• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Error-based observer control of an optic-electro tracking control system

    2020-12-11 00:46:00XuTianrongRuanYongZhaoZhiqiangWangZongyouTangTao
    光電工程 2020年11期
    關(guān)鍵詞:觀測(cè)器中國科學(xué)院濾波器

    Xu Tianrong, Ruan Yong, Zhao Zhiqiang,Wang Zongyou, Tang Tao*

    Error-based observer control of an optic-electro tracking control system

    Xu Tianrong1,2,3, Ruan Yong1,2, Zhao Zhiqiang1,2,Wang Zongyou1,2, Tang Tao1,2,3*

    1Key Laboratory of Beam Control, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;3University of Chinese Academy of Sciences, Beijing 100049, China

    For an optic-electro tracking system, an image sensor such as charge-coupled device (CCD) cannot provide target trajectories except for line-of-sight (LOS) error. Thus, it is difficult to achieve direct feedforward control for the tracking loop, which determines the closed-loop performance. An error-based observer (EBO) control of a CCD-based tracking loop is proposed to enhance the tracking performance for an optic-electro tracking system on moving platforms. The EBO control can be plugged into an existing feedback control loop. The closed-loop performance of the CCD-based control system can be improved by optimizing the feedforward filter(). Because this EBO method relies only on the final LOS error, it benefits the control system both in disturbance suppression and target tracking and it can be applied to an optic-electro tracking system in moving platforms as well as in ground platforms. An optimal31filter rather than a low-pass filter is improved for this EBO control. Simulations and experiments show that the tracking performance is effectively enhanced in low frequency compared to traditional control methods.

    line of sight error; moving platforms; feedforward control; optic-electro tracking systems

    1 Introduction

    Image sensors (such as charge-coupled device, CCD) are usually used to detect the line of sight (LOS) error in an optic-electro tracking control system, which is used for monitoring and positioning as well as tracking an interesting target. High control bandwidth facilitates good closed-loop performance. However, sampling frequency and time delay of CCD (mainly include exposure time, image process time and transmit time) are the main factors that restrict tracking bandwidth, resulting in reducing tracking accuracy. How to improve closed-loop performance and compensate time delay of CCD with a limited sampling frequency is important research. Using a high-gain feedback controller or improving the order of the control system is a common method, but it has an impact on the dynamic performance of the system, even lead to instability[1-4]. Experiments verified that feedforward control is an effective way to improve tracking performance. Theoretically, it has little influence on closed-loop stability due to its independence from the feedback loop. However, an image sensor such as CCD cannot provide target trajectories except LOS error, which leads to difficulty in achieving feedforward control for image tracking loop[5-6]. A direct feedback loop is still utilized to control LOS in many cases. In addition, motivated by application requirements, more and more optoelectronic tracking systems are equipped on moving vehicles such as ships, aircraft, and spacecraft for diverse missions which makes optical tracking devices more flexible. But this change also brings problems for control systems. The carrier motion at different frequencies such as the sway of the ship or vibration of the satellite will produce direct influence on the line of sight which may affect the tracking performance or even lead to instability. Many methods have been developed to isolate the line of sight from carrier motion[7-12]. In most cases, extra inertial sensors are needed to detect the carrier motion relative to inertial space. It brings difficulties to the implementation of some methods that can be utilized on ground tracking. For example, a method based on data fusion, which combines the line of sight error and angular position to generate feedforward control[13]. It cannot be directly applied to a moving platform, because the platform motion cannot be measured by the non-inertial encoder it used. Extra sensor is necessary. When an inertial measurement unit (IMU) is added, the effectiveness is affected by the attitude accuracy. Generally, the effectiveness of generating feedforward control through data fusion depends on the effectiveness of the synthesized feedforward signal which is determined by the precision of the sensors and the prediction accuracy[14-16]. Inaccurate feedforward signal willreduce the tracking accuracy and even lead to system instability. Based on this situation, an error-based observer (EBO) control of a CCD-based tracking loop is proposed to enhance the tracking performance on the moving platform. The EBO control method does not need extra sensors. It combines the LOS error and output of the position controller to achieve high gain, forwarding into the original closed-loop control system to achieve equivalent feed forward control. Simulations and experiments verified that the EBO control benefits the control system both in disturbance suppression and target tracking. It is based on Youla–Kuˇcera parameterization and its performance can be optimized by the feedforward filter Q. Section 2 gives a detailed analysis of a classical feedforward control and the error-based observer control (EBO) on the moving platform, and makes some remarks on the advantage of the EBO method as compared to the classical feedback control. Section 3 analyzes the system stability and focuses on the parameter design, mainly including the proportional-integral (PI) controller and the low-pass filter(). Section 4 presents the simulation results and the experiment results. Concluding remarks are presented in Section 5.

    2 Analysis of control methodologies

    2.1 Classical controller for the moving platform

    On the moving platform, pointing control is usually implemented via two servo loops, the outer tracking or pointing loop to control LOS error and an inner stabilization or rate loop to isolates the LOS from platform motion. The stabilization loop bandwidth must be high enough to reject the platform disturbance spectrum[17-18]. A classical feedback control structure of Fig. 1 is shown in Fig. 2 where inertial sensors such as gyros feedback the carrier motion to isolate the LOS from platform motion and an image sensor such as CCD detects the LOS error to achieve object tracking.0is the time-delay of CCD,p() is the position controller,v() is the velocity controller,v() is the control plant,() is the target trajectory, and() represents the outer disturbance. The characteristic of the controlled plant for the outer loop is

    Fig. 1 The basic structure of the control system based on CCD vision tracking

    Fig. 2 Con?guration of classical feedback control on the moving platform

    When the velocity closed loop has a much higher bandwidth than that of the position closed loop,v()v()/[1+v()v()]≈1 andp()≈1/are reasonable to some extent. In this case, the outer position loop plays a decisive part in tracking performance. The transform functionorgand sensitivity functionorgof the control scheme is given by Eqs. (2) and (3).

    It is not hard to find thatorg+org=1, which means that there is a conflict between tracking performance and disturbance rejection. Obviously, increasing the gain ofp() which means a higher bandwidth is an effective way to improve the tacking performance. But, the tracking bandwidth of the actual optical-electro devices cannot be increased unlimited due to the mechanical resonance and system noise. Besides, high gain may affect the robustness of the control system. From another point, it is meaningless to increasing the bandwidth without limit when the time delay of CCD cannot be cut to zero[19].

    A classical feedforward control scheme for object tracking and disturbance rejection is shown in Fig. 3 where0is the time delay of CCD,() is the position controller,() is the control plant,() is the target trajectory,() is the outer disturbance, and() andf() are the feedforward controllers for object tracking and disturbance suppression, respectively. The transfer function of the control scheme is given by:

    Obviously, whenf()=-1/(),() is independent of(), and when()=1/(),()=() which means perfect real-time tracking. However, it cannot be realized in most cases. First of all, trackers like CCD could not detect the trajectory() except for LOS error(). Second, the accurate detection of() is not easy to realize. Besides, inaccuracy detection of() especially in high frequency also having an influence. Recovering the trajectory() by data fusion and velocity prediction are effective ways to achieve equivalent feedforward control. But some methods cannot be applied to the moving platform directly due to carrier motion and characteristic of sensors and its effectiveness relies on the effectiveness of the synthesized feedforward signals which is determined by the precision of the sensors and the prediction accuracy. Inaccurate feedforward signal will reduce the tracking accuracy and even lead to system instability. So, there is a need of a new control method that can be applied to the moving platform and do not rely excessively on extra sensors.

    Fig. 3 A classical feedforward control scheme

    2.2 The error-based observer (EBO) control method

    An error-based observer (EBO) control method which is based on Youla–Kuˇcera parameterization is shown in Fig. 4. It feedforwards the combination of the LOS error from the CCD and the controller output into the originally closed-loop control system.0is the time-delay of CCD,() is the control plant,() is the position controller,-1() is the inverse of(),() is a low-pass filter,() represents the target trajectory,() is the LOS error from the CCD, and() is the outer disturbance which is small when the system in inertial stable status through stabilization control of the inner loop. The sensitive functions for trajectory() and disturbance() of Fig. 4 are given as follow:

    3 Optimal design of parameter

    where

    Fig. 4 The error-based observer (EBO) control scheme

    The sensitive function decides that() has to be a low-pass filter. A general form of low-pass filters is generally given by[3]:

    here,、are positive integer. It is easy to know excessive order and bandwidth of() can lead to destruction of the stability condition by plant uncertainty and phase loss in the high-frequency region. To meet the requirement of robustness condition which is affected by phase margin and magnitude margin of the open-loop transfer function, a Q31-filter with an appropriate parameteris a compromise solution. When=3,

    An equivalent controllereq() of Fig. 4 is

    After mathematical calculations of Eq. (7), we find it is not easy to satisfym>π/4 andm>6 dB strictly. Several groups of parameters that can satisfy the requirement of robustness condition is shown in Table 1. In order to get better performance,=0.05 is finally chosen.

    4 Simulations and experiments

    4.1 Simulation results

    According to the previous parameter design, the bode response of the transfer function and the sensitive function of classical feedback control and the EBO method is shown in Figs. 6(a) and 6(b) respectively. It is easy to find that although the tracking bandwidth is not improved with the EBO method, it enhances the tracking performance in the low frequency compared to the classical feedback control (CFC) mode. The EBO control mode with1()=1/(0.1+1) improves below 1 Hz compared to classical feedback control. The EBO control mode with an optimal31() with=0.05 is more efficient in frequencies lower than 1 Hz. The experimental verification is depicted in the next section.

    Fig. 5 Bode diagram of 1-Q(jω)e-0.03jω

    Table 1 Comparison of gain margin and phase margin among different methods

    Fig. 6 Bode response of the closed-loop transfer function (a) and sensitivity function (b) from simulations

    4.2 Experiment results

    The experimental system is shown in Fig. 7. A CCD is used to detect the LOS error with a sampling frequency of 100 Hz. Laser light and FSM2 simulate the target trajectory, FSM1 is the tracking controller and FSM3 is used to simulate the carrier motion. Here, we set the carrier motion=0, which means that FSM3 is fixed. It is reasonable, because FSM3 and FSM2 have the same effect on LOS and it does not matter whether FSM2 or FSM3 generate carrier motion.Besides, according to the control mode analysis in chapter 2, when the system is in the inertial stable status through stabilization control of the inner loop, the remaining disturbance can be neglected compared with the target moving. The target trajectory() is a sinusoidal signal with an amplitude of 0.5 V, which can be expressed as=sin(). The experiment only presents a single axis of the azimuth due to the similarity. We record the LOS error respectively using three different control strategies when=0.05 Hz, 0.1 Hz, 0.5 Hz, and 1 Hz which are depicted in Figs. 8(a)~8(d), respectively. It is obvious that the EBO method has obvious improvement in frequencies lower than 1 Hz compared to classical feedback control, showing an improvement of 8 dB at 1 Hz and 15 dB at 0.05 Hz. The optimal filter()=31() is more efficient than a first-order low-pass filter1() which is consistent with simulation results. But the result of the EBO method with1and31is hard to distinguish and the improvement is not as good as simulation results in frequencies lower than 0.1 Hz, which is a result of the mechanical resonance and system noise.

    Fig. 7 Con?guration of experimental platform

    5 Conclusions

    In this paper, an error-based observer (EBO) control method of a CCD-based tracking loop is proposed to enhance the closed-loop performance. This EBO method combines the line-of-sight error and control output to generate a high gain observer. It can be plugged into the existing feedback control loop and the closed-loop performance can be improved by optimizing the feedforward filter(). Simulations and experiments verify that this EBO control method can effectively enhance the closed-loop performance in the low frequency in comparison with the classical control mode and an optimal31filter is more effective than a first-order low pass filter in this EBO control mode. In fact, better performance in the low frequency is more important than a higher bandwidth in many cases especially when the target is far from the tracking device. It is valuable for engineering applications. It is meaningful to explore other Q filters that can be applied to different scenarios. A further experiment on other moving platforms such as gimbals is also needed to verify the method.

    [1] Beals G A, Crum R C, Dougherty H J,. Hubble space telescope precision pointing control system[J]., 1988, 11(2): 119–123.

    [2] Wang C C, Hu L F, Wang Y K,. Time delay compensation method for tip-tilt control in adaptive optics system[J]., 2015, 54(11): 3383–3388.

    [3] Esmaeili M, Shirvani M. Time delay compensation by A PID controller[C]//, Shah Alam, Malaysia, 2011.

    [4] Natori K, Tsuji T, Ohnishi K,. Time-delay compensation by communication disturbance observer for bilateral teleoperation under time-varying delay[J]., 2010, 57(3): 1050–1062.

    [5] Huang Y M, Ma J G, Fu C Y. Velocity-forecast filters of theodolite[J]., 2003, 5082: 87–93.

    [6] Wei Z H. Feedforward control strategies for tracking performance in machine axes[J]., 2005, 18(1): 5–9.

    [7] Hurák Z, ?ezá? M. Combined line-of-sight inertial stabilization and visual tracking: Application to an airborne camera platform[C]//, Shanghai, 2009.

    [8] Deng C, Tang T, Mao Y,. Enhanced disturbance observer based on acceleration measurement for fast steering mirror systems[J]., 2017, 9(3): 6802211.

    [9] Wu C, Lin Z. Disturbance observer based control system design for inertially stabilized platform[J]., 2012, 8542: 85420T.

    [10] Tian J, Yang W S, Peng Z M,. Inertial sensor-based multiloop control of fast steering mirror for line of sight stabilization[J]., 2016, 55(11): 111602.

    [11] Luo Y, Huang Y M, Deng C,. Combining a disturbance observer with triple-loop control based on MEMS accelerometers for line-of-sight stabilization[J]., 2017, 17(11): 2648.

    [12] Luo Y, Mao Y, Ren W,. Multiple fusion based on the CCD and MEMS accelerometer for the low-cost multi-loop optoelectronic system control[J]., 2018, 18(7): 2153.

    [13] Tang T, Cai H X, Huang Y M,. Combined line-of-sight error and angular position to generate feedforward control for a charge-coupled device–based tracking loop[J]., 2015, 54(10): 105107.

    [14] Tang T, Niu S X, Ma J G,. A review on control methodologies of disturbance rejections in optical telescope[J]., 2019, 2(10): 190011.

    [15] Yan L J, Huang Y M, Zhang Y H,. Research on the application of RANSAC algorithm in electro-optical tracking of space targets[J]., 2019, 46(11): 180540.

    嚴(yán)靈杰, 黃永梅, 張涯輝, 等. RANSAC算法在空間目標(biāo)光電跟蹤中的應(yīng)用研究[J]. 光電工程, 2019, 46(11): 180540.

    [16] Tang T, Tian J, Zhong D J,. Combining charge couple devices and rate sensors for the feedforward control system of a charge coupled device tracking loop[J]., 2016, 16(7): 968.

    [17] Kennedy P J, Kennedy R L. Direct versus indirect line of sight (LOS) stabilization[J]., 2003, 11(1): 3–15.

    [18] Masten M K. Inertially stabilized platforms for optical imaging systems[J]., 2008, 28(1): 47–64.

    [19] Zhang W L, Tomizuka M, Wei Y H,. Robust time delay compensation in a wireless motion control system with double disturbance observers[C]//, Chicago, 2015: 5294–5299.

    Error-based observer control of an optic-electro tracking control system

    Xu Tianrong1,2,3, Ruan Yong1,2, Zhao Zhiqiang1,2, Wang Zongyou1,2, Tang Tao1,2,3*

    1Key Laboratory of Beam Control, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;3University of Chinese Academy of Sciences, Beijing 100049, China

    The error-based observer control (EBO) structure

    Overview:For an optic-electro tracking system, image sensors (such as CCD) are usually used for monitoring and positioning as well as tracking a target, but they can only detect line-of-sight (LOS) error and cannot provide target trajectories. Therefore, it brings difficulties to the application of feedforward control which is an effective way to improve tracking performance. As a result, recovering the target trajectory through data fusion is an effective way. However, it needs extra sensors and the effectiveness of the equivalent feedforward control method is based on the accuracy of the synthesized feedforward signal which is affected by the measurement accuracy of the sensor and the prediction accuracy. Inaccurate feedforward signal has no improvement in tracking performance and even leads to instability of the control system. When it comes to tracking system on a moving platform, an inertial measurement unit (IMU) is necessary. The attitude accuracy determined by the IMU always plays an import part in tracking performance. Therefore, the equivalent feedforward control method based on data fusion is not applicable in many cases. For traditional feedback control, high control bandwidth facilitates good closed-loop performance. However, the sampling frequency and time delay of the image sensor are the main factors that restrict tracking bandwidth. Simply using a high-gain feedback controller or improving the order of the control system will decrease the dynamic performance of the system, leading to instability. The error-based observer (EBO) control of an image-based tracking loop is proposed to enhance tracking performance for an optic-electro tracking system on the moving platform. This EBO method combines the LOS error and control output to achieve high gain. The equivalent feedforward control can be plugged into the existing feedback control loop. The closed-loop performance of the image-based control system can be improved by optimizing the feedforward filter(). Since this EBO method does not need extra sensors and it benefits the control system in both disturbance suppression and target tracking, it can be applied to both moving platforms and ground platforms. The control structure decided that() has to be a low-pass filter. In this paper, an optimal three-order31filter rather than a low-pass filter is improved for this EBO control. Simulations and experiments show that the tracking performance of the EBO method is effectively enhanced in the low frequency compared to traditional control methods and an optimal31filter is more efficient than a simple first-order low-pass filter. This improvement is meaningful because better performance in the low frequency is more important than in the high frequency for many cases.

    Citation: Xu T R, Ruan Y, Zhao Z Q,. Error-based observer control of an optic-electro tracking control system[J]., 2020,47(11): 190713

    基于誤差的觀測(cè)器在光電跟蹤系統(tǒng)中的應(yīng)用

    徐田榮1,2,3,阮 勇1,2,趙志強(qiáng)1,2,王宗友1,2,唐 濤1,2,3*

    1中國科學(xué)院光束控制重點(diǎn)實(shí)驗(yàn)室,四川 成都 610209;2中國科學(xué)院光電技術(shù)研究所,四川 成都 610209;3中國科學(xué)院大學(xué),北京 100049

    對(duì)于光電跟蹤系統(tǒng)來說,圖像傳感器例如電荷耦合器件(CCD)只能夠探測(cè)脫靶量即偏差信息,而無法得到目標(biāo)運(yùn)動(dòng)軌跡,所以,大多數(shù)情況下在目標(biāo)跟蹤回路不能直接實(shí)現(xiàn)前饋控制,這限制了系統(tǒng)的閉環(huán)跟蹤性能。本文采用了一種基于誤差觀測(cè)器的等效前饋控制方法來提高運(yùn)動(dòng)平臺(tái)光電跟蹤系統(tǒng)的跟蹤性能。該方法是在原有的反饋控制回路的基礎(chǔ)上加入一個(gè)觀測(cè)前饋通路,通過優(yōu)化前饋濾波器提高閉環(huán)性能。由于是基于最終的視覺誤差的觀測(cè),該方法對(duì)目標(biāo)跟蹤和擾動(dòng)抑制同時(shí)起作用,既可以應(yīng)用到地基跟蹤也可以應(yīng)用于運(yùn)動(dòng)平臺(tái)上。前饋濾波器沒有采用簡單的一階低通濾波器而是選擇31濾波器。仿真和實(shí)驗(yàn)表明,與傳統(tǒng)控制方法相比,這種基于誤差觀測(cè)器的控制方法能夠有效提高系統(tǒng)的低頻跟蹤性能。

    視軸偏差;運(yùn)動(dòng)平臺(tái);前饋控制;光電跟蹤系統(tǒng)

    TP273

    A

    徐田榮,阮勇,趙志強(qiáng),等. 基于誤差的觀測(cè)器在光電跟蹤系統(tǒng)中的應(yīng)用[J]. 光電工程,2020,47(11): 190713

    2019-11-27;

    2020-01-14

    中國科學(xué)院青促會(huì)基金資助項(xiàng)目

    徐田榮(1994-),女,碩士研究生,主要從事運(yùn)動(dòng)平臺(tái)光電跟蹤系統(tǒng)前饋控制技術(shù)。E-mail:1160255376@qq.com

    唐濤(1980-),男,博士,研究員,主要從事光電工程領(lǐng)域中控制理論以及工程應(yīng)用的研究。E-mail:taotang@ioe.ac.cn

    : Xu T R, Ruan Y, Zhao Z Q,Error-based observer control of an optic-electro tracking control system[J]., 2020, 47(11): 190713

    10.12086/oee.2020.190713

    Supported by Youth Innovation Promotion Association of Chinese Academy of Sciences

    * E-mail: prettang@gmail.com

    猜你喜歡
    觀測(cè)器中國科學(xué)院濾波器
    基于無擾濾波器和AED-ADT的無擾切換控制
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    從濾波器理解卷積
    電子制作(2019年11期)2019-07-04 00:34:38
    開關(guān)電源EMI濾波器的應(yīng)用方法探討
    電子制作(2018年16期)2018-09-26 03:26:50
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    基于TMS320C6678的SAR方位向預(yù)濾波器的并行實(shí)現(xiàn)
    基于觀測(cè)器的列車網(wǎng)絡(luò)控制
    基于非線性未知輸入觀測(cè)器的航天器故障診斷
    在线播放无遮挡| 亚洲性久久影院| av在线亚洲专区| 国产免费一级a男人的天堂| 婷婷色综合大香蕉| 久久6这里有精品| 国产视频内射| 国产精品人妻久久久久久| 国产精品久久久久久久电影| 最近最新中文字幕免费大全7| 在线观看美女被高潮喷水网站| 乱系列少妇在线播放| 观看免费一级毛片| 黄色日韩在线| 99热网站在线观看| 男人的好看免费观看在线视频| 精品久久久久久成人av| 欧美不卡视频在线免费观看| 久久亚洲精品不卡| 狠狠狠狠99中文字幕| 久久99热6这里只有精品| 看片在线看免费视频| 你懂的网址亚洲精品在线观看 | 日韩亚洲欧美综合| 日韩欧美国产在线观看| 你懂的网址亚洲精品在线观看 | 久久99蜜桃精品久久| 精品久久国产蜜桃| 少妇人妻精品综合一区二区| 97超碰精品成人国产| 国产爱豆传媒在线观看| 九九热线精品视视频播放| 久久久国产成人免费| 国产亚洲av片在线观看秒播厂 | 亚洲av日韩在线播放| 精华霜和精华液先用哪个| 欧美性感艳星| 三级国产精品片| 欧美变态另类bdsm刘玥| 只有这里有精品99| 偷拍熟女少妇极品色| 国产中年淑女户外野战色| av专区在线播放| 1000部很黄的大片| 成人特级av手机在线观看| 在线免费十八禁| 欧美一级a爱片免费观看看| 三级男女做爰猛烈吃奶摸视频| 国产三级中文精品| 丰满乱子伦码专区| 麻豆av噜噜一区二区三区| 国产在线男女| 久久久亚洲精品成人影院| 高清av免费在线| 1024手机看黄色片| 免费一级毛片在线播放高清视频| 免费av不卡在线播放| 久久久久精品久久久久真实原创| 亚洲欧美日韩卡通动漫| 国产乱人偷精品视频| 免费av不卡在线播放| 色综合亚洲欧美另类图片| 国产精品久久久久久av不卡| 真实男女啪啪啪动态图| 亚洲av日韩在线播放| 99在线人妻在线中文字幕| 好男人在线观看高清免费视频| 老师上课跳d突然被开到最大视频| 精品国产露脸久久av麻豆 | 中文字幕熟女人妻在线| 免费在线观看成人毛片| 日韩,欧美,国产一区二区三区 | 成人综合一区亚洲| 亚洲av中文av极速乱| 亚洲精品国产成人久久av| 最近的中文字幕免费完整| 免费一级毛片在线播放高清视频| 少妇人妻一区二区三区视频| 91精品伊人久久大香线蕉| 99热这里只有精品一区| 日本免费在线观看一区| 亚洲国产欧美人成| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区在线观看日韩| 插阴视频在线观看视频| 国产欧美日韩精品一区二区| 亚洲欧美精品专区久久| 精品久久久久久久末码| 大又大粗又爽又黄少妇毛片口| 午夜福利网站1000一区二区三区| 九色成人免费人妻av| 成人性生交大片免费视频hd| 国产成人一区二区在线| 99久久精品热视频| 国产老妇伦熟女老妇高清| 国产淫语在线视频| 黄片无遮挡物在线观看| 成人无遮挡网站| 观看免费一级毛片| 欧美又色又爽又黄视频| 国产免费视频播放在线视频 | 99视频精品全部免费 在线| 免费电影在线观看免费观看| 亚洲人与动物交配视频| 日韩,欧美,国产一区二区三区 | 久久这里有精品视频免费| 国产乱人视频| av在线播放精品| 国产精品久久电影中文字幕| 老司机影院毛片| 色吧在线观看| 国产人妻一区二区三区在| 国产成人a区在线观看| 精品人妻偷拍中文字幕| 免费观看性生交大片5| 一卡2卡三卡四卡精品乱码亚洲| 国产白丝娇喘喷水9色精品| 亚洲伊人久久精品综合 | 成年版毛片免费区| 97超视频在线观看视频| 免费在线观看成人毛片| 九九在线视频观看精品| av在线天堂中文字幕| 99久国产av精品| 人人妻人人看人人澡| 黄色配什么色好看| 国产在线男女| 看免费成人av毛片| 高清午夜精品一区二区三区| 婷婷色麻豆天堂久久 | 高清毛片免费看| 精品国内亚洲2022精品成人| 亚洲欧美日韩东京热| 三级国产精品欧美在线观看| 国产真实伦视频高清在线观看| 亚洲av福利一区| 日韩欧美精品免费久久| 国产在视频线在精品| 九九在线视频观看精品| 久久久久久久午夜电影| 亚洲精品一区蜜桃| 亚洲精品亚洲一区二区| 能在线免费看毛片的网站| 啦啦啦韩国在线观看视频| 日韩精品青青久久久久久| 少妇裸体淫交视频免费看高清| 国产91av在线免费观看| 在线天堂最新版资源| 欧美一区二区国产精品久久精品| 亚洲人成网站在线播| 日本免费在线观看一区| 搡老妇女老女人老熟妇| 久久久久久久久久久丰满| 永久网站在线| 免费观看性生交大片5| 99国产精品一区二区蜜桃av| 久久精品国产99精品国产亚洲性色| 久久精品国产亚洲av涩爱| 热99在线观看视频| 国产成人aa在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲欧洲国产日韩| 99久国产av精品国产电影| 亚洲人成网站在线观看播放| av免费在线看不卡| 干丝袜人妻中文字幕| 黄色日韩在线| 偷拍熟女少妇极品色| 亚洲精品一区蜜桃| 国产精品无大码| 国产精品久久视频播放| 欧美日本视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲熟妇中文字幕五十中出| 久久久久久久国产电影| 亚洲精品日韩在线中文字幕| 最后的刺客免费高清国语| 国产欧美日韩精品一区二区| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩高清专用| 亚洲国产精品合色在线| 亚洲国产欧美人成| 国产久久久一区二区三区| 麻豆久久精品国产亚洲av| 丰满乱子伦码专区| 欧美高清性xxxxhd video| 91精品一卡2卡3卡4卡| 免费看a级黄色片| 美女xxoo啪啪120秒动态图| 狂野欧美白嫩少妇大欣赏| 日本熟妇午夜| 精品久久国产蜜桃| 老女人水多毛片| 午夜日本视频在线| 亚洲va在线va天堂va国产| 小蜜桃在线观看免费完整版高清| 免费电影在线观看免费观看| 99热这里只有是精品在线观看| 欧美日韩综合久久久久久| 国国产精品蜜臀av免费| 中文字幕人妻熟人妻熟丝袜美| 精品人妻偷拍中文字幕| 男人的好看免费观看在线视频| 亚洲无线观看免费| 七月丁香在线播放| 久热久热在线精品观看| 日韩人妻高清精品专区| 国产精华一区二区三区| 国产精品一区二区三区四区免费观看| 国产精品一区二区三区四区久久| 嘟嘟电影网在线观看| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 国产欧美日韩精品一区二区| 国产私拍福利视频在线观看| 久久精品国产99精品国产亚洲性色| 天堂中文最新版在线下载 | 国产色婷婷99| 亚洲人成网站在线播| 国内精品美女久久久久久| 亚洲成人精品中文字幕电影| 国产视频首页在线观看| 秋霞在线观看毛片| 欧美日韩国产亚洲二区| 日韩人妻高清精品专区| 久久婷婷人人爽人人干人人爱| 一区二区三区乱码不卡18| 国产在视频线在精品| 高清午夜精品一区二区三区| 亚洲真实伦在线观看| 国产成年人精品一区二区| 国产在视频线精品| 级片在线观看| 国产精品一区二区三区四区免费观看| 国产亚洲5aaaaa淫片| 91久久精品国产一区二区成人| 亚洲久久久久久中文字幕| 看十八女毛片水多多多| 中文精品一卡2卡3卡4更新| 国产片特级美女逼逼视频| 亚洲精华国产精华液的使用体验| 国产精品福利在线免费观看| 超碰av人人做人人爽久久| 国产91av在线免费观看| 在线a可以看的网站| 色综合亚洲欧美另类图片| 中文乱码字字幕精品一区二区三区 | 日韩,欧美,国产一区二区三区 | 嫩草影院精品99| 国产麻豆成人av免费视频| 国产又色又爽无遮挡免| 久久久久久久亚洲中文字幕| 三级经典国产精品| av国产免费在线观看| 精品午夜福利在线看| 国国产精品蜜臀av免费| 观看美女的网站| 一本久久精品| 亚洲精品乱码久久久v下载方式| av天堂中文字幕网| 五月玫瑰六月丁香| 激情 狠狠 欧美| 免费看日本二区| 国产精品1区2区在线观看.| 亚洲国产精品专区欧美| 2021少妇久久久久久久久久久| 国产色婷婷99| 成年女人看的毛片在线观看| 精品午夜福利在线看| 亚洲成人久久爱视频| 欧美潮喷喷水| 男人舔奶头视频| 免费大片18禁| 欧美另类亚洲清纯唯美| 熟女电影av网| 国产欧美另类精品又又久久亚洲欧美| 久久国内精品自在自线图片| 啦啦啦观看免费观看视频高清| 中文天堂在线官网| 欧美一区二区国产精品久久精品| 成年免费大片在线观看| 高清视频免费观看一区二区 | 久久久久精品久久久久真实原创| 精品免费久久久久久久清纯| 夫妻性生交免费视频一级片| 国产精品av视频在线免费观看| 99热6这里只有精品| 高清午夜精品一区二区三区| 丰满少妇做爰视频| 熟妇人妻久久中文字幕3abv| 乱人视频在线观看| 欧美一级a爱片免费观看看| 久久99热这里只有精品18| 三级国产精品片| 午夜福利高清视频| 亚洲av免费高清在线观看| .国产精品久久| 天美传媒精品一区二区| 中文资源天堂在线| 国国产精品蜜臀av免费| 99久久精品一区二区三区| 最近最新中文字幕免费大全7| 欧美极品一区二区三区四区| 高清午夜精品一区二区三区| 亚洲国产精品成人综合色| 中国美白少妇内射xxxbb| 少妇的逼好多水| 男女那种视频在线观看| 最近最新中文字幕免费大全7| 免费黄网站久久成人精品| 日日啪夜夜撸| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕日韩| 亚洲五月天丁香| 伊人久久精品亚洲午夜| 观看美女的网站| 国产午夜精品一二区理论片| or卡值多少钱| 国产成人午夜福利电影在线观看| 国产精品爽爽va在线观看网站| 黄色欧美视频在线观看| 又粗又硬又长又爽又黄的视频| 久久久久久久久久久丰满| 国产不卡一卡二| 国产视频内射| 亚洲成人精品中文字幕电影| 亚洲一区高清亚洲精品| 国产精品福利在线免费观看| 久久99热6这里只有精品| 久久热精品热| 国产黄色视频一区二区在线观看 | 99热全是精品| 国产乱人视频| 秋霞在线观看毛片| 2022亚洲国产成人精品| 麻豆av噜噜一区二区三区| 亚洲激情五月婷婷啪啪| 久久精品夜色国产| 男人舔奶头视频| 国产黄色视频一区二区在线观看 | 亚洲一区高清亚洲精品| 成人三级黄色视频| 国产v大片淫在线免费观看| 国产精品国产三级专区第一集| 能在线免费观看的黄片| 波多野结衣高清无吗| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 久久久久免费精品人妻一区二区| 97在线视频观看| av黄色大香蕉| 免费av毛片视频| 免费看日本二区| 欧美又色又爽又黄视频| 人妻少妇偷人精品九色| 高清午夜精品一区二区三区| 一区二区三区免费毛片| 欧美不卡视频在线免费观看| 69人妻影院| 国产精品人妻久久久久久| 中文精品一卡2卡3卡4更新| 国产在视频线在精品| 欧美日韩精品成人综合77777| 99热6这里只有精品| av在线蜜桃| 丰满少妇做爰视频| 国产黄片美女视频| 丝袜美腿在线中文| 成人高潮视频无遮挡免费网站| 久久精品综合一区二区三区| 天堂网av新在线| 色吧在线观看| 亚洲国产精品国产精品| 看非洲黑人一级黄片| 韩国高清视频一区二区三区| 日日啪夜夜撸| 人妻系列 视频| 国内少妇人妻偷人精品xxx网站| 亚洲最大成人手机在线| h日本视频在线播放| 日本av手机在线免费观看| 国产欧美日韩精品一区二区| 色哟哟·www| 久久久久久久亚洲中文字幕| 最近最新中文字幕免费大全7| 99久久人妻综合| 精品人妻视频免费看| 桃色一区二区三区在线观看| 国产乱人视频| 非洲黑人性xxxx精品又粗又长| 纵有疾风起免费观看全集完整版 | 综合色丁香网| 国产精品不卡视频一区二区| 视频中文字幕在线观看| 精品酒店卫生间| 亚洲国产精品成人综合色| 人人妻人人澡人人爽人人夜夜 | 午夜爱爱视频在线播放| 婷婷色麻豆天堂久久 | 精品一区二区免费观看| 丝袜喷水一区| 成年女人永久免费观看视频| 人人妻人人看人人澡| 久久综合国产亚洲精品| 国内精品一区二区在线观看| 精品久久久久久久末码| 亚洲av日韩在线播放| 国产淫片久久久久久久久| 国产女主播在线喷水免费视频网站 | 51国产日韩欧美| 婷婷色麻豆天堂久久 | 九九久久精品国产亚洲av麻豆| 日韩欧美国产在线观看| 国产亚洲91精品色在线| 少妇的逼水好多| 乱人视频在线观看| 女人久久www免费人成看片 | 久久久午夜欧美精品| 精品无人区乱码1区二区| 人人妻人人澡欧美一区二区| 晚上一个人看的免费电影| 最新中文字幕久久久久| 日韩欧美国产在线观看| АⅤ资源中文在线天堂| 欧美高清成人免费视频www| 国产视频首页在线观看| www.av在线官网国产| 国产成人a∨麻豆精品| 精品不卡国产一区二区三区| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 久久精品国产亚洲网站| 亚洲精品成人久久久久久| 国产精品久久电影中文字幕| 丰满人妻一区二区三区视频av| 成人美女网站在线观看视频| 狂野欧美激情性xxxx在线观看| 亚洲性久久影院| 国产免费视频播放在线视频 | 97超视频在线观看视频| a级一级毛片免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 赤兔流量卡办理| 中文字幕熟女人妻在线| 伦理电影大哥的女人| 国模一区二区三区四区视频| 人妻夜夜爽99麻豆av| 人妻系列 视频| 91av网一区二区| 亚洲av.av天堂| 亚洲国产精品国产精品| 国产黄a三级三级三级人| 国产精品人妻久久久久久| 狠狠狠狠99中文字幕| 夫妻性生交免费视频一级片| 好男人在线观看高清免费视频| 婷婷色麻豆天堂久久 | 男人舔奶头视频| 亚洲精品456在线播放app| 成人国产麻豆网| 十八禁国产超污无遮挡网站| 丰满乱子伦码专区| 成人高潮视频无遮挡免费网站| 最后的刺客免费高清国语| av在线蜜桃| 国产视频内射| 久久这里只有精品中国| 啦啦啦韩国在线观看视频| 免费大片18禁| 三级男女做爰猛烈吃奶摸视频| 久久久国产成人免费| 国产极品天堂在线| 国产91av在线免费观看| 亚洲18禁久久av| 看黄色毛片网站| 91在线精品国自产拍蜜月| 在线a可以看的网站| 99在线视频只有这里精品首页| 亚洲精品日韩在线中文字幕| 中文字幕亚洲精品专区| 亚洲精品乱久久久久久| 中国美白少妇内射xxxbb| 91久久精品国产一区二区成人| 天堂中文最新版在线下载 | 国产精品女同一区二区软件| 色综合色国产| 亚洲欧美日韩高清专用| 亚洲国产精品sss在线观看| 高清毛片免费看| 亚洲内射少妇av| 久久久久久久久久成人| 丰满少妇做爰视频| 久久久亚洲精品成人影院| 中文字幕制服av| 久久久久久久久大av| 欧美变态另类bdsm刘玥| av卡一久久| 亚洲中文字幕一区二区三区有码在线看| 国产乱来视频区| 黄片wwwwww| 国产免费又黄又爽又色| 超碰av人人做人人爽久久| 老司机影院毛片| 午夜爱爱视频在线播放| 婷婷色综合大香蕉| 联通29元200g的流量卡| 亚洲av熟女| 中文亚洲av片在线观看爽| 一级黄片播放器| eeuss影院久久| 国产成人a区在线观看| 青春草亚洲视频在线观看| 国语自产精品视频在线第100页| 国产亚洲av嫩草精品影院| 2021天堂中文幕一二区在线观| 尤物成人国产欧美一区二区三区| 有码 亚洲区| 精品酒店卫生间| 亚洲欧美日韩高清专用| 欧美日韩精品成人综合77777| 日本一本二区三区精品| 午夜亚洲福利在线播放| 欧美区成人在线视频| 秋霞在线观看毛片| 免费av毛片视频| 汤姆久久久久久久影院中文字幕 | 亚洲在线自拍视频| 乱人视频在线观看| 日本黄色视频三级网站网址| 久久久国产成人精品二区| 色综合亚洲欧美另类图片| 日韩欧美在线乱码| 一区二区三区免费毛片| 国产亚洲5aaaaa淫片| 亚洲天堂国产精品一区在线| 国产高清国产精品国产三级 | 三级国产精品片| 亚洲国产精品专区欧美| 国产成人午夜福利电影在线观看| 一边摸一边抽搐一进一小说| 免费看a级黄色片| 亚洲天堂国产精品一区在线| 偷拍熟女少妇极品色| 插逼视频在线观看| 欧美3d第一页| 色吧在线观看| 久久精品国产亚洲av涩爱| 大香蕉97超碰在线| 精品人妻视频免费看| 精品久久久噜噜| 日本av手机在线免费观看| 国内精品美女久久久久久| 国产精品伦人一区二区| 亚洲国产欧美在线一区| 国产精品乱码一区二三区的特点| 亚洲av免费高清在线观看| 精品久久久久久久久亚洲| 亚洲三级黄色毛片| 毛片一级片免费看久久久久| 2022亚洲国产成人精品| 天堂影院成人在线观看| 视频中文字幕在线观看| 亚洲av日韩在线播放| 精品99又大又爽又粗少妇毛片| 久久久精品94久久精品| 三级男女做爰猛烈吃奶摸视频| 麻豆精品久久久久久蜜桃| 亚州av有码| 在线播放无遮挡| 99久久精品国产国产毛片| 欧美日韩精品成人综合77777| 国产探花在线观看一区二区| 国产精品久久久久久av不卡| 国产av在哪里看| 真实男女啪啪啪动态图| 国产高清有码在线观看视频| 国产精品一区二区性色av| 亚洲av不卡在线观看| 床上黄色一级片| 久久久久国产网址| 午夜激情欧美在线| 97超视频在线观看视频| 九草在线视频观看| 最近2019中文字幕mv第一页| 精品国产三级普通话版| kizo精华| 在现免费观看毛片| 热99在线观看视频| av在线亚洲专区| 春色校园在线视频观看| 少妇被粗大猛烈的视频| 18+在线观看网站| 男人的好看免费观看在线视频| 五月伊人婷婷丁香| 久久精品熟女亚洲av麻豆精品 | 中文字幕精品亚洲无线码一区| 婷婷六月久久综合丁香| 亚洲国产日韩欧美精品在线观看| 在现免费观看毛片| 婷婷六月久久综合丁香| 尾随美女入室| av女优亚洲男人天堂| 国产精品av视频在线免费观看| 亚洲欧美成人精品一区二区| 久久久色成人| 国内揄拍国产精品人妻在线| 国产又色又爽无遮挡免| 日本欧美国产在线视频| av国产免费在线观看| 欧美高清成人免费视频www| 精品欧美国产一区二区三| 亚洲欧美成人综合另类久久久 | 春色校园在线视频观看|