• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain?

    2021-06-26 03:04:22XiaoShuGuo郭小姝andSanDongGuo郭三棟
    Chinese Physics B 2021年6期

    Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三棟)

    1School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    2Key Laboratory of Advanced Semiconductor Devices and Materials,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    Keywords: MoSi2N4,electronic transport,2D materials

    1. Introduction

    The successful exfoliation of graphene[1]induces increasing attention on two-dimensional (2D) materials. Many of them have semiconducting behavior, which has various potential applications in electronics, optoelectronics and piezoelectronics.[2–5]Their electronic structures, heat transport and piezoelectric properties have been widely investigated.[6–16]It has been proved that the strain can effectively tune electronic structures, transport and piezoelectric properties of 2D materials,[15–23]which shows great potential for better use in the nanoelectronic,thermoelectric and piezoelectric applications.For example,both compressive and tensile strains can induce the semiconductor-to-metal transition in monolayer MoS2.[17]In many monolayers of transition metal dichalchogenides (TMD), the power factor can be enhanced by strain due to bands converge.[15,16,18]With increased tensile strain, the lattice thermal conductivity shows monotonous decrease, up-and-down and jump behavior with similar penta-structures.[19]Strain can also improve the piezoelectric strain coefficient by tuning the elastic and piezoelectric stress coefficients.[20–23]

    Recently, the layered 2D MoSi2N4and WSi2N4have been experimentally achieved by chemical vapor deposition (CVD).[24]The septuple-atomic-layer MA2Z4monolayers with twelve different structures are constructed by intercalating MoS2-type MZ2monolayer into InSe-type A2Z2monolayer.[25]The 66 thermodynamically and dynamically stable MA2Z4structures are predicted by the first principle calculations. They can be commonly semiconductors,half-metal ferromagnetisms or spin-gapless semiconductors(SGSs), Ising superconductors and topological insulators,which depend on the number of valence electrons.[25]We predict intrinsic piezoelectricity in monolayer MA2Z4,[26]which means that MA2Z4family may have potential application in piezoelectric field. Structure effect on intrinsic piezoelectricity in monolayer MSi2N4(M=Mo and W)has also been reported by the first principle calculations.[27]By applied strain,the VSi2P4monolayer undergoes ferromagnetic metal(FMM)to SGS to ferromagnetic semiconductor (FMS) to SGS to ferromagnetic half-metal (FMHM) with increasing strain.[28]Some materials of MA2Z4lack inversion symmetry with a strong SOC effect, which are expected to exhibit rich spinvalley physics.[25]The valley-dependent properties of monolayer MoSi2N4, WSi2N4and MoSi2As4have been predicted by the first-principles calculations.[25,29,30]Recently,Janus 2D monolayer in the new septuple-atomic-layer 2D MA2Z4family has been achieved,[31]which shows Rashba spin splitting and out-of-plane piezoelectric polarizations.

    In nanoscale devices,the residual strain usually exists in real applications.[32]In our previous work,the small strain effects(0.96 to 1.04)on piezoelectric coefficients of monolayer MoSi2N4have been investigated.[26]In this work, the large(0.90 to 1.10) biaxial strain-tuned electronic structures and transport coefficients of monolayer MoSi2N4are studied by the first principle calculations. Witha/a0from 0.90 to 1.10,the energy band gap of monolayer MoSi2N4firstly increases,and then decreases. In n-type doping,the Seebeck coefficientScan be effectively enhanced by applying compressive strain,and then theZTecan be improved. The tensile strain can induce flat valence bands around theΓpoint near the Fermi level, producing large p-typeS. Therefore, our works give an experimental proposal to improve transport coefficients of monolayer MoSi2N4.

    The rest of the paper is organized as follows. In Section 2,we give our computational details and methods about transport coefficients. In Sections 3 and 4, we present the main results of monolayer MoSi2N4about strain-tuned electronic structures and transport coefficients. Finally, we present our conclusions in Section 5.

    2. Computational detail

    To avoid interactions between two neighboring images,a vacuum spacing of more than 32 ?A along thezdirection is added to construct monolayer MoSi2N4. The elastic stiffness tensor elementsCi jare calculated using strain-stress relationship(SSR),which are performed by employing the VASP code[33,35,38]within the framework of DFT.[36,37]A kinetic cutoff energy of 500 eV is adopted, and we use the popular generalized gradient approximation of Perdew, Burke and Ernzerh of (GGA-PBE)[37]as the exchange–correlation potential to calculate elastic and electronic properties. The total energy convergence criterion is set to 10?8eV, and the Hellmann–Feynman forces on each atom are less than 0.0001 eV·?A?1. The Brillouin zone (BZ) sampling is obtained using a Monkhorst–Pack mesh of 15×15×1 for elastic constantsCi j. The 2D elastic coefficientsC2Di jhave been renormalized by the the length of unit cell alongzdirection(Lz):C2Di j=LzC3Dij.

    The electronic transport coefficients of MoSi2N4monolayer are calculated by solving the Boltzmann transport equations within the constant scattering time approximation (CSTA), which is performed by the BoltzTrap[39]code.To include the SOC, a full-potential linearized augmentedplane-waves method is used to calculate the energy bands of MoSi2N4monolayer, as implemented in the WIEN2k package.[40]To attain accurate transport coefficients, a 35×35×1k-point meshes is used in the first BZ for the energy band calculation,make harmonic expansion up tolmax=10 in each of the atomic spheres,and setRmtkmax=8.

    3. Electronic structures

    The MoSi2N4monolayer can be considered as the insertion of the 2H MoS2-type MoN2monolayer into theα-InSetype Si2N2,and the side and top views of the structure of the MoSi2N4monolayer are plotted in Fig.1.The structure breaks the inversion symmetry,but preserves a horizontal mirror corresponding to the plane of the Mo layer. This leads to that MoSi2N4monolayer only has in-plane piezoelectric response,and has not out-of-plane piezoelectric polarizations. Using optimized lattice constants,[26]the energy bands of MoSi2N4monolayer using GGA and GGA+SOC are shown in Fig. 2,and exhibit both the indirect band gaps with valence band maximum (VBM) atΓpoint and CBM atKpoint. Due to lacking inversion symmetry and containing the heavy element Mo,there exists an SOC induced spin splitting of about 0.13 eV near the Fermi level in the valence bands atKpoint. This may provide a platform for spin-valley physics,[25,29,30]but the VBM is not atKpoint,which can be tuned by strain. According to orbital projected band structure,it is found that the states near the Fermi level are dominated by the Mo d orbitals.More specifically, the states around both CBM and VBM are dominated by the Modz2orbital.

    Fig.1. The crystal structure of monolayer MoSi2N4 ((a)side view and(b) top view). The primitive cell is are marked by black line, and the large red balls represent Mo atoms, and the middle blue balls for Si atoms,and the small green balls for N atoms.

    It is proved that the electronic structures, topological properties, transport and piezoelectric properties of 2D materials can be effectively tuned by strain.[15–23,41]The biaxial strain can be simulated bya/a0or(a?a0)/a0,whereaanda0are the strained and unstrained lattice constants, respectively.Thea/a0<1 or (a ?a0)/a0<0 means compressive strain,whilea/a0>1 or(a?a0)/a0>0 implies tensile strain. Witha/a0from 0.90 to 1.10, the energy band structures are plotted in Fig.2,and the energy band gap and spin-orbit splitting value?atKpoint are shown in Fig.3.

    Fig.2. The energy band structures of monolayer MoSi2N4 using GGA+SOC with the application of biaxial strain(?10%to 10%),and the unstrained energy band using GGA.The VBM and CBM are marked by arrows. At 0.96(0.98)strain,four CBE(two VBE)are marked by ellipse.

    Fig. 3. For MoSi2N4 monolayer, the energy band gap and spin-orbit splitting value ?at K point using GGA+SOC as a function of strain.

    It is found that the energy band gap firstly increases(0.90 to 0.96), and then decreases (0.96 to 1.10), which is due to transformation of CBM.Similar phenomena can be observed in many TMD and Janus TMD monolayers.[16,44]With strain from compressive one to tensile one, the?has a rapid increase, and then a slight decrease. With increasing compressive strain(1.00 to 0.90),the position of CBM(VBM)changes fromK(Γ) point to one point along theK–Γdirection (Kpoint),when the compressive strain reaches about 0.94(0.96).The compressive strain can also tune the numbers and relative positions of valence band extrema(VBE)or CBE.For example,at 0.96,the four CBE can be observed,and their energies are very close, which has very important effects on transport properties. To explore orbital contribution to the conduction bands in the case of 0.96 strain,we project the states to atomic orbitals at 0.96 strained and unstrained conditions, which are shown in Fig. 4. At 0.96 strain, the composition of the lowenergy states has little change with respect to unstrained one.At 0.98, the energy of two VBE are nearly the same. The compressive strain can makeKpoint with spin splitting become VBM, which is very useful to allow spin manipulation for spin-valley physics. For example,at 0.94 strain,the VBM atKpoint is 0.49 eV higher than that atΓpoint. It is clearly seen that the increasing tensile strain can make valence band around theΓpoint near the Fermi level more flat.

    Finally,the elastic constantsCijare calculated as a function ofa/a0to study the mechanical stability of MoSi2N4monolayer with strain. For 2D hexagonal crystals, the Born criteria of mechanical stability[45](C11>0 andC66>0)should be satisfied. The calculatedC11andC66as a function of strain are plotted in Fig. 5, and it is clearly seen that the MoSi2N4monolayer in considered strain range is mechanically stable,which is very important for farther experimental exploration.

    Fig.4. For MoSi2N4 monolayer,the orbital projected band structure at 0.96 strained and unstrained conditions.

    Fig. 5. For MoSi2N4 monolayer, the elastic constants C11 and C66 vs.a/a0 from 0.90 to 1.10.

    4. Electronic transport property

    Proposed by Hicks and Dresselhaus in 1993,[42,43]the potential thermoelectric materials can be achieved in the lowdimensional systems or nanostructures. The dimensionless figure of merit,ZT=S2σT/(κe+κL),can be used to measure the efficiency of thermoelectric conversion of a thermoelectric material, whereS,σ,T,κe, andκLare the Seebeck coefficient,electrical conductivity,working temperature,electronic and lattice thermal conductivities,respectively.It is noted that,for the 2D material,the calculatedσ,κeandκLdepend onLz(here,Lz= 40 ?A), and theSandZTis independent ofLz.For 2D materials, we use electrons or holes per unit cell instead of doping concentration, which is described byN, and theN <0(N >0)mean n-type(p-type)doping. It is proved that the SOC has important effects on transport coefficients of TMD and Janus TMD monolayers.[16,18,44]However,the SOC has neglectful influences on transport properties of unstrained MoSi2N4monolayer,which can be observed from typical Seebeck coefficientSin Fig.6.

    This is because the energy bands near the Fermi level between GGA and GGA+SOC are nearly the same. However,the SOC has an important effect on p-type transport coefficients under the condition of compressive strain. For example,at 0.96 strain, a detrimental effect on Seebeck coefficientScan be observed, when including SOC (see Fig. 6). This is because the SOC can remove the band degeneracy near the VBM. Thus, the SOC is included to investigate the biaxial strain effects on transport coefficients of MoSi2N4monolayer.

    Fig.6. For MoSi2N4 monolayer,the room-temperature Seebeck coefficient S using GGA and GGA+SOC at 1.00 and 0.96 strains as a function of doping level N with N being the number of electrons or holes per unit cell.

    An upper limit ofZTcan be measured byZTe=S2σT/κe, neglecting theκL. The room-temperatureZTeof MoSi2N4monolayer under different strains as a function of doping level is also shown in Fig. 7. The calculated results show that the dependence ofZTeis very similar toS(absolute value),which can be explained by the Wiedemann–Franz law:κe=LσT(Lis the Lorenz number). Then theZTecan be reformulated byZTe=S2/L. Thus, the strain-induced bands convergence improvesS,which is beneficial to betterZTe.

    Fig.7.For MoSi2N4 monolayer,the room-temperature transport coefficients with the a/a0 from 0.90 to 1.10,i.e.,Seebeck coefficient S,electrical conductivity with respect to scattering time σ/τ,power factor with respect to scattering time S2σ/τ and ZTe (an upper limit of ZT)as a function of doping level N using GGA+SOC.Left: compressive strain. Right: tensile strain.

    5. Conclusion

    In summary,we have investigated the biaxial strain(0.90 to 1.10) effects on electronic structures and transport coefficients of monolayer MoSi2N4by the reliable first-principles calculations. With the strain from 0.90 to 1.10, the energy band gap of MoSi2N4monolayer shows a nonmonotonic behavior. It is found that the SOC has little effects on transport coefficients of unstrained MoSi2N4in the considered doping range due to the hardly changed dispersion of bands near the Fermi level. However,the SOC has very important influences on transport properties of strained MoSi2N4,for example,0.96 strain, which is due to the position change of VBM.The calculated results show that compressive strain can tune the numbers and relative positions of CBE,which can lead to enhanced n-typeS,and then better n-typeZTe.Our work may provide an idea to optimize the electronic structures and transport properties of monolayer MoSi2N4.

    Acknowledgments

    We are grateful to the Advanced Analysis and Computation Center of China University of Mining and Technology(CUMT)for the award of CPU hours and WIEN2k/VASP software to accomplish this work.

    国产精品国产高清国产av| 久久国内精品自在自线图片| 久久久久久久久久黄片| 97碰自拍视频| 白带黄色成豆腐渣| 国产在线男女| 人妻丰满熟妇av一区二区三区| 亚洲成a人片在线一区二区| 狠狠狠狠99中文字幕| 丰满的人妻完整版| 九九在线视频观看精品| 国产久久久一区二区三区| 1024手机看黄色片| 国产精品久久久久久av不卡| av国产免费在线观看| 婷婷精品国产亚洲av| 啦啦啦观看免费观看视频高清| 国产精品永久免费网站| 日本撒尿小便嘘嘘汇集6| 亚洲av免费高清在线观看| 69av精品久久久久久| 深夜精品福利| 中文字幕av成人在线电影| 国产精品国产高清国产av| 国产欧美日韩精品一区二区| 中出人妻视频一区二区| 成人av在线播放网站| 狠狠狠狠99中文字幕| 99热只有精品国产| 一级a爱片免费观看的视频| 国产一区二区三区视频了| 国产精品国产高清国产av| 国产毛片a区久久久久| 国产欧美日韩精品一区二区| 中文字幕人妻熟人妻熟丝袜美| 美女 人体艺术 gogo| 国产高清有码在线观看视频| 美女黄网站色视频| 男女做爰动态图高潮gif福利片| 成年版毛片免费区| 精品久久久久久久久久免费视频| 久久草成人影院| 最近最新免费中文字幕在线| 最近中文字幕高清免费大全6 | 国产乱人伦免费视频| 亚洲性久久影院| 免费观看精品视频网站| 国产在视频线在精品| 99久国产av精品| 少妇人妻精品综合一区二区 | 久久久久久久亚洲中文字幕| 可以在线观看毛片的网站| 精品久久久噜噜| 日韩一区二区视频免费看| 免费观看精品视频网站| 精品久久久久久久人妻蜜臀av| 日韩一区二区视频免费看| 成人精品一区二区免费| 成人综合一区亚洲| 国产探花在线观看一区二区| 又爽又黄无遮挡网站| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产自在天天线| 亚洲无线观看免费| 天堂av国产一区二区熟女人妻| 美女被艹到高潮喷水动态| 精品国内亚洲2022精品成人| 精品国内亚洲2022精品成人| 日韩欧美在线乱码| 伦理电影大哥的女人| 亚洲中文字幕一区二区三区有码在线看| 日日啪夜夜撸| 他把我摸到了高潮在线观看| 成人特级av手机在线观看| 免费人成视频x8x8入口观看| av视频在线观看入口| 久久久久久国产a免费观看| 国产91精品成人一区二区三区| 国产不卡一卡二| 亚洲欧美日韩无卡精品| 国产高潮美女av| 夜夜看夜夜爽夜夜摸| 亚洲va日本ⅴa欧美va伊人久久| 99热精品在线国产| 九九爱精品视频在线观看| 国内久久婷婷六月综合欲色啪| 好男人在线观看高清免费视频| 亚洲七黄色美女视频| 亚洲狠狠婷婷综合久久图片| 精品午夜福利在线看| 草草在线视频免费看| 村上凉子中文字幕在线| 日韩精品青青久久久久久| 在线a可以看的网站| 国产成人一区二区在线| 波多野结衣巨乳人妻| 亚洲三级黄色毛片| 老师上课跳d突然被开到最大视频| 欧美成人免费av一区二区三区| 国产 一区 欧美 日韩| 黄色欧美视频在线观看| 欧美人与善性xxx| 欧美+亚洲+日韩+国产| 国产精品av视频在线免费观看| 99久久中文字幕三级久久日本| 亚洲内射少妇av| 欧美日韩乱码在线| 精品久久久久久久久亚洲 | 国产免费一级a男人的天堂| 欧美不卡视频在线免费观看| 国产亚洲精品av在线| 国产色婷婷99| 黄色欧美视频在线观看| 最近最新中文字幕大全电影3| 欧美成人免费av一区二区三区| 两人在一起打扑克的视频| x7x7x7水蜜桃| 国产美女午夜福利| 熟女人妻精品中文字幕| 亚洲最大成人手机在线| 99riav亚洲国产免费| 天天躁日日操中文字幕| 一夜夜www| 国产伦人伦偷精品视频| 有码 亚洲区| 波多野结衣高清作品| 久久久久久伊人网av| 亚洲美女视频黄频| 18禁黄网站禁片免费观看直播| 国产精品一及| 精品午夜福利在线看| 18禁黄网站禁片免费观看直播| av天堂在线播放| 亚洲中文字幕一区二区三区有码在线看| 国产毛片a区久久久久| 国内精品一区二区在线观看| 日韩国内少妇激情av| 亚洲va日本ⅴa欧美va伊人久久| 搞女人的毛片| 免费av不卡在线播放| 在线天堂最新版资源| 国产乱人视频| 97碰自拍视频| 午夜福利18| 午夜a级毛片| 国产伦精品一区二区三区视频9| 国产精品无大码| eeuss影院久久| 久久亚洲精品不卡| 精品久久国产蜜桃| 制服丝袜大香蕉在线| 一个人观看的视频www高清免费观看| 最后的刺客免费高清国语| 嫁个100分男人电影在线观看| 99精品久久久久人妻精品| 女的被弄到高潮叫床怎么办 | 成人国产一区最新在线观看| 亚洲成人精品中文字幕电影| 97人妻精品一区二区三区麻豆| 婷婷精品国产亚洲av在线| 日本五十路高清| 美女免费视频网站| 精品国产三级普通话版| 91麻豆精品激情在线观看国产| 国产成人福利小说| 舔av片在线| 亚洲欧美日韩卡通动漫| 免费观看的影片在线观看| 午夜激情福利司机影院| 精品日产1卡2卡| 日本撒尿小便嘘嘘汇集6| aaaaa片日本免费| 99久国产av精品| 干丝袜人妻中文字幕| 特大巨黑吊av在线直播| 国产久久久一区二区三区| 精品久久久噜噜| 国产在线男女| h日本视频在线播放| 亚洲第一区二区三区不卡| 成年女人看的毛片在线观看| 亚洲 国产 在线| av黄色大香蕉| 国内久久婷婷六月综合欲色啪| 可以在线观看毛片的网站| 欧美日韩综合久久久久久 | 久久久久久国产a免费观看| 99在线视频只有这里精品首页| 在线播放国产精品三级| 国产黄片美女视频| 亚洲精品成人久久久久久| 露出奶头的视频| 亚洲人成伊人成综合网2020| 麻豆一二三区av精品| 欧美一区二区精品小视频在线| 九色成人免费人妻av| 最近在线观看免费完整版| 亚洲欧美日韩高清在线视频| 中文亚洲av片在线观看爽| 日韩强制内射视频| 99热这里只有是精品50| 久久亚洲精品不卡| 狂野欧美白嫩少妇大欣赏| 看十八女毛片水多多多| 18禁在线播放成人免费| 亚洲在线自拍视频| 久久婷婷人人爽人人干人人爱| 国产人妻一区二区三区在| 国产精品乱码一区二三区的特点| 五月玫瑰六月丁香| 亚洲国产精品久久男人天堂| 亚洲欧美日韩无卡精品| 热99re8久久精品国产| 少妇高潮的动态图| 露出奶头的视频| 精品久久久久久久久久久久久| 中文字幕av成人在线电影| 欧美黑人巨大hd| 国产精品野战在线观看| 亚洲av美国av| 亚洲久久久久久中文字幕| 中文字幕av成人在线电影| 亚洲精品影视一区二区三区av| 看片在线看免费视频| 黄色女人牲交| 亚洲av不卡在线观看| 国产免费一级a男人的天堂| 亚洲av熟女| 国产伦精品一区二区三区四那| 搡女人真爽免费视频火全软件 | 欧美另类亚洲清纯唯美| 日韩一本色道免费dvd| 色精品久久人妻99蜜桃| 亚洲国产日韩欧美精品在线观看| 亚洲内射少妇av| 久久精品国产亚洲av天美| 国产三级中文精品| 精品欧美国产一区二区三| 日韩国内少妇激情av| 精品久久久久久久久av| 亚洲人成网站高清观看| 草草在线视频免费看| 国产日本99.免费观看| 亚洲人成网站在线播放欧美日韩| 欧美一区二区亚洲| 可以在线观看毛片的网站| 国产免费av片在线观看野外av| 国内精品久久久久久久电影| 亚洲第一区二区三区不卡| 日日干狠狠操夜夜爽| 成人一区二区视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 国产男人的电影天堂91| 又爽又黄a免费视频| 精品久久久久久,| 在线免费十八禁| 欧美最新免费一区二区三区| 亚洲七黄色美女视频| 国产伦精品一区二区三区四那| 国产精品久久久久久精品电影| 国产视频内射| 又粗又爽又猛毛片免费看| 欧美成人一区二区免费高清观看| 看免费成人av毛片| 制服丝袜大香蕉在线| 成人欧美大片| 国产一级毛片七仙女欲春2| 身体一侧抽搐| 色精品久久人妻99蜜桃| 久久久久久久久久成人| 淫秽高清视频在线观看| 国产激情偷乱视频一区二区| 久久人人爽人人爽人人片va| 精品久久久久久久久久免费视频| 色吧在线观看| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区视频9| 麻豆av噜噜一区二区三区| 两个人的视频大全免费| 在现免费观看毛片| 国产视频一区二区在线看| 亚洲av第一区精品v没综合| 亚洲中文日韩欧美视频| 久久久久久国产a免费观看| 国产色爽女视频免费观看| 少妇被粗大猛烈的视频| 成年女人毛片免费观看观看9| 男女啪啪激烈高潮av片| 可以在线观看的亚洲视频| 中文亚洲av片在线观看爽| 69av精品久久久久久| av在线亚洲专区| 女生性感内裤真人,穿戴方法视频| 国产aⅴ精品一区二区三区波| 午夜福利欧美成人| 午夜福利成人在线免费观看| 97人妻精品一区二区三区麻豆| 午夜激情福利司机影院| 国产三级中文精品| 无人区码免费观看不卡| 嫩草影视91久久| 1024手机看黄色片| 在线天堂最新版资源| 久久亚洲真实| 亚洲色图av天堂| 一级毛片久久久久久久久女| 国产午夜精品论理片| 九九热线精品视视频播放| 精品久久久久久久久久免费视频| 99热只有精品国产| 十八禁国产超污无遮挡网站| 在线免费观看的www视频| 亚洲男人的天堂狠狠| 国产一区二区三区av在线 | 在线观看午夜福利视频| 国产老妇女一区| 亚洲久久久久久中文字幕| 成人三级黄色视频| 亚洲欧美精品综合久久99| 人人妻人人澡欧美一区二区| 成年免费大片在线观看| 午夜福利18| 亚洲欧美激情综合另类| 最好的美女福利视频网| 国产亚洲欧美98| 国产精品久久久久久亚洲av鲁大| 午夜激情欧美在线| 午夜免费成人在线视频| 久久精品国产亚洲网站| 2021天堂中文幕一二区在线观| 欧美xxxx性猛交bbbb| 一进一出抽搐gif免费好疼| 国产精华一区二区三区| 欧美三级亚洲精品| 国产亚洲av嫩草精品影院| 欧美区成人在线视频| 免费搜索国产男女视频| 亚洲专区国产一区二区| 国产成人影院久久av| av天堂中文字幕网| 亚洲精华国产精华精| 婷婷亚洲欧美| 色播亚洲综合网| 日本熟妇午夜| 69av精品久久久久久| 国产精品乱码一区二三区的特点| 女人十人毛片免费观看3o分钟| 国产免费男女视频| 欧美性感艳星| 熟妇人妻久久中文字幕3abv| 搡老妇女老女人老熟妇| 伦理电影大哥的女人| 亚洲aⅴ乱码一区二区在线播放| 日本熟妇午夜| 色播亚洲综合网| 白带黄色成豆腐渣| 国模一区二区三区四区视频| 成人特级黄色片久久久久久久| 午夜免费激情av| 亚洲中文字幕日韩| 最近在线观看免费完整版| 色哟哟哟哟哟哟| 久久国内精品自在自线图片| 国产高潮美女av| 别揉我奶头~嗯~啊~动态视频| 国产女主播在线喷水免费视频网站 | 成人性生交大片免费视频hd| 国产三级中文精品| 亚洲一区高清亚洲精品| 欧美bdsm另类| 欧美国产日韩亚洲一区| 国产91精品成人一区二区三区| 日韩欧美国产在线观看| 波多野结衣高清作品| 黄色欧美视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕av在线有码专区| 综合色av麻豆| 91狼人影院| 天美传媒精品一区二区| 看十八女毛片水多多多| 午夜免费激情av| 日本-黄色视频高清免费观看| 久久国内精品自在自线图片| 一区二区三区高清视频在线| 免费在线观看成人毛片| 亚洲乱码一区二区免费版| 在线看三级毛片| av天堂在线播放| 啦啦啦啦在线视频资源| 久久精品久久久久久噜噜老黄 | АⅤ资源中文在线天堂| 亚洲av中文字字幕乱码综合| 深爱激情五月婷婷| 少妇熟女aⅴ在线视频| 制服丝袜大香蕉在线| 亚洲欧美日韩东京热| 69人妻影院| 亚洲色图av天堂| 一区二区三区免费毛片| 国内精品美女久久久久久| 别揉我奶头~嗯~啊~动态视频| 男女啪啪激烈高潮av片| 女人被狂操c到高潮| 婷婷色综合大香蕉| 级片在线观看| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 久久久精品欧美日韩精品| 在线播放无遮挡| 天美传媒精品一区二区| av天堂中文字幕网| 真人一进一出gif抽搐免费| 日本免费一区二区三区高清不卡| 99精品久久久久人妻精品| 男人舔奶头视频| 亚洲一区高清亚洲精品| 国产精品av视频在线免费观看| 乱码一卡2卡4卡精品| 亚洲熟妇中文字幕五十中出| 国产精品人妻久久久久久| 制服丝袜大香蕉在线| 欧美激情久久久久久爽电影| 嫁个100分男人电影在线观看| 两个人的视频大全免费| 桃色一区二区三区在线观看| 午夜a级毛片| 国产aⅴ精品一区二区三区波| 国产亚洲91精品色在线| 韩国av一区二区三区四区| 91在线精品国自产拍蜜月| 看十八女毛片水多多多| 亚洲av免费高清在线观看| 日韩一本色道免费dvd| 日本黄色片子视频| 婷婷六月久久综合丁香| 国产色婷婷99| 偷拍熟女少妇极品色| 成人高潮视频无遮挡免费网站| 亚洲黑人精品在线| 国产一区二区三区视频了| 高清日韩中文字幕在线| 干丝袜人妻中文字幕| 少妇被粗大猛烈的视频| 久久国产精品人妻蜜桃| 九九热线精品视视频播放| 国产成人一区二区在线| 国产精品久久视频播放| 老熟妇仑乱视频hdxx| 国产亚洲欧美98| 成人国产麻豆网| 十八禁国产超污无遮挡网站| 亚洲精品国产成人久久av| 国产精品亚洲美女久久久| 天天躁日日操中文字幕| 免费在线观看影片大全网站| 成年免费大片在线观看| 丰满的人妻完整版| 国产激情偷乱视频一区二区| 最近中文字幕高清免费大全6 | 日本a在线网址| 网址你懂的国产日韩在线| 给我免费播放毛片高清在线观看| 91久久精品电影网| 麻豆成人午夜福利视频| 亚洲中文字幕日韩| 春色校园在线视频观看| 又爽又黄a免费视频| 久久精品91蜜桃| 欧美黑人巨大hd| 在线a可以看的网站| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区| 免费看美女性在线毛片视频| 亚洲成av人片在线播放无| 中文字幕熟女人妻在线| 亚洲av中文字字幕乱码综合| 亚洲av日韩精品久久久久久密| 亚洲三级黄色毛片| 久久精品夜夜夜夜夜久久蜜豆| 国产久久久一区二区三区| 色综合亚洲欧美另类图片| 国产综合懂色| 免费电影在线观看免费观看| 十八禁国产超污无遮挡网站| 国产精品一区二区三区四区久久| 淫妇啪啪啪对白视频| АⅤ资源中文在线天堂| 日日摸夜夜添夜夜添小说| 丰满乱子伦码专区| 日日摸夜夜添夜夜添av毛片 | av在线亚洲专区| 国产一区二区三区在线臀色熟女| 免费人成在线观看视频色| 国产成人福利小说| 国产av麻豆久久久久久久| 久久久久久国产a免费观看| 亚洲午夜理论影院| 国产精品三级大全| 国产精品永久免费网站| 色综合亚洲欧美另类图片| 真实男女啪啪啪动态图| 亚洲精品色激情综合| 午夜精品一区二区三区免费看| 免费不卡的大黄色大毛片视频在线观看 | 两个人视频免费观看高清| 色综合色国产| 欧美成人一区二区免费高清观看| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片| 国产午夜福利久久久久久| 美女cb高潮喷水在线观看| 不卡一级毛片| 可以在线观看的亚洲视频| 久久热精品热| 日本撒尿小便嘘嘘汇集6| 亚洲精品日韩av片在线观看| 亚洲av电影不卡..在线观看| 国内揄拍国产精品人妻在线| 精品久久久久久久久久久久久| 99热网站在线观看| 国产精品一区二区免费欧美| 哪里可以看免费的av片| 久久久久久久久中文| 国产伦人伦偷精品视频| 国产乱人伦免费视频| 午夜福利视频1000在线观看| 悠悠久久av| 久久久久性生活片| 亚洲成人精品中文字幕电影| 午夜福利成人在线免费观看| 九九久久精品国产亚洲av麻豆| 乱码一卡2卡4卡精品| 国产国拍精品亚洲av在线观看| av专区在线播放| 欧美一区二区亚洲| 精品福利观看| 美女cb高潮喷水在线观看| 日本免费一区二区三区高清不卡| bbb黄色大片| 自拍偷自拍亚洲精品老妇| 极品教师在线视频| 久久精品夜夜夜夜夜久久蜜豆| 一本精品99久久精品77| 九色成人免费人妻av| 国产精品人妻久久久久久| 一个人免费在线观看电影| 国产乱人伦免费视频| a在线观看视频网站| 悠悠久久av| 欧美色欧美亚洲另类二区| av国产免费在线观看| 直男gayav资源| 亚洲av美国av| 少妇的逼水好多| 偷拍熟女少妇极品色| 伦理电影大哥的女人| 亚洲精品久久国产高清桃花| 日本-黄色视频高清免费观看| 一进一出抽搐动态| 国产 一区精品| 欧美极品一区二区三区四区| 久久久成人免费电影| 黄色欧美视频在线观看| 淫秽高清视频在线观看| 欧美日韩瑟瑟在线播放| 欧美激情在线99| 日本黄色视频三级网站网址| 麻豆国产av国片精品| 此物有八面人人有两片| 免费看av在线观看网站| 国产精品av视频在线免费观看| 99热这里只有是精品50| 久久久精品欧美日韩精品| 亚洲经典国产精华液单| 在线免费十八禁| 午夜影院日韩av| 成熟少妇高潮喷水视频| 97超视频在线观看视频| 亚洲中文日韩欧美视频| 69人妻影院| 亚洲中文字幕日韩| x7x7x7水蜜桃| 热99在线观看视频| 亚洲av成人精品一区久久| a级毛片a级免费在线| 成人高潮视频无遮挡免费网站| 亚洲va在线va天堂va国产| 91久久精品电影网| 成人二区视频| 久久99热这里只有精品18| 大又大粗又爽又黄少妇毛片口| 成人特级av手机在线观看| 国产精品国产高清国产av| 国产精华一区二区三区| 嫩草影视91久久| 亚洲avbb在线观看| 88av欧美| 18+在线观看网站| 亚洲黑人精品在线| 国产极品精品免费视频能看的| 午夜爱爱视频在线播放| 18禁黄网站禁片免费观看直播| av黄色大香蕉| 十八禁网站免费在线| 亚洲无线观看免费| 亚洲五月天丁香| 99久久久亚洲精品蜜臀av| 亚洲一区高清亚洲精品| 久久精品国产清高在天天线| 99热精品在线国产| 校园人妻丝袜中文字幕| 中文亚洲av片在线观看爽| 狂野欧美白嫩少妇大欣赏| 国产一区二区在线观看日韩|