謝永霞
(河北省淶源縣教師發(fā)展中心,河北 淶源 074300)
概念是客觀事物本質(zhì)屬性在人們頭腦中的反映。數(shù)學(xué)概念反映現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的本質(zhì)屬性的思維形式。在中學(xué)數(shù)學(xué)教學(xué)中,正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識(shí)的前提,是學(xué)好定理、公式、法則和數(shù)學(xué)思想的基礎(chǔ),搞清概念是提高解題能力的關(guān)鍵。只要對(duì)概念理解的深透,才能在解題中做出正確的判斷。因此,在數(shù)學(xué)教學(xué)過(guò)程中,數(shù)學(xué)概念的教學(xué)顯得尤為重要。學(xué)生數(shù)學(xué)能力的發(fā)展取決于他對(duì)數(shù)學(xué)概念的牢固掌握與深刻理解與否。而在現(xiàn)實(shí)中,許多學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí),只注重盲目的做習(xí)題,不注重對(duì)數(shù)學(xué)概念的掌握,對(duì)基本概念含糊不清。做習(xí)題不懂得從基本概念入手,思考解題依據(jù),探索解題方法,而是跟著感覺(jué)走。這樣的學(xué)習(xí),必然越學(xué)越糊涂,因而數(shù)學(xué)概念的教學(xué)在整個(gè)數(shù)學(xué)教學(xué)中有其不容忽視的地位與作用。下面僅結(jié)合本人平時(shí)的教學(xué)實(shí)踐,談一點(diǎn)膚淺的認(rèn)識(shí)與體會(huì)。
(一)從學(xué)生已有的生活經(jīng)驗(yàn)、熟知的具體事例中進(jìn)行引入。如“圓”的概念的引出前,可讓同學(xué)們聯(lián)想生活中見過(guò)的年輪、太陽(yáng)、五環(huán)旗、圓狀跑道等實(shí)物的形狀,再讓同學(xué)用圓規(guī)在紙上畫圓,也可用準(zhǔn)備好的定長(zhǎng)的線繩,將一端固定,而另一端帶有鉛筆并繞固定端旋轉(zhuǎn)一周,從而引導(dǎo)同學(xué)們自己發(fā)現(xiàn)圓的形成過(guò)程,進(jìn)而總結(jié)出圓的特點(diǎn):圓周上任意一點(diǎn)到圓心的距離相等,從而猜想歸納出“圓”的概念。
(二)在復(fù)習(xí)舊概念的基礎(chǔ)上引入新概念
概念復(fù)習(xí)的起步是在已有的認(rèn)知結(jié)構(gòu)的基礎(chǔ)上進(jìn)行的。因此,在教學(xué)新概念前,如果能對(duì)學(xué)生認(rèn)知結(jié)構(gòu)中原有的適當(dāng)概念一些類比引入新概念,則有利于促進(jìn)新概念的形成。例如:在教學(xué)一元二次方程時(shí),就可以先復(fù)習(xí)一元一次方程,因?yàn)橐辉淮畏匠淌腔A(chǔ),一元二次方程是延伸,復(fù)習(xí)一元一次方程是合乎知識(shí)邏輯的。通過(guò)比較得出兩種方程都是只含有一個(gè)未知數(shù)的整式方程,差異僅在于未知數(shù)的最高次數(shù)不同。由此,很容易建立起“一元二次方程”的概念。
(一)揭示含義,突出關(guān)鍵詞。數(shù)學(xué)概念嚴(yán)謹(jǐn)、準(zhǔn)確、簡(jiǎn)練。教師的語(yǔ)言對(duì)于學(xué)生感知教材,形成概念有重要的意義,因此要特別注意用詞的嚴(yán)格性和準(zhǔn)確性。教師要用生動(dòng)、形象的語(yǔ)言講清概念的每一個(gè)字、句、符號(hào)的意義,特別是關(guān)鍵的字、詞、句,這是指導(dǎo)學(xué)生掌握概念,并認(rèn)識(shí)概念的前提。
如:“分解因式”概念:“把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫把這個(gè)多項(xiàng)式分解因式。”在教學(xué)中學(xué)生往往只注重“積”這個(gè)關(guān)鍵詞,而忽略了“整式”,易造成對(duì)分解因式的錯(cuò)誤認(rèn)識(shí)。所以在教學(xué)中務(wù)必強(qiáng)調(diào),并與學(xué)生分析這兩處關(guān)鍵詞的含義,加深對(duì)概念的理解。
(二)分析概念,抓住本質(zhì)。數(shù)學(xué)概念大多數(shù)是通過(guò)描述定義給出他的確切含義,他屬于理性認(rèn)識(shí),但來(lái)源于感性認(rèn)識(shí),所以對(duì)于這類概念一定要抓住它的本質(zhì)屬性。
如:“互為補(bǔ)角”的概念:“如果兩個(gè)角的和是平角,則這兩個(gè)角互為補(bǔ)角?!逼浔举|(zhì)屬性:(1)必須具備兩個(gè)角之和為180°,一個(gè)角為180°或三個(gè)角為180°都不是互為補(bǔ)角,互補(bǔ)角只就兩個(gè)角而言。(2)互補(bǔ)的兩個(gè)角只是數(shù)量上的關(guān)系,這與兩個(gè)角的位置無(wú)關(guān)。通過(guò)這兩個(gè)本質(zhì)屬性的分析,學(xué)生對(duì)“互為補(bǔ)角”有了全面的理解。
(三)剖析變化,深化概念。數(shù)學(xué)概念都是從正面闡述,一些學(xué)生只從文字上理解,以為掌握了概念的本質(zhì),而碰到具體的數(shù)學(xué)問(wèn)題卻又難以做出正確的判斷。因此,在教學(xué)過(guò)程中,必須在學(xué)生正面認(rèn)識(shí)概念的基礎(chǔ)上,通過(guò)反例或變式從反面去剖析數(shù)學(xué)概念,凸顯對(duì)象中隱蔽的本質(zhì)要素,加深學(xué)生對(duì)概念理解的全面性。如:在學(xué)習(xí)對(duì)頂角的概念后,讓學(xué)生做題:
(1)下列表示的兩個(gè)角,哪組是對(duì)頂角?
(a)兩條直線相交,相對(duì)的兩個(gè)角
(b)頂點(diǎn)相同的兩個(gè)角
(c)同一個(gè)角的兩個(gè)鄰補(bǔ)角
前后聯(lián)系,多方印證,加深認(rèn)識(shí)。
部分學(xué)生對(duì)概念的全面理解不可能一蹴而就,而是要經(jīng)歷:實(shí)踐——認(rèn)識(shí)——再實(shí)踐——再認(rèn)識(shí)的過(guò)程,這是個(gè)“正確”與“錯(cuò)誤”搖擺不定的過(guò)程,更是一個(gè)對(duì)概念的理解不斷深化的過(guò)程。事實(shí)上,學(xué)生在初步學(xué)習(xí)某一數(shù)學(xué)概念之后,對(duì)概念的理解并不怎么深刻,而是通過(guò)對(duì)后續(xù)知識(shí)的學(xué)習(xí)讓學(xué)生回過(guò)頭來(lái)再對(duì)概念進(jìn)行加深理解,遵循“循環(huán)反復(fù),螺旋上升”的學(xué)習(xí)原則。
如:學(xué)生剛接觸“二次函數(shù)”的概念時(shí),僅能從形式上判斷某一函數(shù)是否為二次函數(shù)。但當(dāng)他們學(xué)習(xí)了認(rèn)識(shí)圖像,研究了圖像的性質(zhì)后就能根據(jù)a 得出圖像的開口方向,由a、b 確定圖像的對(duì)稱軸,由a、b、c 給出圖像的頂點(diǎn)坐標(biāo)。這時(shí)對(duì)二次函數(shù)的概念自是記憶深刻,能脫口而出了。
(一)并列概念,舉一反三。如:一元一次方程的概念:“只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)為一(次),這樣的方程叫作一元一次方程”,清楚了“元”與“次”的含義,則一元一次方程、二元一次方程、一元一次不等式等概念就水到渠成了。通過(guò)縱橫對(duì)比,在類比中找特點(diǎn),在聯(lián)想中求共性,把數(shù)學(xué)知識(shí)系統(tǒng)化,學(xué)生輕輕松松記概念。
(二)易混淆概念,聯(lián)系區(qū)別。任何一個(gè)概念都有它的內(nèi)涵和外延,外延的大小與內(nèi)涵成反比關(guān)系。內(nèi)涵越多,外延就越??;內(nèi)涵越少,外延就越大。把握概念的內(nèi)涵與外延,能大大增加學(xué)生對(duì)概念的明晰度,提高鑒別能力,避免張冠李戴,為此,把所教概念同類似的相關(guān)的概念相比較,分清它們的異同點(diǎn)及聯(lián)系,也就顯得十分重要。
(三)從屬概念,圖表體現(xiàn)。有從屬關(guān)系的概念其外延之間有著互相包含的關(guān)系,在復(fù)習(xí)階段若以圖表的形式表現(xiàn),能使概念系統(tǒng)化、條理化,有利于學(xué)生的記憶和理解。
總之,在數(shù)學(xué)概念教學(xué)過(guò)程中,教師要從教材和學(xué)生的實(shí)際出發(fā),面向全體學(xué)生,耐心地幫助學(xué)生掌握邏輯思維的“語(yǔ)言”,逐步提高他們的思維水平,定能夠增強(qiáng)數(shù)學(xué)概念教學(xué)的有效性,從而提高數(shù)學(xué)教學(xué)質(zhì)量。