to the classical feedback control (CFC) mode. The EBO control mode with1()=1/(0.1+1) improves below 1 Hz compared to classical feedback control. The EBO control mode with an optimal31() with=0.05 is more efficient in frequencies lower than 1 Hz. The experimental verification is depicted in the next section.

    Fig. 5 Bode diagram of 1-Q(jω)e-0.03jω

    Table 1 Comparison of gain margin and phase margin among different methods

    Fig. 6 Bode response of the closed-loop transfer function (a) and sensitivity function (b) from simulations

    4.2 Experiment results

    The experimental system is shown in Fig. 7. A CCD is used to detect the LOS error with a sampling frequency of 100 Hz. Laser light and FSM2 simulate the target trajectory, FSM1 is the tracking controller and FSM3 is used to simulate the carrier motion. Here, we set the carrier motion=0, which means that FSM3 is fixed. It is reasonable, because FSM3 and FSM2 have the same effect on LOS and it does not matter whether FSM2 or FSM3 generate carrier motion.Besides, according to the control mode analysis in chapter 2, when the system is in the inertial stable status through stabilization control of the inner loop, the remaining disturbance can be neglected compared with the target moving. The target trajectory() is a sinusoidal signal with an amplitude of 0.5 V, which can be expressed as=sin(). The experiment only presents a single axis of the azimuth due to the similarity. We record the LOS error respectively using three different control strategies when=0.05 Hz, 0.1 Hz, 0.5 Hz, and 1 Hz which are depicted in Figs. 8(a)~8(d), respectively. It is obvious that the EBO method has obvious improvement in frequencies lower than 1 Hz compared to classical feedback control, showing an improvement of 8 dB at 1 Hz and 15 dB at 0.05 Hz. The optimal filter()=31() is more efficient than a first-order low-pass filter1() which is consistent with simulation results. But the result of the EBO method with1and31is hard to distinguish and the improvement is not as good as simulation results in frequencies lower than 0.1 Hz, which is a result of the mechanical resonance and system noise.

    Fig. 7 Con?guration of experimental platform

    5 Conclusions

    In this paper, an error-based observer (EBO) control method of a CCD-based tracking loop is proposed to enhance the closed-loop performance. This EBO method combines the line-of-sight error and control output to generate a high gain observer. It can be plugged into the existing feedback control loop and the closed-loop performance can be improved by optimizing the feedforward filter(). Simulations and experiments verify that this EBO control method can effectively enhance the closed-loop performance in the low frequency in comparison with the classical control mode and an optimal31filter is more effective than a first-order low pass filter in this EBO control mode. In fact, better performance in the low frequency is more important than a higher bandwidth in many cases especially when the target is far from the tracking device. It is valuable for engineering applications. It is meaningful to explore other Q filters that can be applied to different scenarios. A further experiment on other moving platforms such as gimbals is also needed to verify the method.

    [1] Beals G A, Crum R C, Dougherty H J,. Hubble space telescope precision pointing control system[J]., 1988, 11(2): 119–123.

    [2] Wang C C, Hu L F, Wang Y K,. Time delay compensation method for tip-tilt control in adaptive optics system[J]., 2015, 54(11): 3383–3388.

    [3] Esmaeili M, Shirvani M. Time delay compensation by A PID controller[C]//, Shah Alam, Malaysia, 2011.

    [4] Natori K, Tsuji T, Ohnishi K,. Time-delay compensation by communication disturbance observer for bilateral teleoperation under time-varying delay[J]., 2010, 57(3): 1050–1062.

    [5] Huang Y M, Ma J G, Fu C Y. Velocity-forecast filters of theodolite[J]., 2003, 5082: 87–93.

    [6] Wei Z H. Feedforward control strategies for tracking performance in machine axes[J]., 2005, 18(1): 5–9.

    [7] Hurák Z, ?ezá? M. Combined line-of-sight inertial stabilization and visual tracking: Application to an airborne camera platform[C]//, Shanghai, 2009.

    [8] Deng C, Tang T, Mao Y,. Enhanced disturbance observer based on acceleration measurement for fast steering mirror systems[J]., 2017, 9(3): 6802211.

    [9] Wu C, Lin Z. Disturbance observer based control system design for inertially stabilized platform[J]., 2012, 8542: 85420T.

    [10] Tian J, Yang W S, Peng Z M,. Inertial sensor-based multiloop control of fast steering mirror for line of sight stabilization[J]., 2016, 55(11): 111602.

    [11] Luo Y, Huang Y M, Deng C,. Combining a disturbance observer with triple-loop control based on MEMS accelerometers for line-of-sight stabilization[J]., 2017, 17(11): 2648.

    [12] Luo Y, Mao Y, Ren W,. Multiple fusion based on the CCD and MEMS accelerometer for the low-cost multi-loop optoelectronic system control[J]., 2018, 18(7): 2153.

    [13] Tang T, Cai H X, Huang Y M,. Combined line-of-sight error and angular position to generate feedforward control for a charge-coupled device–based tracking loop[J]., 2015, 54(10): 105107.

    [14] Tang T, Niu S X, Ma J G,. A review on control methodologies of disturbance rejections in optical telescope[J]., 2019, 2(10): 190011.

    [15] Yan L J, Huang Y M, Zhang Y H,. Research on the application of RANSAC algorithm in electro-optical tracking of space targets[J]., 2019, 46(11): 180540.

    嚴(yán)靈杰, 黃永梅, 張涯輝, 等. RANSAC算法在空間目標(biāo)光電跟蹤中的應(yīng)用研究[J]. 光電工程, 2019, 46(11): 180540.

    [16] Tang T, Tian J, Zhong D J,. Combining charge couple devices and rate sensors for the feedforward control system of a charge coupled device tracking loop[J]., 2016, 16(7): 968.

    [17] Kennedy P J, Kennedy R L. Direct versus indirect line of sight (LOS) stabilization[J]., 2003, 11(1): 3–15.

    [18] Masten M K. Inertially stabilized platforms for optical imaging systems[J]., 2008, 28(1): 47–64.

    [19] Zhang W L, Tomizuka M, Wei Y H,. Robust time delay compensation in a wireless motion control system with double disturbance observers[C]//, Chicago, 2015: 5294–5299.

    Error-based observer control of an optic-electro tracking control system

    Xu Tianrong1,2,3, Ruan Yong1,2, Zhao Zhiqiang1,2, Wang Zongyou1,2, Tang Tao1,2,3*

    1Key Laboratory of Beam Control, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;3University of Chinese Academy of Sciences, Beijing 100049, China

    The error-based observer control (EBO) structure

    Overview:For an optic-electro tracking system, image sensors (such as CCD) are usually used for monitoring and positioning as well as tracking a target, but they can only detect line-of-sight (LOS) error and cannot provide target trajectories. Therefore, it brings difficulties to the application of feedforward control which is an effective way to improve tracking performance. As a result, recovering the target trajectory through data fusion is an effective way. However, it needs extra sensors and the effectiveness of the equivalent feedforward control method is based on the accuracy of the synthesized feedforward signal which is affected by the measurement accuracy of the sensor and the prediction accuracy. Inaccurate feedforward signal has no improvement in tracking performance and even leads to instability of the control system. When it comes to tracking system on a moving platform, an inertial measurement unit (IMU) is necessary. The attitude accuracy determined by the IMU always plays an import part in tracking performance. Therefore, the equivalent feedforward control method based on data fusion is not applicable in many cases. For traditional feedback control, high control bandwidth facilitates good closed-loop performance. However, the sampling frequency and time delay of the image sensor are the main factors that restrict tracking bandwidth. Simply using a high-gain feedback controller or improving the order of the control system will decrease the dynamic performance of the system, leading to instability. The error-based observer (EBO) control of an image-based tracking loop is proposed to enhance tracking performance for an optic-electro tracking system on the moving platform. This EBO method combines the LOS error and control output to achieve high gain. The equivalent feedforward control can be plugged into the existing feedback control loop. The closed-loop performance of the image-based control system can be improved by optimizing the feedforward filter(). Since this EBO method does not need extra sensors and it benefits the control system in both disturbance suppression and target tracking, it can be applied to both moving platforms and ground platforms. The control structure decided that() has to be a low-pass filter. In this paper, an optimal three-order31filter rather than a low-pass filter is improved for this EBO control. Simulations and experiments show that the tracking performance of the EBO method is effectively enhanced in the low frequency compared to traditional control methods and an optimal31filter is more efficient than a simple first-order low-pass filter. This improvement is meaningful because better performance in the low frequency is more important than in the high frequency for many cases.

    Citation: Xu T R, Ruan Y, Zhao Z Q,. Error-based observer control of an optic-electro tracking control system[J]., 2020,47(11): 190713

    基于誤差的觀測(cè)器在光電跟蹤系統(tǒng)中的應(yīng)用

    徐田榮1,2,3,阮 勇1,2,趙志強(qiáng)1,2,王宗友1,2,唐 濤1,2,3*

    1中國科學(xué)院光束控制重點(diǎn)實(shí)驗(yàn)室,四川 成都 610209;2中國科學(xué)院光電技術(shù)研究所,四川 成都 610209;3中國科學(xué)院大學(xué),北京 100049

    對(duì)于光電跟蹤系統(tǒng)來說,圖像傳感器例如電荷耦合器件(CCD)只能夠探測(cè)脫靶量即偏差信息,而無法得到目標(biāo)運(yùn)動(dòng)軌跡,所以,大多數(shù)情況下在目標(biāo)跟蹤回路不能直接實(shí)現(xiàn)前饋控制,這限制了系統(tǒng)的閉環(huán)跟蹤性能。本文采用了一種基于誤差觀測(cè)器的等效前饋控制方法來提高運(yùn)動(dòng)平臺(tái)光電跟蹤系統(tǒng)的跟蹤性能。該方法是在原有的反饋控制回路的基礎(chǔ)上加入一個(gè)觀測(cè)前饋通路,通過優(yōu)化前饋濾波器提高閉環(huán)性能。由于是基于最終的視覺誤差的觀測(cè),該方法對(duì)目標(biāo)跟蹤和擾動(dòng)抑制同時(shí)起作用,既可以應(yīng)用到地基跟蹤也可以應(yīng)用于運(yùn)動(dòng)平臺(tái)上。前饋濾波器沒有采用簡單的一階低通濾波器而是選擇31濾波器。仿真和實(shí)驗(yàn)表明,與傳統(tǒng)控制方法相比,這種基于誤差觀測(cè)器的控制方法能夠有效提高系統(tǒng)的低頻跟蹤性能。

    視軸偏差;運(yùn)動(dòng)平臺(tái);前饋控制;光電跟蹤系統(tǒng)

    TP273

    A

    徐田榮,阮勇,趙志強(qiáng),等. 基于誤差的觀測(cè)器在光電跟蹤系統(tǒng)中的應(yīng)用[J]. 光電工程,2020,47(11): 190713

    2019-11-27;

    2020-01-14

    中國科學(xué)院青促會(huì)基金資助項(xiàng)目

    徐田榮(1994-),女,碩士研究生,主要從事運(yùn)動(dòng)平臺(tái)光電跟蹤系統(tǒng)前饋控制技術(shù)。E-mail:1160255376@qq.com

    唐濤(1980-),男,博士,研究員,主要從事光電工程領(lǐng)域中控制理論以及工程應(yīng)用的研究。E-mail:taotang@ioe.ac.cn

    : Xu T R, Ruan Y, Zhao Z Q,Error-based observer control of an optic-electro tracking control system[J]., 2020, 47(11): 190713

    10.12086/oee.2020.190713

    Supported by Youth Innovation Promotion Association of Chinese Academy of Sciences

    * E-mail: prettang@gmail.com

    猜你喜歡
    觀測(cè)器中國科學(xué)院濾波器
    基于無擾濾波器和AED-ADT的無擾切換控制
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    從濾波器理解卷積
    電子制作(2019年11期)2019-07-04 00:34:38
    開關(guān)電源EMI濾波器的應(yīng)用方法探討
    電子制作(2018年16期)2018-09-26 03:26:50
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    基于TMS320C6678的SAR方位向預(yù)濾波器的并行實(shí)現(xiàn)
    基于觀測(cè)器的列車網(wǎng)絡(luò)控制
    基于非線性未知輸入觀測(cè)器的航天器故障診斷
    国产在视频线精品| 国产在线精品亚洲第一网站| 精品一区二区三区四区五区乱码| 成人黄色视频免费在线看| 嫁个100分男人电影在线观看| 99热国产这里只有精品6| 最新美女视频免费是黄的| 亚洲专区字幕在线| 少妇精品久久久久久久| 俄罗斯特黄特色一大片| 国产精品亚洲av一区麻豆| 国精品久久久久久国模美| 亚洲中文字幕日韩| 深夜精品福利| 免费观看a级毛片全部| 色尼玛亚洲综合影院| 国产亚洲精品一区二区www | 建设人人有责人人尽责人人享有的| 一本久久精品| 国产精品久久电影中文字幕 | 国产精品九九99| 亚洲人成77777在线视频| 91精品三级在线观看| 精品少妇黑人巨大在线播放| 国产一区二区三区综合在线观看| 国产一区二区三区综合在线观看| 亚洲成av片中文字幕在线观看| 91精品三级在线观看| videosex国产| 18禁美女被吸乳视频| 亚洲欧美一区二区三区黑人| 久久国产精品大桥未久av| 一边摸一边抽搐一进一小说 | 老司机在亚洲福利影院| 日韩欧美一区二区三区在线观看 | 两性夫妻黄色片| 正在播放国产对白刺激| 飞空精品影院首页| 国产成人精品在线电影| 黄色片一级片一级黄色片| 精品国内亚洲2022精品成人 | 亚洲精品在线观看二区| 91av网站免费观看| 国产亚洲欧美精品永久| 麻豆成人av在线观看| 无遮挡黄片免费观看| 亚洲av电影在线进入| 国产欧美日韩综合在线一区二区| 人人妻人人添人人爽欧美一区卜| 变态另类成人亚洲欧美熟女 | 欧美成人免费av一区二区三区 | 午夜两性在线视频| 久久久水蜜桃国产精品网| 久久精品亚洲av国产电影网| 狂野欧美激情性xxxx| 免费观看av网站的网址| 美女视频免费永久观看网站| 亚洲精品成人av观看孕妇| 又紧又爽又黄一区二区| 手机成人av网站| 免费在线观看影片大全网站| 在线观看一区二区三区激情| 国产日韩欧美在线精品| tube8黄色片| 人人妻,人人澡人人爽秒播| 精品亚洲成a人片在线观看| 成年动漫av网址| 午夜福利,免费看| 一个人免费在线观看的高清视频| 一夜夜www| 国产成人影院久久av| aaaaa片日本免费| 亚洲免费av在线视频| 欧美国产精品一级二级三级| 国产一区二区 视频在线| 亚洲国产欧美网| 国产精品一区二区精品视频观看| 天天躁夜夜躁狠狠躁躁| 成年动漫av网址| 亚洲精华国产精华精| 成人三级做爰电影| 国产一区二区三区视频了| 成年人免费黄色播放视频| 热99re8久久精品国产| 精品高清国产在线一区| 亚洲欧美色中文字幕在线| 国产成人精品无人区| 一级片'在线观看视频| a级毛片黄视频| 成年动漫av网址| 亚洲一区二区三区欧美精品| 一级毛片女人18水好多| 国产亚洲精品第一综合不卡| 啪啪无遮挡十八禁网站| 9色porny在线观看| 日本五十路高清| 亚洲九九香蕉| 欧美另类亚洲清纯唯美| 另类精品久久| 亚洲中文av在线| 久久久精品国产亚洲av高清涩受| 激情在线观看视频在线高清 | 精品久久久久久久毛片微露脸| 国产麻豆69| 欧美乱码精品一区二区三区| 巨乳人妻的诱惑在线观看| 69av精品久久久久久 | 亚洲精品粉嫩美女一区| 91麻豆av在线| 日韩中文字幕欧美一区二区| av欧美777| 欧美亚洲日本最大视频资源| 色综合欧美亚洲国产小说| 一本—道久久a久久精品蜜桃钙片| 国产成人欧美在线观看 | 精品久久久久久电影网| 欧美日韩亚洲国产一区二区在线观看 | 777久久人妻少妇嫩草av网站| 女人被躁到高潮嗷嗷叫费观| 他把我摸到了高潮在线观看 | 淫妇啪啪啪对白视频| 欧美人与性动交α欧美软件| 亚洲精品中文字幕在线视频| 午夜福利欧美成人| 大香蕉久久网| 汤姆久久久久久久影院中文字幕| 18禁裸乳无遮挡动漫免费视频| 午夜精品久久久久久毛片777| 9色porny在线观看| 国产精品麻豆人妻色哟哟久久| 纵有疾风起免费观看全集完整版| 国产高清videossex| 999精品在线视频| 国产精品一区二区在线观看99| 18禁裸乳无遮挡动漫免费视频| av免费在线观看网站| 99国产精品免费福利视频| 日本一区二区免费在线视频| 九色亚洲精品在线播放| 久久精品人人爽人人爽视色| 精品午夜福利视频在线观看一区 | 一夜夜www| 国产片内射在线| 成人av一区二区三区在线看| 中文字幕人妻丝袜制服| 精品第一国产精品| 91成人精品电影| 亚洲av日韩在线播放| svipshipincom国产片| 在线观看www视频免费| 国产在线免费精品| 午夜久久久在线观看| 一区二区三区激情视频| 一进一出好大好爽视频| 成年动漫av网址| 免费日韩欧美在线观看| 一边摸一边做爽爽视频免费| 午夜精品国产一区二区电影| 一区二区日韩欧美中文字幕| 亚洲av电影在线进入| 亚洲色图 男人天堂 中文字幕| 可以免费在线观看a视频的电影网站| 国产av国产精品国产| 老司机深夜福利视频在线观看| 飞空精品影院首页| 久久久欧美国产精品| 久久精品人人爽人人爽视色| 久9热在线精品视频| 法律面前人人平等表现在哪些方面| av电影中文网址| 飞空精品影院首页| a级片在线免费高清观看视频| 亚洲一码二码三码区别大吗| 老司机午夜十八禁免费视频| 啦啦啦中文免费视频观看日本| 动漫黄色视频在线观看| 午夜福利乱码中文字幕| 中文字幕人妻丝袜制服| 国产成人av教育| 淫妇啪啪啪对白视频| 国产视频一区二区在线看| 高清视频免费观看一区二区| 99精品久久久久人妻精品| 人人妻人人添人人爽欧美一区卜| 91成人精品电影| 又大又爽又粗| 国产精品熟女久久久久浪| 高清视频免费观看一区二区| 国产精品免费大片| 新久久久久国产一级毛片| 免费看十八禁软件| 成人永久免费在线观看视频 | 免费av中文字幕在线| 久久婷婷成人综合色麻豆| 免费观看人在逋| 国产高清videossex| 亚洲av成人不卡在线观看播放网| 99riav亚洲国产免费| 精品国产国语对白av| 一区福利在线观看| 亚洲人成伊人成综合网2020| 成人特级黄色片久久久久久久 | 国产精品电影一区二区三区 | 欧美精品人与动牲交sv欧美| 精品久久久精品久久久| 亚洲精品美女久久久久99蜜臀| 国产单亲对白刺激| 自线自在国产av| 亚洲黑人精品在线| 亚洲欧美一区二区三区久久| 日韩三级视频一区二区三区| 黄色丝袜av网址大全| 亚洲全国av大片| 欧美在线一区亚洲| 王馨瑶露胸无遮挡在线观看| 欧美黑人精品巨大| 精品一区二区三区四区五区乱码| 国产视频一区二区在线看| 99精国产麻豆久久婷婷| xxxhd国产人妻xxx| 宅男免费午夜| 国产精品久久电影中文字幕 | 在线观看免费视频网站a站| 女警被强在线播放| 建设人人有责人人尽责人人享有的| 久久人妻福利社区极品人妻图片| 一级毛片女人18水好多| 日韩欧美一区视频在线观看| 久久久久久亚洲精品国产蜜桃av| 飞空精品影院首页| 嫁个100分男人电影在线观看| 中文字幕精品免费在线观看视频| 国产一区二区激情短视频| 熟女少妇亚洲综合色aaa.| 亚洲国产成人一精品久久久| 18在线观看网站| 欧美乱码精品一区二区三区| 欧美黑人欧美精品刺激| √禁漫天堂资源中文www| 天天躁夜夜躁狠狠躁躁| 如日韩欧美国产精品一区二区三区| 又黄又粗又硬又大视频| 成人免费观看视频高清| 天堂8中文在线网| 久久狼人影院| 亚洲免费av在线视频| 亚洲精品中文字幕在线视频| 99riav亚洲国产免费| 我要看黄色一级片免费的| 男女床上黄色一级片免费看| 正在播放国产对白刺激| 亚洲精品久久成人aⅴ小说| 无人区码免费观看不卡 | 国产国语露脸激情在线看| 国产精品98久久久久久宅男小说| 亚洲精品中文字幕一二三四区 | 国产免费福利视频在线观看| 亚洲av片天天在线观看| 成年人免费黄色播放视频| av一本久久久久| 男女午夜视频在线观看| 国产欧美日韩综合在线一区二区| 老司机靠b影院| 久久天躁狠狠躁夜夜2o2o| 久久精品国产综合久久久| 欧美黄色片欧美黄色片| 久久午夜综合久久蜜桃| 天天影视国产精品| 国产成人免费观看mmmm| 国产在线一区二区三区精| 日本av免费视频播放| 国产精品一区二区精品视频观看| cao死你这个sao货| 国产成人系列免费观看| 久久午夜亚洲精品久久| 激情视频va一区二区三区| 亚洲精品粉嫩美女一区| 啦啦啦中文免费视频观看日本| 午夜福利一区二区在线看| 国产成人免费观看mmmm| 久久精品国产a三级三级三级| 欧美成狂野欧美在线观看| 国产精品一区二区精品视频观看| 天天操日日干夜夜撸| 午夜日韩欧美国产| 欧美激情极品国产一区二区三区| 久久青草综合色| 80岁老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 欧美精品高潮呻吟av久久| 在线观看免费午夜福利视频| 麻豆乱淫一区二区| 国产成人影院久久av| 亚洲一区中文字幕在线| 天堂中文最新版在线下载| 免费一级毛片在线播放高清视频 | 久久精品亚洲精品国产色婷小说| 人人妻人人澡人人爽人人夜夜| 高潮久久久久久久久久久不卡| avwww免费| 一本—道久久a久久精品蜜桃钙片| 成人av一区二区三区在线看| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 1024视频免费在线观看| 少妇 在线观看| 人成视频在线观看免费观看| 亚洲午夜精品一区,二区,三区| 国产精品自产拍在线观看55亚洲 | 天堂俺去俺来也www色官网| 美女高潮到喷水免费观看| 亚洲国产av影院在线观看| 色播在线永久视频| 国产真人三级小视频在线观看| 俄罗斯特黄特色一大片| 亚洲国产欧美在线一区| 亚洲国产欧美网| av欧美777| 国产欧美日韩综合在线一区二区| 欧美国产精品va在线观看不卡| 国产一卡二卡三卡精品| 丝袜人妻中文字幕| 亚洲情色 制服丝袜| 不卡一级毛片| 国产成人精品在线电影| 大码成人一级视频| 美女国产高潮福利片在线看| 国产免费av片在线观看野外av| 后天国语完整版免费观看| 亚洲av片天天在线观看| 少妇被粗大的猛进出69影院| 99香蕉大伊视频| 岛国在线观看网站| 午夜福利乱码中文字幕| 免费观看a级毛片全部| 中文字幕精品免费在线观看视频| 国产欧美日韩一区二区三| 国产av又大| 99久久99久久久精品蜜桃| 久久国产精品男人的天堂亚洲| 国产av又大| 免费在线观看视频国产中文字幕亚洲| 久久av网站| 中文字幕人妻熟女乱码| 飞空精品影院首页| 女警被强在线播放| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 三上悠亚av全集在线观看| 99香蕉大伊视频| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费午夜福利视频| 韩国精品一区二区三区| 精品一区二区三区四区五区乱码| 新久久久久国产一级毛片| 亚洲伊人久久精品综合| tube8黄色片| 国产成人欧美在线观看 | 国产精品av久久久久免费| 欧美日韩国产mv在线观看视频| 国产精品.久久久| 91精品国产国语对白视频| 日本黄色日本黄色录像| 午夜福利视频精品| 精品国产一区二区三区久久久樱花| 精品高清国产在线一区| 丝袜美腿诱惑在线| av不卡在线播放| 香蕉丝袜av| 无限看片的www在线观看| 久久人妻福利社区极品人妻图片| 色婷婷久久久亚洲欧美| 亚洲精华国产精华精| 在线观看66精品国产| 久久精品成人免费网站| 国产无遮挡羞羞视频在线观看| 黄片大片在线免费观看| 成人av一区二区三区在线看| 精品国产一区二区久久| 人人妻,人人澡人人爽秒播| 99热网站在线观看| 国产真人三级小视频在线观看| 亚洲国产欧美在线一区| 午夜福利一区二区在线看| av一本久久久久| 欧美老熟妇乱子伦牲交| av天堂久久9| 精品乱码久久久久久99久播| 国产av国产精品国产| 国产精品.久久久| 丝袜美足系列| 久久中文字幕一级| 老熟妇乱子伦视频在线观看| 高清毛片免费观看视频网站 | 色视频在线一区二区三区| 人妻一区二区av| 黄色怎么调成土黄色| www.999成人在线观看| 99精品在免费线老司机午夜| 久久国产精品大桥未久av| av电影中文网址| 亚洲欧美一区二区三区黑人| 少妇 在线观看| 久久精品亚洲av国产电影网| 18禁观看日本| 亚洲成a人片在线一区二区| 欧美av亚洲av综合av国产av| 欧美国产精品一级二级三级| 日本精品一区二区三区蜜桃| 国产成人精品久久二区二区免费| 精品免费久久久久久久清纯 | av欧美777| 国产高清videossex| 人妻一区二区av| 天堂8中文在线网| 国产在线免费精品| 无限看片的www在线观看| 满18在线观看网站| 亚洲三区欧美一区| 一进一出抽搐动态| 国产成人系列免费观看| 久久久久精品国产欧美久久久| 久久av网站| 国精品久久久久久国模美| 精品久久久久久久毛片微露脸| 一本大道久久a久久精品| 人成视频在线观看免费观看| 激情视频va一区二区三区| 中文字幕人妻熟女乱码| 色在线成人网| 国产精品久久电影中文字幕 | av有码第一页| 亚洲自偷自拍图片 自拍| 夜夜爽天天搞| 精品国产亚洲在线| 99热国产这里只有精品6| 十八禁高潮呻吟视频| 精品午夜福利视频在线观看一区 | 人妻久久中文字幕网| 中文欧美无线码| 欧美人与性动交α欧美软件| 男女边摸边吃奶| 建设人人有责人人尽责人人享有的| 久久香蕉激情| 丝袜喷水一区| www.熟女人妻精品国产| 国产午夜精品久久久久久| 欧美乱码精品一区二区三区| 夜夜爽天天搞| 亚洲国产欧美日韩在线播放| 日本vs欧美在线观看视频| 日韩视频在线欧美| 久久人人爽av亚洲精品天堂| 视频区欧美日本亚洲| 91九色精品人成在线观看| 99国产精品一区二区蜜桃av | 欧美老熟妇乱子伦牲交| 一区二区三区国产精品乱码| 久久99一区二区三区| 国产日韩欧美视频二区| 午夜老司机福利片| 久久国产精品男人的天堂亚洲| 正在播放国产对白刺激| 成人免费观看视频高清| 亚洲一区中文字幕在线| a级毛片在线看网站| av免费在线观看网站| 夜夜爽天天搞| 亚洲国产欧美网| 性高湖久久久久久久久免费观看| 国产一区二区 视频在线| 国产野战对白在线观看| 99热国产这里只有精品6| 久久久精品区二区三区| 欧美精品一区二区大全| 欧美人与性动交α欧美软件| 久久国产精品大桥未久av| 在线观看舔阴道视频| 欧美激情极品国产一区二区三区| 欧美国产精品一级二级三级| 国产男靠女视频免费网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲av高清不卡| 纵有疾风起免费观看全集完整版| 亚洲专区字幕在线| 国产精品一区二区在线观看99| 日日摸夜夜添夜夜添小说| 国产在线视频一区二区| 50天的宝宝边吃奶边哭怎么回事| 欧美激情 高清一区二区三区| 午夜久久久在线观看| 99re在线观看精品视频| 久久久久久亚洲精品国产蜜桃av| 99久久人妻综合| 在线观看免费午夜福利视频| 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| 国产精品久久久久久精品古装| 欧美乱妇无乱码| 日韩中文字幕欧美一区二区| 大香蕉久久成人网| 热re99久久精品国产66热6| 香蕉国产在线看| 黄色 视频免费看| 日本av免费视频播放| 国产一区二区三区视频了| 免费人妻精品一区二区三区视频| 757午夜福利合集在线观看| 极品教师在线免费播放| 黑人操中国人逼视频| 久久精品人人爽人人爽视色| 在线观看免费高清a一片| 国产精品九九99| 91精品国产国语对白视频| 国产在线免费精品| 男男h啪啪无遮挡| 国产精品一区二区在线观看99| 亚洲av片天天在线观看| 日韩视频一区二区在线观看| 99九九在线精品视频| 叶爱在线成人免费视频播放| 欧美日韩国产mv在线观看视频| 黑丝袜美女国产一区| 午夜日韩欧美国产| 黄色视频,在线免费观看| 精品卡一卡二卡四卡免费| 人人妻人人澡人人爽人人夜夜| 亚洲av片天天在线观看| 99国产综合亚洲精品| 欧美性长视频在线观看| 老鸭窝网址在线观看| 在线观看66精品国产| 桃红色精品国产亚洲av| 天堂俺去俺来也www色官网| 99香蕉大伊视频| 国产不卡一卡二| 精品国产乱子伦一区二区三区| 18禁美女被吸乳视频| 国产精品久久久久久精品古装| 精品久久蜜臀av无| 91麻豆精品激情在线观看国产 | 91老司机精品| 国产又爽黄色视频| 性少妇av在线| 好男人电影高清在线观看| 日本一区二区免费在线视频| 999久久久国产精品视频| 国产麻豆69| 国产野战对白在线观看| 色综合欧美亚洲国产小说| 国产主播在线观看一区二区| 91大片在线观看| 久久久久精品人妻al黑| 午夜福利视频精品| 国产精品av久久久久免费| 不卡av一区二区三区| 母亲3免费完整高清在线观看| 亚洲专区国产一区二区| 亚洲人成电影观看| 免费在线观看影片大全网站| 精品一区二区三区四区五区乱码| 波多野结衣av一区二区av| 亚洲avbb在线观看| 国产一卡二卡三卡精品| 看免费av毛片| 色94色欧美一区二区| 老司机深夜福利视频在线观看| 夜夜爽天天搞| 亚洲中文字幕日韩| 免费在线观看黄色视频的| videos熟女内射| 午夜久久久在线观看| 深夜精品福利| 热re99久久国产66热| 国内毛片毛片毛片毛片毛片| 精品福利观看| 欧美成狂野欧美在线观看| 欧美+亚洲+日韩+国产| 成人国语在线视频| 亚洲欧美激情在线| 国产在线视频一区二区| 亚洲欧美日韩高清在线视频 | 国产亚洲午夜精品一区二区久久| 热99久久久久精品小说推荐| 真人做人爱边吃奶动态| 黄频高清免费视频| 一级黄色大片毛片| 亚洲色图 男人天堂 中文字幕| 老熟女久久久| 美女扒开内裤让男人捅视频| 国产不卡av网站在线观看| 国产精品电影一区二区三区 | 久久久久久久久久久久大奶| 又紧又爽又黄一区二区| 青草久久国产| 乱人伦中国视频| 久久久久视频综合| 一区二区日韩欧美中文字幕| 91老司机精品| 国产一区二区三区在线臀色熟女 | 成人国语在线视频| 动漫黄色视频在线观看| 极品教师在线免费播放| 中文字幕av电影在线播放| 精品乱码久久久久久99久播| 久久人妻av系列| 国产精品自产拍在线观看55亚洲 | 啦啦啦视频在线资源免费观看| 久久人妻福利社区极品人妻图片| 亚洲va日本ⅴa欧美va伊人久久| 日韩人妻精品一区2区三区| 免费在线观看影片大全网站| 夜夜夜夜夜久久久久| 一区福利在线观看| 看免费av毛片|