• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal UAV deployment in downlink non-orthogonal multiple access system: a two-user case

    2020-11-27 09:17:14LiuTingting劉婷婷WangYuntianWangJunhuaPanZiyuYuYu
    High Technology Letters 2020年4期
    關(guān)鍵詞:控制率進(jìn)展例數(shù)

    Liu Tingting (劉婷婷), Wang Yuntian, Wang Junhua, Pan Ziyu, Yu Yu

    (*School of Information and Communication Engineering, Nanjing Institute of Technology, Nanjing 211167, P.R.China)(**Nanjing University of Science and Technology, Nanjing 210094, P.R.China)(***Nanjing University of Aeronautics and Astronautics, Nanjing 210024, P.R.China)

    Abstract

    Key words: unmanned aerial vehicle (UAV) deployment, downlink non-orthogonal multiple access (NOMA), two-user case

    0 Introduction

    Recently, non-orthogonal multiple access (NOMA), which is recognized with high spectrum efficiency, has attracted great attention as a crucial technique for 5G networks[1-3]. Employing the NOMA scheme, users can be multiplexed at different power levels, while users can simultaneously access other resources, such as frequency, time or code resources. At the receiver side, users utilize a successive interference cancellation (SIC) to extract their corresponding signals[4].

    Although, NOMA can achieve superior performance, edge users in a network still suffer from service quality degradation. There are still many challenges to advance NOMA in 5G networks. For these reasons, because of the flexibility for deployment, unmanned aerial vehicles (UAVs) or drones with advanced sensors and transceivers have attracted great attentions in communication community. Specifically, UAVs can exploit the benefits of line-of-sight (LoS) air-to-ground communication channels to provide enhanced communication services, such as mobile coverage[5,6], mobile relaying[7,8]and mobile data collection[9-11], etc.

    Existing researches on UAVs can be divided into 2 directions, i.e., static-UAV and mobile-UAV directions[12]. The combination researches on the mobile-UAV and NOMA scheme focus on the UAV trajectory design and communication scheduling. In Ref.[13], the authors optimize the trajectory of UAV and the precoding vectors of NOMA base station (BS) in order to maximize the sum rate for UAV-assisted NOMA networks.

    In order to enhance the service quality for multiple users, the combination researches on the static-UAV NOMA scenario are also promising. In Ref.[14], the authors derive the outage probability of UAV connected users and device-to-device (D2D) underlaying NOMA static-UAV assisted networks, and provide a sub-optimal power control solution. Besides the outage probability, UAV’s placement problem in a static-UAV NOMA scenario is also very important, especially for enhancing the service performance of edge users. In Ref.[15], the authors investigate the UAV placement and power allocation problem. The problem is separated into 2 sub-problems. The optimal location of UAV is obtained by minimizing the sum path loss, and the optimal power allocation is then derived.

    Different from the existing work, this paper investigates the optimal UAV deployment problem in downlink NOMA system from the perspective of maximizing user’s sum rate. The main contributions of this paper are listed as follows.

    (1) A UAV-enabled NOMA system, where a UAV is deployed as an aerial base station, which transmits data to two ground users, is considered in this paper.

    (2) In order to maximize two users’ achievable sum rate, an optimal UAV placement problem is therefore constructed. Since it is intractable to solve this problem, a feasible solution region is first reduced by a theorem. Then, an analytical solution of the proposed problem under a certain situation is discussed.

    (3) Finally, an algorithm is proposed to solve the optimization problem in a general manner.

    (4) Extensive numerical results are presented to demonstrate effectiveness of the proposed algorithm, and its advantages over the benchmarks from the perspective of maximizing users’ sum rate.

    This paper is organized as follows. System model and problem formation are presented in Section 1. The proposed algorithm is elaborated in Section 2. Extensive numerical results are depicted in Section 3, and finally conclusions are drawn in Section 4.

    1 System model and problem formulation

    As shown in Fig.1, a UAV-enabled NOMA system, where a UAV is deployed as an aerial base station to transmit data to two ground users, is considered in this paper. Without loss of generality, a 3-D Cartesian coordinate system is considered with two ground users, i.e., user 1 and user 2 in Fig.1, located atw1=[L, 0, 0]Tandw2=[-L, 0, 0]T, respectively. It is assumed that the UAV is deployed atq=[x,y,H]T, whereHis the fixed flight altitude of the UAV. For simplicity, it is assumed that all the nodes in the network are equipped with a single antenna, and the communication links from the UAV to the ground users are line-of-sight (LoS) dominated. It is also assumed that the Doppler effect caused by the UAV motion is perfectly compensated at the ground users. Thus, the channel coefficienthifrom the UAV to useri, {i=1,2}, can be expressed as

    (1)

    where,λ0is the channel gain at the reference distanced0=1 m, anddi=|q-wi| denotes the distance from the UAV to useri.

    Fig.1 UAV-enabled NOMA network with two users

    The UAV transmits the superposition signal to the two ground users simultaneously, which can be expressed as

    (2)

    wheres1ands2denote the signal intended for user 1 and user 2, respectively.P1andP2are the corresponding transmission power for user 1 and user 2, respectively. The transmission power must comply with the following 2 conditions.

    P1+P2≤Pmax

    (3a)

    Pi≥0,i=1,2

    (3b)

    wherePmaxdenotes the maximum transmission power of the UAV. Thus, the received signal at useriis

    i=1,2 (4)

    According to NOMA principle, SIC is utilized at the receivers. Because of symmetry, only the case withx≥0 is considered in the following discussions. Also it is assumed that user 1 is treated as a stronger user, while user 2 is treated as a poorer user. Thus, the signal intended for user 2 is first decoded, and then for user 1. As a result, the achievable rate from the UAV to user 1 and user 2 can be expressed as

    R1=log2(1+P1λ1)

    (5a)

    and

    (5b)

    In order to maximize users’ achievable sum rate, an optimization problem can be formulated as

    (6a)

    s.t., Eq.(3a), Eq.(3b)

    (6b)

    Ri≥r*,i=1,2

    (6c)

    whereP={P1,P2}, andr*denotes the achievable rate threshold. Constraint Eq.(6c) can be used to guarantee user’s quality of service (QoS). It can be seen that problem Eq.(6) is non-convex. Because the objective function Eq.(6a) is non-concave, and the constraint Eq.(6c) is non-convex with respect toqandP, respectively. Thus, it is challenging to solve problem Eq.(6) by the conventional optimization methods.

    2 Proposed algorithm for problem Eq.(6)

    In this section, the solution of problem Eq.(6) will be provided. First, the problem is simplified. Then, an analytical solution of the simplified problem under a certain situation will be presented. At last, a generalized algorithm is proposed to obtain the optimal solution of problem Eq.(6).

    2.1 Problem simplification

    In order to simplify problem Eq.(6), Theorem 1 is provided as follows.

    Theorem1To maximize users’ summation of the achievable rates, the UAV should be deployed above the line segment between the two users.

    ProofTheorem 1 is demonstrated by contradiction. This work first assumes that the optimal UAV deployment location is given byq0=[x0,y0,H]T, wherey0≠0. That is to say, the UAV is not located over the line through the two users. The UAV transmits with the maximum transmission power at the optimal solution[16], i.e.,

    P1+P2=Pmax

    近期療效評(píng)價(jià)[3]:完全緩解(CR)指肺癌病灶完全消失,無(wú)新起病灶,且時(shí)間持續(xù)1個(gè)月以上;部分緩解(PR)指肺癌病灶面積縮小程度>50%以上,無(wú)新起病灶;病情穩(wěn)定(SD)指肺癌病灶面積縮小程度≤50%,增大程度≤25%;病情進(jìn)展(PD)指肺癌病灶面積增大程度>25%,或有新起病灶。疾病控制率(DCR)為(CR+PR+SD)/總例數(shù)。

    (7)

    Then, the achievable rates of the two users at the optimal solution can be expressed as

    (8a)

    and

    Conditions Eqs(8a) and (8b) are satisfied because of the QoS constraints. Given another UAV’s location atq1=[x0, 0,H]T, that is to say, the UAV’s location is over the line of the two users, i.e.,

    (9)

    (10a)

    (10b)

    where condition Eq.(6c) in Eq.(10b) holds, since ifα>β, the functiong(x)=log2(1+αx)-log2(1+βx) is monotonically increasing with respect to the variablex. Therefore, the sum rate atq1=[x0, 0,H]Tis larger than that atq0=[x0,y0,H]T, ?y0≠0. This conclusion contradicts the assumption thatq0is the optimal location that can get the maximum sum rate. Therefore, it can be concluded that a higher sum rate can be achieved by deploying the UAV over the line through the two users compared to other locations.

    Next, proofs on that the optimal UAV location should over the line segment between the two users are provided. Given a locationq2=[x, 0,H]T, ifx>L, i.e., over the extension line of the two users, the UAV can be always deployed atq3=[L-(x-L), 0,H]Twhich is a symmetrical location respective to user 1, and obtain a larger sum rate compared to that atq2. As a result, in order to maximize the sum rate of the two users, the UAV should be deployed above the line segment between the two users, i.e., 0≤x≤L. This completes the proof.

    Based on Theorem 1, the UAV’s location can be simplified asq=[x, 0,H]T. According to the conclusion drawn in Ref.[16], in order to obtain the maximum sum rate, the optimal power allocation strategy can be represented as

    (11a)

    and

    (11b)

    (12)

    and

    R2=r*

    (13)

    respectively. Observing Eqs(12) and (13), it can be found that by employing the power allocation strategy, the rate of user 2, i,e, the poorer user, is equal to the rate threshold and irrelevant to the UAV’s location. The rate of user 1 can be further enhanced by varying the UAV’s locationx.

    Thus, problem Eq.(6) can be simplified as

    maxxf(x)

    (14a)

    0≤x≤L

    (14b)

    where

    (15)

    In order to assure rate of the user 1 is larger than the rate thresholdr*, the following remark is provided.

    Remark1If the maximum value off(x) is greater than 2r*(2r*-1), problem Eq.(6) is feasible. Otherwise, problem Eq.(6) is infeasible and a smaller value ofr*should be considered.

    When problem Eq.(6) is feasible, the following remark is provided.

    Remark2The sum rate of the two users, i.e.,R1+R2, is decreasing asr*increases.

    ProofThe first-order derivation ofR1+R2is as follows.

    (16)

    Since 0≤x≤L, thusλ1>λ2holds. Moreover, based on Remark 1, Eq.(16)<0. Thus,R1+R2is an decreasing function respective tor*.

    Note that problem Eq.(14) is a univariate optimization problem which may be solved by derivation.

    2.2 The analytical solution to problem Eq.(14)

    The first-order derivation off(x) is given by

    (17)

    2Lx2-Ax+AL-2L(H2+L2)=0

    (18)

    Eq.(18) is a quadratic function withΔ=A2-8AL2+16L2(H2+L2). IfΔ≥0, then the stationary points off′(x) are given by

    (19)

    In the following, it should be determined whether the 2 stationary points are in the interval, and then obtain the optimalx(denoted byx*). Based on the above derivations, the UAV deployment strategy is concluded in Algorithm 1.

    Algorithm 1Proposed UAV deployment strategy1.IfΔ≥0then2.Case 1Ifx1Solu∈(0, L), x2Solu∈(0, L),thenx*=argmax{f(0), f(x1Solu), f(x2Solu), f(L)}3.Case 2Ifx1Solu∈(0, L), x2Solu?(0, L),thenx*=argmax{f(0), f(x1Solu), f(L)}4.Case 3Ifx1Solu?(0, L), x2Solu∈(0, L),thenx*=argmax{f(0), f(x2Solu), f(L)}5.Case 4Ifx1Solu?(0, L), x2Solu?(0,L),thenx*=argmax{f(0), f(L)}6.Elsef(x) is a monotonic increasing function with respect to x. Therefore, x*=L7.End if8.If f(x*)≥2r*(2r*-1)thenx* is determined.9.Else10.Reconsiderr*.11.End if

    Note that the proposed algorithm is applicable in a two-user scenario. For the multi-user scenario, the optimal UAV deployment problem is complex, and it probably cannot get a closed-form solution. The UAV deployment problem will be investigated in a multi-user scenario in the future work.

    3 Numerical results

    In this section, numerical results are presented to demonstrate effectiveness of the proposed UAV deployment scheme (denoted as the DP scheme). The simulation parameters are set asL=500 m,Pmax=1 W,H=100 m, andγ0=106.

    Fig.2 plots the optimal UAV deployment location using the proposed DP scheme whenr*varies. Linear search curves are also plotted to verify the correctness of the analytical solution. It is clearly presented that the linear search results are well matched with the analytical results. It can also be observed that the optimal UAV deployment location moves away from user 1 asr*increases. The reason is that asr*increases, user 2 needs more transmission power to satisfy the QoS constraint, and, therefore, the UAV tries to strike a balance between the transmission power of the two users. This phenomenon can be also verified by Remark 2.

    Fig.2 Optimal deployment location for DP scheme versus r*.

    For comparison, the following 2 schemes are considered as benchmarks.

    (1)FDMAA UAV-enabled FDMA system, which is different from NOMA system in this paper, also can demonstrate that the optimal UAV deployment location is over the line segment between the two users. Given a UAV’s location and the power constraint, in order to maximize the sum rate, the optimal power allocation based on the water-filling scheme is first determined. Then, the location is varied to find the optimal solution that can maximize the sum rate. This scheme can be used to demonstrate advantages of the NOMA system.

    (2)PoweroptimizationwithoutUAVdeployment(POWD)A UAV-enabled NOMA system, where the UAV’s location is fixed over user 1 and the optimal transmission power is obtained with the same manner used in our scheme. POWD scheme is used to demonstrate the advantages of the DP scheme.

    Fig.3 plots the variation of sum rate for the FDMA scheme versus differentr*. A curve of NOMA whenr*=0.8 is also plotted for comparison. A portion of the FDMA scheme curves are not drawn, due to the reason that the QoS constraint is not satisfied. Moreover, the NOMA scheme can always achieve a higher sum rate compared to the FDMA scheme. That is because the NOMA scheme is known to have a higher spectrum efficiency compared to the FDMA scheme.

    Fig.3 Optimal deployment location for FDMA scheme versus r*

    Fig.4 compares the sum rate of the 3 different schemes versus differentr*. It can be noted that the sum rate of the proposed DP scheme decreases asr*increases. This phenomenon is consistent with Remark 2. Also, it can be observed that the proposed DP scheme outperforms the FDMA scheme and the POWD scheme from the perspective of sum rate. The proposed DP scheme can achieve a higher sum rate compared to the FDMA scheme, because of the employed NOMA manner. The proposed DP scheme can obtain a higher sum rate compared to the POWD scheme, because of the optimal UAV location deployment. Moreover, it should be pointed out that whenr*=1 bps/Hz, the POWD scheme cannot satisfy the QoS constraint, and therefore the sum rate drops to zero. Therefore, the conclusion can be drawn that by designing the optimal UAV’s deployment location, not only the sum rate can be enhanced, the QoS of each user can also be assured.

    Fig.4 Sum rate versus r*

    4 Conclusion

    In this paper, the optimal UAV’s deployment problem is studied in a two-user case. In order to maximize users’ sum rate, an optimization problem is first constructed, considering the QoS and power constraints. Then, a feasible solution region of the problem is reduced to a line segment between the two users. This conclusion can help us further reduce the original optimization problem to a simplified one. Next, by giving a UAV’s location and utilizing the optimal power allocation strategy which is relevant to the UAV’s location, the optimization problem is reduced to a univariate problem. The analytical solution to the simplified problem under a certain situation is provided, and moreover, a generalized algorithm is proposed to further determine the optimal UAV’s location. Simulation results are presented to demonstrate effectiveness of the proposed DP scheme in maximizing the sum rate and its advantages over the FDMA and POWD schemes.

    猜你喜歡
    控制率進(jìn)展例數(shù)
    Micro-SPECT/CT應(yīng)用進(jìn)展
    無(wú)錫茶園不同修剪模式對(duì)茶小綠葉蟬發(fā)生量的影響
    茶葉(2021年1期)2021-04-13 06:21:34
    人工膝關(guān)節(jié)翻修例數(shù)太少的醫(yī)院會(huì)增加再翻修率:一項(xiàng)基于23 644例的研究
    更正
    家庭醫(yī)生式服務(wù)對(duì)社區(qū)原發(fā)性高血壓患者治療依從性及控制率的影響
    患者術(shù)后躁動(dòng)危險(xiǎn)因素的Logistic回歸分析
    拉薩市城關(guān)區(qū)2014 年社區(qū)人群高血壓的患病率、知曉率、治療率和控制率調(diào)查分析
    西藏科技(2015年6期)2015-09-26 12:12:09
    鄭州市某三甲醫(yī)院職工高血壓知曉率、治療率、控制率及急性并發(fā)癥調(diào)查
    眼外傷遲發(fā)性繼發(fā)青光眼的臨床分析
    寄生胎的診治進(jìn)展
    男人舔女人的私密视频| videosex国产| 久久精品亚洲av国产电影网| 高清av免费在线| 看黄色毛片网站| 999精品在线视频| 久久精品熟女亚洲av麻豆精品| 久久国产精品大桥未久av| 成年人黄色毛片网站| 精品午夜福利视频在线观看一区| 美女福利国产在线| 成人国产一区最新在线观看| 岛国毛片在线播放| 99久久国产精品久久久| 高潮久久久久久久久久久不卡| 在线观看66精品国产| 国产xxxxx性猛交| 久久中文字幕一级| 国产亚洲欧美98| 中文字幕av电影在线播放| 中文亚洲av片在线观看爽 | www.精华液| 色婷婷久久久亚洲欧美| 久久精品熟女亚洲av麻豆精品| 18禁美女被吸乳视频| 精品熟女少妇八av免费久了| 久久国产亚洲av麻豆专区| 免费在线观看影片大全网站| 精品人妻熟女毛片av久久网站| 这个男人来自地球电影免费观看| 久久国产精品人妻蜜桃| 国产一区二区三区视频了| 国产欧美日韩一区二区三| 精品免费久久久久久久清纯 | 十八禁高潮呻吟视频| 99国产精品免费福利视频| 91精品三级在线观看| 亚洲精华国产精华精| 色综合欧美亚洲国产小说| 精品久久久精品久久久| 无遮挡黄片免费观看| 久久中文字幕一级| 国产精品久久电影中文字幕 | 亚洲av日韩精品久久久久久密| 国产熟女午夜一区二区三区| 亚洲中文日韩欧美视频| 在线视频色国产色| 久久人妻熟女aⅴ| 国产成人免费观看mmmm| av电影中文网址| 日本五十路高清| 一个人免费在线观看的高清视频| 狂野欧美激情性xxxx| 国产成+人综合+亚洲专区| 日本五十路高清| 黄色视频,在线免费观看| 亚洲人成伊人成综合网2020| 免费一级毛片在线播放高清视频 | 啦啦啦在线免费观看视频4| 欧美日韩黄片免| 国产91精品成人一区二区三区| 久久久久国内视频| 精品国产乱子伦一区二区三区| 一区二区三区激情视频| 天堂√8在线中文| 欧美日韩视频精品一区| 日日爽夜夜爽网站| 久久久久久人人人人人| 丝袜美腿诱惑在线| 国产精品免费大片| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女 | 午夜91福利影院| 人人妻,人人澡人人爽秒播| 国产成人精品在线电影| 亚洲人成伊人成综合网2020| 激情在线观看视频在线高清 | 看免费av毛片| 天天躁夜夜躁狠狠躁躁| 午夜亚洲福利在线播放| 在线播放国产精品三级| 12—13女人毛片做爰片一| 日韩三级视频一区二区三区| 国产亚洲欧美98| 欧美性长视频在线观看| 亚洲精品久久成人aⅴ小说| 最近最新免费中文字幕在线| www.熟女人妻精品国产| 日韩中文字幕欧美一区二区| 美女高潮到喷水免费观看| 国产极品粉嫩免费观看在线| 亚洲av成人一区二区三| 婷婷精品国产亚洲av在线 | 亚洲欧美激情在线| 亚洲中文av在线| 国产成人一区二区三区免费视频网站| 热99国产精品久久久久久7| 国产真人三级小视频在线观看| 久久亚洲真实| 亚洲情色 制服丝袜| 日韩中文字幕欧美一区二区| 黑丝袜美女国产一区| 国产成人免费观看mmmm| 亚洲欧美日韩另类电影网站| 99在线人妻在线中文字幕 | 一区福利在线观看| 午夜精品在线福利| 欧美日韩国产mv在线观看视频| 免费黄频网站在线观看国产| 男女之事视频高清在线观看| 在线播放国产精品三级| 久久人人97超碰香蕉20202| 欧美日韩中文字幕国产精品一区二区三区 | 欧美激情久久久久久爽电影 | 免费黄频网站在线观看国产| 亚洲人成电影观看| 免费在线观看日本一区| 乱人伦中国视频| 91av网站免费观看| 丰满人妻熟妇乱又伦精品不卡| 黑人巨大精品欧美一区二区mp4| 1024香蕉在线观看| 性少妇av在线| 在线观看免费视频日本深夜| 国产免费现黄频在线看| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品1区2区在线观看. | 久久热在线av| 99国产极品粉嫩在线观看| 免费观看人在逋| 校园春色视频在线观看| 丝袜在线中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 欧美黑人精品巨大| 在线观看免费午夜福利视频| 色老头精品视频在线观看| 少妇被粗大的猛进出69影院| 视频区图区小说| 成人永久免费在线观看视频| 亚洲精品一二三| 一级作爱视频免费观看| 国产免费男女视频| 两个人免费观看高清视频| 欧美乱妇无乱码| 91精品国产国语对白视频| 精品久久久久久,| 免费人成视频x8x8入口观看| 黄片播放在线免费| 亚洲成人免费av在线播放| 欧美精品人与动牲交sv欧美| 男男h啪啪无遮挡| 久久国产乱子伦精品免费另类| 夜夜爽天天搞| 真人做人爱边吃奶动态| 80岁老熟妇乱子伦牲交| 国产成人一区二区三区免费视频网站| 国产精品国产高清国产av | 亚洲成人手机| 黄色女人牲交| 女人精品久久久久毛片| 一级黄色大片毛片| 19禁男女啪啪无遮挡网站| 国产熟女午夜一区二区三区| 黄色a级毛片大全视频| 伊人久久大香线蕉亚洲五| 美女高潮喷水抽搐中文字幕| 69精品国产乱码久久久| 激情在线观看视频在线高清 | 91在线观看av| av视频免费观看在线观看| 国产av又大| 女人爽到高潮嗷嗷叫在线视频| 99re在线观看精品视频| 欧美日韩福利视频一区二区| 欧美不卡视频在线免费观看 | 国产精品偷伦视频观看了| 久久 成人 亚洲| 亚洲成人免费av在线播放| 亚洲一码二码三码区别大吗| 久久国产亚洲av麻豆专区| 久久狼人影院| 国产成人影院久久av| xxx96com| 久久精品国产a三级三级三级| 满18在线观看网站| 黄片播放在线免费| 日韩 欧美 亚洲 中文字幕| 亚洲色图 男人天堂 中文字幕| 午夜91福利影院| 另类亚洲欧美激情| 在线av久久热| 黄色 视频免费看| 日韩欧美免费精品| 脱女人内裤的视频| 精品一品国产午夜福利视频| 很黄的视频免费| 777久久人妻少妇嫩草av网站| 亚洲熟妇中文字幕五十中出 | 不卡av一区二区三区| 另类亚洲欧美激情| e午夜精品久久久久久久| 一边摸一边做爽爽视频免费| 黄频高清免费视频| 中文字幕高清在线视频| 久久久精品免费免费高清| 视频区图区小说| 97人妻天天添夜夜摸| 女性生殖器流出的白浆| 久久午夜综合久久蜜桃| 国产精品影院久久| 久久久久国内视频| 色老头精品视频在线观看| 亚洲精品国产精品久久久不卡| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| 99国产精品一区二区蜜桃av | 欧美日韩乱码在线| 黄片播放在线免费| 精品国产一区二区三区四区第35| 精品国产一区二区久久| 亚洲成人免费电影在线观看| 国产亚洲精品久久久久5区| 最新美女视频免费是黄的| 免费黄频网站在线观看国产| 亚洲熟女精品中文字幕| 热99国产精品久久久久久7| 亚洲av电影在线进入| √禁漫天堂资源中文www| 久久久久久人人人人人| 久久精品亚洲av国产电影网| 一二三四在线观看免费中文在| 国产亚洲欧美在线一区二区| 国产aⅴ精品一区二区三区波| 日本五十路高清| 国产精华一区二区三区| 午夜福利影视在线免费观看| 欧美黄色片欧美黄色片| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区mp4| 久久中文字幕人妻熟女| 国产精品电影一区二区三区 | 看免费av毛片| 在线免费观看的www视频| 亚洲一区高清亚洲精品| 精品一区二区三区视频在线观看免费 | 精品乱码久久久久久99久播| 亚洲成a人片在线一区二区| 女同久久另类99精品国产91| 欧美精品人与动牲交sv欧美| 91在线观看av| 亚洲中文av在线| 国产精品一区二区在线不卡| 免费少妇av软件| 午夜精品在线福利| 亚洲熟女毛片儿| 国产av精品麻豆| 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 国产成人免费观看mmmm| 久久人人97超碰香蕉20202| 久久精品91无色码中文字幕| 黑人操中国人逼视频| 久久中文看片网| 女人被狂操c到高潮| 久久婷婷成人综合色麻豆| 久久精品国产亚洲av高清一级| 精品少妇久久久久久888优播| 亚洲国产毛片av蜜桃av| 最新在线观看一区二区三区| 日韩欧美国产一区二区入口| 成年人黄色毛片网站| 曰老女人黄片| 久久精品国产亚洲av高清一级| 一区二区三区国产精品乱码| 国产免费av片在线观看野外av| 久久久久久亚洲精品国产蜜桃av| 国产在线一区二区三区精| 久久久久久久久久久久大奶| 成年人午夜在线观看视频| 亚洲av日韩精品久久久久久密| 国产日韩一区二区三区精品不卡| 搡老岳熟女国产| 日韩有码中文字幕| 不卡一级毛片| 黄片大片在线免费观看| 精品福利观看| 交换朋友夫妻互换小说| 欧美乱色亚洲激情| 成人免费观看视频高清| 精品少妇久久久久久888优播| 热99久久久久精品小说推荐| 成熟少妇高潮喷水视频| 国产亚洲精品第一综合不卡| 性少妇av在线| 国产在线一区二区三区精| 香蕉国产在线看| 9热在线视频观看99| 免费观看人在逋| 黄色毛片三级朝国网站| 深夜精品福利| www.熟女人妻精品国产| 欧美在线黄色| 国产精品亚洲av一区麻豆| 纯流量卡能插随身wifi吗| 一区二区三区精品91| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区三区综合在线观看| 久久热在线av| 亚洲av美国av| av一本久久久久| 无遮挡黄片免费观看| 无人区码免费观看不卡| 精品国产超薄肉色丝袜足j| 久久亚洲真实| 9热在线视频观看99| 欧美日韩乱码在线| av不卡在线播放| 亚洲av电影在线进入| 看免费av毛片| 国产精品九九99| 高清在线国产一区| 一区二区日韩欧美中文字幕| 亚洲avbb在线观看| 亚洲美女黄片视频| 亚洲欧美激情综合另类| 久久婷婷成人综合色麻豆| 国产成人影院久久av| 国产精品1区2区在线观看. | 香蕉久久夜色| 日韩欧美免费精品| 精品久久久精品久久久| 少妇裸体淫交视频免费看高清 | 在线十欧美十亚洲十日本专区| 国产成人精品在线电影| 午夜91福利影院| av有码第一页| 看黄色毛片网站| 国产一区二区激情短视频| 成人影院久久| 久久精品国产亚洲av香蕉五月 | 男女床上黄色一级片免费看| 91大片在线观看| 久久天堂一区二区三区四区| 制服人妻中文乱码| 热99久久久久精品小说推荐| 久久ye,这里只有精品| 亚洲精品久久成人aⅴ小说| 大码成人一级视频| 久久国产乱子伦精品免费另类| 免费不卡黄色视频| 黑人巨大精品欧美一区二区蜜桃| 久99久视频精品免费| 国产99白浆流出| 日韩大码丰满熟妇| 亚洲欧美日韩另类电影网站| 一边摸一边抽搐一进一小说 | 国产精品偷伦视频观看了| 少妇 在线观看| 最近最新中文字幕大全免费视频| 一边摸一边抽搐一进一出视频| 男女之事视频高清在线观看| 欧美性长视频在线观看| 性色av乱码一区二区三区2| 欧美乱色亚洲激情| 亚洲av第一区精品v没综合| 成人永久免费在线观看视频| 男女免费视频国产| 亚洲一区二区三区不卡视频| 亚洲性夜色夜夜综合| 精品国产国语对白av| 国产av精品麻豆| 9191精品国产免费久久| 久久国产精品大桥未久av| 精品国产国语对白av| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 亚洲人成77777在线视频| 国产成人精品久久二区二区免费| 成年人免费黄色播放视频| 亚洲精品久久午夜乱码| 久久香蕉国产精品| 国产成人免费无遮挡视频| 一二三四社区在线视频社区8| 两个人看的免费小视频| 91精品三级在线观看| 91老司机精品| 十八禁网站免费在线| 高潮久久久久久久久久久不卡| 99国产精品免费福利视频| 人人澡人人妻人| 宅男免费午夜| 窝窝影院91人妻| 久久久久精品人妻al黑| 看片在线看免费视频| 一个人免费在线观看的高清视频| 久久精品亚洲精品国产色婷小说| 51午夜福利影视在线观看| 又黄又爽又免费观看的视频| 精品福利永久在线观看| 麻豆成人av在线观看| 国产成人影院久久av| 激情在线观看视频在线高清 | 91在线观看av| 曰老女人黄片| 天堂动漫精品| 午夜久久久在线观看| 亚洲av成人不卡在线观看播放网| 精品免费久久久久久久清纯 | 亚洲熟妇中文字幕五十中出 | 国产欧美日韩综合在线一区二区| 亚洲色图综合在线观看| 亚洲片人在线观看| 制服诱惑二区| 老司机亚洲免费影院| 日韩欧美三级三区| 国产精品秋霞免费鲁丝片| 久久久久久免费高清国产稀缺| 欧美激情高清一区二区三区| 丰满迷人的少妇在线观看| 黄片小视频在线播放| 亚洲成国产人片在线观看| 久久久久久人人人人人| 桃红色精品国产亚洲av| 国产精品99久久99久久久不卡| 免费观看人在逋| av电影中文网址| 午夜福利免费观看在线| 欧美国产精品一级二级三级| 女人高潮潮喷娇喘18禁视频| 一个人免费在线观看的高清视频| 啦啦啦在线免费观看视频4| 日韩欧美一区二区三区在线观看 | 麻豆成人av在线观看| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久久精品吃奶| 精品国产乱子伦一区二区三区| 一a级毛片在线观看| 精品一区二区三区四区五区乱码| 女人被躁到高潮嗷嗷叫费观| 亚洲精品自拍成人| 高潮久久久久久久久久久不卡| 欧美黄色片欧美黄色片| 中文字幕最新亚洲高清| 国产xxxxx性猛交| 免费不卡黄色视频| 亚洲国产欧美日韩在线播放| 成人手机av| 中文亚洲av片在线观看爽 | 麻豆成人av在线观看| 亚洲精品一二三| 制服人妻中文乱码| 国产一区有黄有色的免费视频| 如日韩欧美国产精品一区二区三区| 老司机影院毛片| 国产单亲对白刺激| 亚洲专区中文字幕在线| 久久性视频一级片| www日本在线高清视频| 性色av乱码一区二区三区2| 午夜91福利影院| 日本黄色日本黄色录像| 日韩欧美在线二视频 | 免费观看a级毛片全部| 激情视频va一区二区三区| 日韩大码丰满熟妇| 成人特级黄色片久久久久久久| 超色免费av| 天堂俺去俺来也www色官网| 亚洲精华国产精华精| 欧美国产精品va在线观看不卡| 90打野战视频偷拍视频| 丝袜美足系列| 视频区欧美日本亚洲| 9191精品国产免费久久| 19禁男女啪啪无遮挡网站| 久久久久久久久免费视频了| 久久精品国产亚洲av香蕉五月 | www.999成人在线观看| 精品国内亚洲2022精品成人 | 日本撒尿小便嘘嘘汇集6| 国产高清视频在线播放一区| 亚洲人成电影观看| 国产精品久久久久久精品古装| 午夜精品在线福利| 老熟妇仑乱视频hdxx| 欧美日韩一级在线毛片| 亚洲国产欧美日韩在线播放| 午夜精品在线福利| 变态另类成人亚洲欧美熟女 | 国产精品综合久久久久久久免费 | 国产亚洲av高清不卡| 色精品久久人妻99蜜桃| a级毛片黄视频| 极品教师在线免费播放| 在线观看舔阴道视频| 亚洲中文av在线| 国产1区2区3区精品| 久久久国产精品麻豆| 99国产精品99久久久久| 久久久国产精品麻豆| 亚洲成人手机| 国产精品一区二区在线观看99| 国产精品电影一区二区三区 | 日日爽夜夜爽网站| 岛国毛片在线播放| 中文字幕av电影在线播放| 黄色视频不卡| 夜夜躁狠狠躁天天躁| 1024香蕉在线观看| 亚洲成人手机| 亚洲精华国产精华精| 午夜视频精品福利| av网站在线播放免费| 美女高潮喷水抽搐中文字幕| 欧美日韩国产mv在线观看视频| 亚洲五月天丁香| 身体一侧抽搐| 亚洲成a人片在线一区二区| 精品国产美女av久久久久小说| 国产1区2区3区精品| 国产成人精品无人区| 免费在线观看影片大全网站| 大码成人一级视频| 天堂√8在线中文| 老司机深夜福利视频在线观看| 大香蕉久久成人网| videos熟女内射| 久久国产精品人妻蜜桃| 国内毛片毛片毛片毛片毛片| 久久久精品区二区三区| 在线av久久热| 99re6热这里在线精品视频| 国产成+人综合+亚洲专区| 国产精品偷伦视频观看了| 亚洲少妇的诱惑av| 国产高清videossex| 久久精品人人爽人人爽视色| av免费在线观看网站| 国产极品粉嫩免费观看在线| 久久精品aⅴ一区二区三区四区| 久久 成人 亚洲| 交换朋友夫妻互换小说| 成人国产一区最新在线观看| 亚洲精品国产色婷婷电影| 精品久久久久久久毛片微露脸| 侵犯人妻中文字幕一二三四区| 国产麻豆69| 国产精品国产av在线观看| 在线观看舔阴道视频| 男人的好看免费观看在线视频 | 国产一区二区三区在线臀色熟女 | 午夜福利,免费看| 无限看片的www在线观看| 99riav亚洲国产免费| 色在线成人网| 91老司机精品| 大型av网站在线播放| 久久婷婷成人综合色麻豆| 成人三级做爰电影| 国产三级黄色录像| 国产乱人伦免费视频| 午夜老司机福利片| 午夜免费观看网址| 国产免费男女视频| 中文字幕人妻熟女乱码| 欧美大码av| 国产精品久久久人人做人人爽| svipshipincom国产片| 另类亚洲欧美激情| xxx96com| 岛国毛片在线播放| 久久精品亚洲精品国产色婷小说| 日韩人妻精品一区2区三区| 欧美日韩黄片免| 日本撒尿小便嘘嘘汇集6| 精品国产一区二区三区四区第35| 搡老乐熟女国产| 啦啦啦 在线观看视频| 91精品国产国语对白视频| 精品国产乱码久久久久久男人| 欧美乱色亚洲激情| av网站免费在线观看视频| 亚洲国产精品合色在线| 超色免费av| 美女视频免费永久观看网站| 精品国产一区二区久久| 天天影视国产精品| svipshipincom国产片| 免费在线观看完整版高清| 啦啦啦在线免费观看视频4| 久久中文字幕人妻熟女| 老司机在亚洲福利影院| 国产精华一区二区三区| 大型黄色视频在线免费观看| 国产亚洲欧美98| 精品一品国产午夜福利视频| 国产精品一区二区免费欧美| 天堂√8在线中文| 91九色精品人成在线观看| 老鸭窝网址在线观看| 精品国产亚洲在线| 操出白浆在线播放| 国产野战对白在线观看| 久久精品国产99精品国产亚洲性色 | 国产一区在线观看成人免费| 日本vs欧美在线观看视频| av在线播放免费不卡| 最新美女视频免费是黄的| 美女高潮到喷水免费观看| 日日夜夜操网爽| а√天堂www在线а√下载 | 久久久久国内视频| 丁香欧美五月| 50天的宝宝边吃奶边哭怎么回事| 日韩人妻精品一区2区三区|