• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A multi-target stance detection based on Bi-LSTM network with position-weight

    2020-11-27 09:17:20XuYilong徐翼龍LiWenfaWangGongmingHuangLingyun
    High Technology Letters 2020年4期

    Xu Yilong (徐翼龍), Li Wenfa, Wang Gongming, Huang Lingyun

    (*Smart City College, Beijing Union University, Beijing 100101, P.R.China)(**College of Robotics, Beijing Union University, Beijing 100101, P.R.China)(***Tianyuan Network Co., Ltd., Beijing 100193, P.R.China)(****Beijing Tianyuan Network Co., Ltd., Beijing 100193, P.R.China)(*****Chinatelecom Information Development Co., Ltd., Beijing 100093, P.R.China)

    Abstract

    Key words: long short-term memory (LSTM), multi-target, natural language processing, stance detection

    0 Introduction

    In recent years, the continuous improvement and development of social media has led an increasing number of people to use social media to share and discuss their attitudes toward different people, events, and objects. Analysis of such texts containing stances in the social media may help us understand their preferences and opinions. Such information plays an important role in public opinion analysis. A large number of researchers, such as Wang et al.[1]and Li et al.[2], have used stance detection technology to find such information.

    Multi-target stance detection[3]is a sub-task of stance detection. It is used to mine the stance classifications of different targets in one text. Typical examples include mining the opinions of different politicians in elections and analyzing user recognition of different brands in similar products. In addition to determining the stance of the target, multi-target stance detection identifies the corresponding positions of different targets in the same text.

    In the fields of multi-target stance detection, most methods combine the 2 tasks of target location (determine the context that describes the different goals) and stance detection (determine stance label based on a goal) into one task during execution. So, these methods tend to enlarge the structure of the model to enhance its ability to mine features.The result, however, provides the comprehensive optimal solution of the 2 tasks rather than the optimal solution of stance detection. Thus, stance detection of a certain target is easily affected by other target descriptions, which may reduce the accuracy of the result. Therefore, target location and stance detection should be executed successively and independently.

    To enable such execution, the proposal is as follows. First, the context range in the text corresponding to the different goals needs to be located. In the case of the above example presented here, the context range concerns ‘Hillary Clinton being a liar.’ Then, the stance is determined by analyzing the target text in the context range. Based on the above statement, a bidirectional long short-term memory (Bi-LSTM) with position-weight is proposed to carry out the multi-target stance detection. Bi-LSTM can describe the dependency relationship between words from front to back and from back to front, and the position-weight vector can describe the impact of words on the different targets of stance detection.The multi-target stance detection database of the American election in 2016 is used to validate the proposed method.

    1 Related work

    In recent years, given the rapid growth in the number of social media users, researchers have begun to focus on stance detection from social media texts. In 2016, the international conferences SemEval[4]and the 5th CCF International Conference on Natural Language Processing and Chinese Computing (NLPCC)[5]provided annotated data on stance detection from the social media. Thereafter, some researchers began studying different types of data for stance detection[6,7]. Given the similarity between stance detection and sentiment analysis, researchers made efforts to distinguish between them[8], and attempted using sentiment analysis to obtain improved stance detection effects[9].

    With regard to the social media, deep learning methods, including the traditional CNN and recurrent neural network (RNN)[10-13]as well as fusion models[14-17], are typically used to detect stance.

    Subsequently, researchers began applying stance detection to texts containing different targets in the same category. This is called multi-target stance detection, and is regarded as a sub-task of stance detection[18-21]. For example, Liu et al.[19]proposed an approach to automatically obtain zones of each target and combined it with the LSTM method to obtain the corresponding stance. The results demonstrated the effectiveness of two-target stance detection. Lin et al.[21]designed a topic-based approach to detect multiple standpoints in Web text to generate a stance classifier according to the distribution of the standpoint-related topic-term. They produced the parameter values of the classifier with this adaptive method and proved its effectiveness through experiments.

    The above methods do not use the positional relationship between words in the text and targets to help the algorithm enhance the ability to distinction between the content describing the different targets.Therefore, in order to obtain the best stance detection effect, it is necessary to extract the appropriate clause as the input text according to the context range corresponding to the target so as to avoid the influence of unrelated text. Therefore, in this paper, an unsupervised method to extract the context ranges of different targets in the text is proposed. Then, the Bi-LSTM network with position-weight is generated by combining position-weight with the Bi-LSTM approach. Finally, the stance labels of different targets are predicted with LSTM and Softmax classification. The details of the approach are explained in the next section.

    2 Proposed method

    The architecture of our model is shown in Fig.1. It consists of the following 5 modules: embedded layer, Bi-LSTM layer, position-weight fusion layer, LSTM layer, and Softmax classifier. The result of combining the word embeddings of all the target topics and the input text serves as the input of the model, and the output consists of the author’s stance labels for all the possible target topics.

    Fig.1 Model architecture

    2.1 Embedding layer

    The embedding layer transforms every word in the input text into one vector, each of which expresses the relationship between the words applicable to the context.By representing each word in a text as a 1×nvector, the text can be represented as anl×nmatrix (lis the number of words in the text, andnis the dimension of each lexical vector). Accordingly, the input text can be converted into a numerical matrix, which facilitates the feature extraction by the algorithm.

    2.2 Bi-LSTM layer

    To extract valid features from unstructured text, LSTM is used to encode the text. The input of the LSTM is a tensor formed by arranging the embedded vectors of the words to be processed in order from front to back. The corresponding output is a tensor composed of implicit states of the LSTM units in order from front to back. LSTM can describe long-distance lexical dependency in the text and is suitable for text data modeling[22].

    The Bi-LSTM network consists of a forward LSTM and a backward LSTM. The input of the forward LSTM network is composed of the embedded vectors of words arranged in order from front to back, and the input of the backward LSTM network is a series of the embedded vectors of words arranged in the opposite order. Thus, Bi-LSTM can describe the dependency relationship between words in the front to back and back to front directions. The output of Bi-LSTM is the result of the splicing of the output of the forward and backward LSTM units. Therefore, in Bi-LSTM network, each word will be first transmitted to a forward LSTM unit and then to a backward LSTM unit, and its output is the result of the splicing of the hidden states of the 2 LSTM units.

    In the LSTM model[23], a unittis calculated as follows:

    it=σ(xtUi+ht-1Wi+bi)

    (1)

    ft=σ(xtUf+ht-1Wf+bf)

    (2)

    ot=σ(xtUo+ht-1Wo+bo)

    (3)

    qt=tanh(xtUq+ht-1Wq+bq)

    (4)

    pt=ft×pt-1+it×qt

    (5)

    ht=ot×tanh(pt)

    (6)

    whereU∈Rd×nandW∈Rn×nare weight matrixes,b∈Rnis the offset vector,dis the dimension of the word embedding,σand tanh represent sigmoid and tanh activation functions andnis the output size of the LSTM network. The LSTM model consists of input gateit, forgetting gateft, and output gateot.

    2.3 Position-weight fusion layer

    When using Bi-LSTM alone to extract the features, it becomes difficult to analyze the differences between multiple targets of the text. This leads to lack of pertinence when the algorithm processes multiple targets in the same text. Therefore, in order to reflect the differences among the corresponding features of different targets in the text, a two-stage method is designed. The first step calculates the ultimate position-weight vector, and the second step concatenates the position-weight vector and output of the Bi-LSTM layer.

    2.3.1 Calculating the final position-weight vector

    (7)

    (8)

    (9)

    At this point, each component of vectorErepresents the influence of each word on the target, as shown in Fig.2. Each element inEis a value between 0 and 1.

    Fig.2 Position-weight vector of 2 targets in the same text

    In order to control the effect of vectorEon the prediction result, the coefficientμis used to expand each component of vectorEby a factor ofμ. The influence of positional weight on system can be changed by adjustingμ, as follows:

    Eμ=E×μ

    (10)

    whereEμis the ultimate position-weight vector. Each element inEμis a value between 0 andμ.

    2.3.2 Concatenating position-weight vector and output of Bi-LSTM

    In the Bi-LSTM network, the output of each word is composed of the spliced hidden states of the forward and backward LSTM units. In addition, each word corresponds to one position-weight in theEμ. Thus, a new vector is produced by concatenating the position-weight of each word and the Bi-LSTM output. This vector is taken as the output of the position-weight fusion layer. This vector can not only describe the dependency between words in the different directions, but it can also describe the impact of a word on the different targets of stance detection.

    2.4 LSTM layer

    To determine the stance labels from the fusion of the position-weight and the output of Bi-LSTM, the LSTM is used for re-encoding[23]. This process will re-extract features from the fused tensor from the previous section in the order of the text.The input of this layer is the output vector of the position-weight fusion layer, and the output is the hidden state of the last LSTM unit.

    2.5 Softmax classifier

    The output of the LSTM layer is taken as the input of this layer, and the Softmax classifier[24]is used to predict the stance labels of the different targets.

    3 Experiment

    3.1 Experimental setting

    The specific process of completing the multi-objective position detection task is shown in Fig.3.

    Fig.3 Flow chart for multi-target position detection

    The experiment used the stance detection corpus for the US 2016 general election constructed by Sobhani et al.[3]. This corpus contains 3 datasets, each of which is a collection of tweets and stance labels of 2 candidates. In the original corpus, 2 target words of each sentence were combined for analysis in Ref.[3]. Distribution of data are shown in Table 1. In addition, the model parameters are shown in Table 2.

    Table 1 Details of the experimental datasets

    Table 2 Main parameter setting in our experiment

    3.2 Evaluation metric

    As a category task, stance detection is more inclined to improve the classification accuracy of the “favor” and “against” stances. Therefore, the averageF1 scores of “favor” and “against” (Favg) were used as the evaluation indictors[4].

    3.3 Baselines

    The selected baselines are as follows.

    Sequence-to-sequence (Seq2Seq)[26]. Recently, the Seq2seq model has achieved good performance when dealing with timing problems. Therefore, Ref.[3] applied this model to the multi-target stance detection problem. In this method, text is used as the input of the model, and the stance labels representing different targets are output. The advantage of this algorithm is that it not only mines the stance related to the target from the text, but also refers to the relationship between multiple targets.

    Target-related zone modeling (TRZM)[19]. This model is proposed for multi-target stance detection tasks.It uses a region segmentation method to divide a text containing 2 targets into 4 parts, and then a multi-input LSTM is used to process these parts to detect the stance results.

    3.4 Results and discussion

    In order to verify the effectiveness of the proposed method, the following 2 experiments are carried out: comparison between the proposed method and the related baselines, and comparisons of different parameters in the position-weight fusion layer.

    3.4.1 Comparison between the proposed method and the related baselines

    The experimental result of the algorithm is compared with those of the other algorithms, as shown in Table 3, where PW-Bi-LSTM is the bidirectional LSTM network with position-weight proposed in this paper. There is the result of PW-Bi-LSTM>TRZM >Seq2Seq, when comparing theF1 value of different methods. The conclusions drawn from these results are as follows.

    1) Although this method has the ability to refer to different labels to detect the stance, the method does not take into account the effect of the positional relationship between the text and the target. This may be the reason why its effect is lower than TRZM and the model in this article.

    2) The effect of TRZM is not good, but it can meet the actual requirement, because the combination of feature extraction and deep learning is a good way to improve multi-target stance detection.But this method splits the integrity of the text, which may be the reason for its poor performance.

    3) The proposed method outperformed the other methods in 3 datasets and macroFavgare at 1.4% higher than the corresponding values in the other algorithms. Compared with the other methods, the proposed method can automatically extract the position features of different targets in the text and expand the tolerance for input difference. For input text with different targets, other methods may be impacted by other targets when detecting the given target stance, and their accuracies decrease subsequently. However, the proposed method can avoid the influence of irrelevant targets, and the accuracy does not change much.

    Table 3 Performances of our approach and the compared methods

    3.4.2 Comparisons of different parameters in the position-weight fusion layer

    One of the key parameters affecting the performance of the proposed method is the coefficientμ, mentioned in Section 2.3. In order to determine the influence of the ultimate position-weight vector on the algorithm and to find the optimal coefficientμin the position-weight fusion layer,Favgfor different values ofμin the development and test sets in the 3 datasets are compared, as shown in Fig.4. The figure shows that when the ultimate position-weight vector is added to our algorithm (i.e.,μ≠0),Favgare significantly improved, which indicates that this addition can improve the result of the multi-target stance detection.In addition, the effect of the proposed algorithm is related to the coefficientμ. In the 3 datasets, the best results in development sets are achieved whenμequals 3, 5 and 10, respectively. Thus, the effect of the proposed algorithm can be improved by adjusting the coefficientμ.

    Fig.4 Favg for different coefficients (μ) in the proposed method. The x-axis denotes the coefficient size, and the y-axis refers to Favg

    4 Conclusions

    In this study, Bi-LSTM network with position-weight for multi-target stance detection is proposed.The positional relationship between word and target is represented as a vector. And then this vector is embedded into the Bi-LSTM model to refine the stance detection. The experimental results demonstrate the validity of the proposed method, which states that adding the multi-target information can expand the tolerance for the input difference and diversity. In the future, additional position feature extraction methods and actual data covering a wider range of topics will be adopted for continuous improvement and optimization of the algorithm. In addition, it leads to a large volatility of the experiment that the number of data sets used in this paper is small. Therefore, in the follow-up work, the study of the volatility of the results will be considered.

    久久ye,这里只有精品| 亚洲成人一二三区av| 欧美精品高潮呻吟av久久| 九草在线视频观看| 亚洲美女黄色视频免费看| 大码成人一级视频| 国产av国产精品国产| 免费黄色在线免费观看| 国产高清三级在线| 亚洲av二区三区四区| 亚洲av中文av极速乱| 久久久久久久久大av| av在线播放精品| 久久精品国产亚洲网站| 国产精品人妻久久久久久| 国产成人精品久久久久久| 日本vs欧美在线观看视频 | 欧美97在线视频| 国产在线视频一区二区| 国产熟女午夜一区二区三区 | 久久久久国产精品人妻一区二区| 精品一区二区三卡| 午夜福利网站1000一区二区三区| 777米奇影视久久| 成人无遮挡网站| 狠狠精品人妻久久久久久综合| 亚洲,欧美,日韩| 亚洲一区二区三区欧美精品| 成人特级av手机在线观看| 国产精品久久久久成人av| 精品亚洲乱码少妇综合久久| 国产黄片美女视频| 精品国产乱码久久久久久小说| 18禁在线播放成人免费| 另类精品久久| 97在线人人人人妻| 少妇精品久久久久久久| 自线自在国产av| 丝袜喷水一区| 国产成人午夜福利电影在线观看| 免费大片黄手机在线观看| 肉色欧美久久久久久久蜜桃| 亚洲激情五月婷婷啪啪| 国产熟女午夜一区二区三区 | 蜜臀久久99精品久久宅男| 成人黄色视频免费在线看| 亚洲怡红院男人天堂| 啦啦啦在线观看免费高清www| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩卡通动漫| 大片免费播放器 马上看| 在现免费观看毛片| 天堂俺去俺来也www色官网| 中文字幕亚洲精品专区| 亚洲第一av免费看| 日本黄色日本黄色录像| 制服丝袜香蕉在线| 黄片无遮挡物在线观看| 亚洲一级一片aⅴ在线观看| 成人特级av手机在线观看| 91久久精品国产一区二区成人| 国产精品熟女久久久久浪| 欧美3d第一页| 精品亚洲成a人片在线观看| 欧美变态另类bdsm刘玥| 日韩熟女老妇一区二区性免费视频| 日本黄大片高清| 91aial.com中文字幕在线观看| 日日撸夜夜添| 国产精品一区二区在线不卡| 国产免费一区二区三区四区乱码| 亚洲人与动物交配视频| 精品99又大又爽又粗少妇毛片| 中文字幕久久专区| av有码第一页| 欧美精品人与动牲交sv欧美| 最新中文字幕久久久久| 又粗又硬又长又爽又黄的视频| 校园人妻丝袜中文字幕| 2021少妇久久久久久久久久久| 丝袜在线中文字幕| 男人添女人高潮全过程视频| 欧美+日韩+精品| av.在线天堂| 亚洲激情五月婷婷啪啪| 日本wwww免费看| 国国产精品蜜臀av免费| 中文字幕av电影在线播放| 日韩亚洲欧美综合| 久热久热在线精品观看| 夜夜爽夜夜爽视频| 欧美最新免费一区二区三区| 日本av免费视频播放| 国产精品国产三级国产av玫瑰| 国产亚洲最大av| 18禁在线无遮挡免费观看视频| 老司机影院成人| 如何舔出高潮| 男女无遮挡免费网站观看| 欧美日本中文国产一区发布| 久久99一区二区三区| 69精品国产乱码久久久| 国产亚洲91精品色在线| 啦啦啦中文免费视频观看日本| 一本久久精品| 美女视频免费永久观看网站| 欧美一级a爱片免费观看看| 亚洲性久久影院| 国产一区有黄有色的免费视频| 狂野欧美激情性bbbbbb| 伊人久久国产一区二区| 日韩成人伦理影院| 肉色欧美久久久久久久蜜桃| 深夜a级毛片| 国产亚洲午夜精品一区二区久久| 黄色毛片三级朝国网站 | 男女免费视频国产| 精品国产乱码久久久久久小说| 一级毛片电影观看| videossex国产| 亚洲精品国产色婷婷电影| 免费久久久久久久精品成人欧美视频 | 精品少妇内射三级| 99热这里只有是精品在线观看| 日本欧美视频一区| 精品人妻熟女毛片av久久网站| 久久99一区二区三区| 日本wwww免费看| 黄色怎么调成土黄色| 欧美日韩av久久| 丝瓜视频免费看黄片| 在线精品无人区一区二区三| 天天躁夜夜躁狠狠久久av| 日韩大片免费观看网站| 国产高清有码在线观看视频| 老司机影院成人| 一级黄片播放器| 极品少妇高潮喷水抽搐| 免费看光身美女| 天天躁夜夜躁狠狠久久av| 中国三级夫妇交换| 六月丁香七月| 久久精品久久久久久久性| 亚洲三级黄色毛片| .国产精品久久| 久久精品国产亚洲av天美| 精品亚洲成a人片在线观看| 日本黄色日本黄色录像| 久久久午夜欧美精品| 免费不卡的大黄色大毛片视频在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区国产| 久久久久久久亚洲中文字幕| 国产在线免费精品| 2022亚洲国产成人精品| 亚洲自偷自拍三级| 成人无遮挡网站| 午夜精品国产一区二区电影| kizo精华| 纵有疾风起免费观看全集完整版| 99久久精品热视频| 久久青草综合色| 建设人人有责人人尽责人人享有的| 成人美女网站在线观看视频| h日本视频在线播放| 街头女战士在线观看网站| 有码 亚洲区| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式| 人人妻人人看人人澡| av.在线天堂| 看非洲黑人一级黄片| 久久影院123| 丝袜脚勾引网站| 免费黄频网站在线观看国产| 女人久久www免费人成看片| 91aial.com中文字幕在线观看| 少妇裸体淫交视频免费看高清| 亚洲伊人久久精品综合| 高清不卡的av网站| 免费看av在线观看网站| a级片在线免费高清观看视频| 伊人亚洲综合成人网| 免费不卡的大黄色大毛片视频在线观看| 嫩草影院入口| 欧美最新免费一区二区三区| av天堂中文字幕网| 成人亚洲欧美一区二区av| 最黄视频免费看| 日本猛色少妇xxxxx猛交久久| 国语对白做爰xxxⅹ性视频网站| 少妇人妻精品综合一区二区| 狠狠精品人妻久久久久久综合| 两个人免费观看高清视频 | 高清av免费在线| 午夜老司机福利剧场| 亚洲精品久久午夜乱码| 国产av精品麻豆| 91午夜精品亚洲一区二区三区| av福利片在线| 国产综合精华液| 久久久久久久久久久久大奶| 在线观看免费日韩欧美大片 | 大片电影免费在线观看免费| 久久人人爽人人片av| 久久鲁丝午夜福利片| 日韩人妻高清精品专区| 国产成人精品一,二区| 亚洲,欧美,日韩| 久热这里只有精品99| 99热6这里只有精品| 亚洲国产精品国产精品| 久久av网站| 久久99一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 成人特级av手机在线观看| 日韩亚洲欧美综合| 老女人水多毛片| 看十八女毛片水多多多| 亚洲美女黄色视频免费看| 亚洲精品国产成人久久av| 熟女人妻精品中文字幕| 伦理电影大哥的女人| 日本猛色少妇xxxxx猛交久久| 女的被弄到高潮叫床怎么办| 汤姆久久久久久久影院中文字幕| 国产在视频线精品| 欧美人与善性xxx| 精品午夜福利在线看| 欧美3d第一页| 天天操日日干夜夜撸| 一区二区三区四区激情视频| 80岁老熟妇乱子伦牲交| 99久久精品热视频| 欧美 日韩 精品 国产| 亚洲av欧美aⅴ国产| 高清不卡的av网站| 久久亚洲国产成人精品v| 一本色道久久久久久精品综合| 日韩一区二区三区影片| 亚洲欧美精品自产自拍| 久久青草综合色| 一级毛片aaaaaa免费看小| 精品国产一区二区久久| 性色av一级| 寂寞人妻少妇视频99o| 免费观看性生交大片5| 欧美一级a爱片免费观看看| 99热国产这里只有精品6| 国产精品99久久99久久久不卡 | 纵有疾风起免费观看全集完整版| 最后的刺客免费高清国语| 国产精品人妻久久久久久| 女人精品久久久久毛片| 亚洲精品国产av蜜桃| 国内少妇人妻偷人精品xxx网站| av国产久精品久网站免费入址| 中国美白少妇内射xxxbb| 亚洲自偷自拍三级| 国产爽快片一区二区三区| 22中文网久久字幕| 性色avwww在线观看| 国产成人freesex在线| 亚洲欧洲日产国产| 国产一区有黄有色的免费视频| 婷婷色综合大香蕉| 热re99久久精品国产66热6| 亚洲欧美一区二区三区黑人 | 欧美三级亚洲精品| 精品少妇久久久久久888优播| 日韩精品免费视频一区二区三区 | 九九在线视频观看精品| 免费大片18禁| 少妇的逼水好多| 亚洲一级一片aⅴ在线观看| 亚洲av不卡在线观看| 久久热精品热| 成人无遮挡网站| 国产一区二区三区综合在线观看 | 97超视频在线观看视频| 丝瓜视频免费看黄片| 亚洲美女黄色视频免费看| a 毛片基地| 黑丝袜美女国产一区| 观看美女的网站| 久久久精品免费免费高清| 97超视频在线观看视频| 亚洲av在线观看美女高潮| 欧美精品一区二区免费开放| 国产精品国产三级国产专区5o| 国产精品久久久久久久电影| 午夜老司机福利剧场| 九草在线视频观看| 最近中文字幕高清免费大全6| 18+在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 纯流量卡能插随身wifi吗| 国产黄频视频在线观看| a级毛色黄片| 两个人的视频大全免费| 一本一本综合久久| 国产精品久久久久久久电影| 亚洲精品国产av成人精品| 亚洲久久久国产精品| 国产男人的电影天堂91| 成人美女网站在线观看视频| 黑人高潮一二区| 成年av动漫网址| 久久久午夜欧美精品| 欧美日韩av久久| 你懂的网址亚洲精品在线观看| 观看美女的网站| 精品视频人人做人人爽| 亚洲av福利一区| 亚洲精品一区蜜桃| 亚洲伊人久久精品综合| 精品亚洲乱码少妇综合久久| 精品久久久久久电影网| 国产91av在线免费观看| 国产精品无大码| 久久精品国产亚洲网站| 男女边摸边吃奶| 国产精品嫩草影院av在线观看| 人人妻人人澡人人爽人人夜夜| 国产黄片视频在线免费观看| 欧美+日韩+精品| 搡老乐熟女国产| 午夜视频国产福利| 又粗又硬又长又爽又黄的视频| av在线老鸭窝| 各种免费的搞黄视频| 丝瓜视频免费看黄片| 久久精品国产自在天天线| 国产视频内射| 免费高清在线观看视频在线观看| a 毛片基地| 高清黄色对白视频在线免费看 | 亚洲av中文av极速乱| av女优亚洲男人天堂| 一级毛片黄色毛片免费观看视频| 一本久久精品| 欧美三级亚洲精品| 国产精品熟女久久久久浪| 免费观看在线日韩| 99久久精品国产国产毛片| 老司机影院毛片| 一二三四中文在线观看免费高清| 国产在线免费精品| 六月丁香七月| 人体艺术视频欧美日本| 一级毛片我不卡| 成人免费观看视频高清| 99九九在线精品视频 | 中文乱码字字幕精品一区二区三区| av天堂中文字幕网| 亚洲综合色惰| 乱人伦中国视频| 69精品国产乱码久久久| 亚洲国产成人一精品久久久| 一区二区av电影网| 十八禁高潮呻吟视频 | 两个人免费观看高清视频 | 精品人妻熟女毛片av久久网站| 欧美性感艳星| kizo精华| 观看美女的网站| 99re6热这里在线精品视频| 久久久久人妻精品一区果冻| 日韩成人伦理影院| 午夜免费鲁丝| 欧美日本中文国产一区发布| 男男h啪啪无遮挡| 亚洲,欧美,日韩| 18禁在线播放成人免费| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站| 久久久久久久久久成人| 日本av手机在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 久久这里有精品视频免费| 国产亚洲91精品色在线| 久久久精品免费免费高清| 97在线视频观看| 久久这里有精品视频免费| 午夜久久久在线观看| 日韩精品免费视频一区二区三区 | 男女啪啪激烈高潮av片| 少妇 在线观看| 天天躁夜夜躁狠狠久久av| 久久精品夜色国产| 黄片无遮挡物在线观看| 久久久久久久国产电影| 少妇人妻久久综合中文| 丝袜喷水一区| 精品久久久久久久久av| 人人妻人人看人人澡| 久久影院123| 欧美人与善性xxx| 嫩草影院新地址| 女人久久www免费人成看片| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 亚洲综合精品二区| 两个人的视频大全免费| 一级黄片播放器| 中文欧美无线码| 如何舔出高潮| 精品久久久久久久久亚洲| 特大巨黑吊av在线直播| 草草在线视频免费看| 午夜精品国产一区二区电影| 久久久久久久久大av| 又黄又爽又刺激的免费视频.| 各种免费的搞黄视频| 中文字幕久久专区| av天堂久久9| 久久久久久久久久成人| 99久久综合免费| 黑丝袜美女国产一区| 高清欧美精品videossex| 天天操日日干夜夜撸| 最近的中文字幕免费完整| 日韩av在线免费看完整版不卡| 免费黄色在线免费观看| 日本色播在线视频| 新久久久久国产一级毛片| 各种免费的搞黄视频| 国产淫语在线视频| 偷拍熟女少妇极品色| 久久久久国产网址| 久久午夜福利片| 夜夜看夜夜爽夜夜摸| 男人爽女人下面视频在线观看| 交换朋友夫妻互换小说| 日韩一区二区三区影片| 国内揄拍国产精品人妻在线| 中文在线观看免费www的网站| 国产男人的电影天堂91| 中文资源天堂在线| 91精品伊人久久大香线蕉| 欧美区成人在线视频| 2021少妇久久久久久久久久久| 国内少妇人妻偷人精品xxx网站| 99热全是精品| 国产极品粉嫩免费观看在线 | 国产在线男女| 青青草视频在线视频观看| 久久久久国产网址| 丰满少妇做爰视频| 91久久精品电影网| 国产日韩欧美视频二区| 少妇被粗大猛烈的视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品人妻久久久影院| 男人添女人高潮全过程视频| 青春草亚洲视频在线观看| 久久久久国产网址| 大香蕉97超碰在线| 亚洲一区二区三区欧美精品| 女的被弄到高潮叫床怎么办| 丰满人妻一区二区三区视频av| 欧美一级a爱片免费观看看| 一级a做视频免费观看| 欧美高清成人免费视频www| 国产综合精华液| 女性生殖器流出的白浆| 99久久精品国产国产毛片| 老女人水多毛片| 爱豆传媒免费全集在线观看| 大又大粗又爽又黄少妇毛片口| a级毛片免费高清观看在线播放| 高清视频免费观看一区二区| 成人无遮挡网站| 永久免费av网站大全| 国产成人aa在线观看| 欧美精品一区二区免费开放| 新久久久久国产一级毛片| 精品久久久久久久久av| 国产毛片在线视频| 亚洲婷婷狠狠爱综合网| 边亲边吃奶的免费视频| 欧美3d第一页| 亚洲一级一片aⅴ在线观看| 亚洲丝袜综合中文字幕| 9色porny在线观看| .国产精品久久| 亚洲国产色片| 亚洲真实伦在线观看| 久久精品国产亚洲av天美| 啦啦啦在线观看免费高清www| kizo精华| 18禁在线无遮挡免费观看视频| 纵有疾风起免费观看全集完整版| 热re99久久精品国产66热6| 日韩制服骚丝袜av| 赤兔流量卡办理| 免费观看无遮挡的男女| 久久人妻熟女aⅴ| 99热这里只有是精品在线观看| 亚洲美女视频黄频| 男女无遮挡免费网站观看| 校园人妻丝袜中文字幕| 久久人妻熟女aⅴ| 少妇熟女欧美另类| 亚洲国产精品专区欧美| 99久久精品一区二区三区| 青青草视频在线视频观看| 黑丝袜美女国产一区| 51国产日韩欧美| 亚洲熟女精品中文字幕| 亚洲国产毛片av蜜桃av| 成人漫画全彩无遮挡| 人人妻人人澡人人爽人人夜夜| 亚洲欧美中文字幕日韩二区| 看非洲黑人一级黄片| 成人美女网站在线观看视频| 国产综合精华液| 一级毛片黄色毛片免费观看视频| a级毛色黄片| 少妇人妻久久综合中文| 日韩在线高清观看一区二区三区| 六月丁香七月| 日韩av不卡免费在线播放| 亚洲av不卡在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲人成网站在线观看播放| 久久午夜福利片| 亚洲精品亚洲一区二区| 狠狠精品人妻久久久久久综合| 国产男女内射视频| 岛国毛片在线播放| 国产成人aa在线观看| 精品国产乱码久久久久久小说| 成人美女网站在线观看视频| 日韩成人av中文字幕在线观看| 天堂中文最新版在线下载| 国产精品国产三级国产专区5o| 亚洲av男天堂| 亚洲国产精品999| 久久午夜福利片| 精品人妻偷拍中文字幕| 久久精品国产亚洲av天美| 男女国产视频网站| 黑丝袜美女国产一区| 三级国产精品片| av免费在线看不卡| 欧美激情国产日韩精品一区| 99久国产av精品国产电影| 哪个播放器可以免费观看大片| 99热这里只有是精品50| 免费观看性生交大片5| 人妻夜夜爽99麻豆av| 男人狂女人下面高潮的视频| av免费在线看不卡| 久久久久久久久久成人| 老司机影院成人| 最黄视频免费看| 久热这里只有精品99| 嫩草影院入口| 欧美亚洲 丝袜 人妻 在线| 极品少妇高潮喷水抽搐| 人人澡人人妻人| 美女脱内裤让男人舔精品视频| 久久精品久久久久久久性| 国产欧美另类精品又又久久亚洲欧美| 日本黄色日本黄色录像| a 毛片基地| 99久久精品热视频| 久久亚洲国产成人精品v| 日韩av在线免费看完整版不卡| 亚洲美女搞黄在线观看| 激情五月婷婷亚洲| 在线天堂最新版资源| 丝袜在线中文字幕| 一级a做视频免费观看| 老司机影院毛片| 丰满饥渴人妻一区二区三| 一本色道久久久久久精品综合| 精品少妇黑人巨大在线播放| 亚洲av免费高清在线观看| 久久国产乱子免费精品| 日韩欧美一区视频在线观看 | 91久久精品电影网| 欧美成人午夜免费资源| 在线观看国产h片| 欧美区成人在线视频| 亚洲精品中文字幕在线视频 | 观看免费一级毛片| 午夜免费鲁丝| 国产永久视频网站| 精品亚洲成国产av| 国产综合精华液| 亚洲av欧美aⅴ国产| 乱人伦中国视频| 欧美日韩视频高清一区二区三区二| 制服丝袜香蕉在线| 久久久久久人妻| 夫妻午夜视频| 国产精品久久久久久久电影| 国产精品久久久久久久久免| 各种免费的搞黄视频| 久久鲁丝午夜福利片| 97精品久久久久久久久久精品| 亚洲欧美成人综合另类久久久| 另类亚洲欧美激情| 99久久精品国产国产毛片| 又大又黄又爽视频免费| a级片在线免费高清观看视频| 久久久久网色| 婷婷色综合大香蕉| 久久久欧美国产精品| 男人和女人高潮做爰伦理| 观看av在线不卡| 国产成人午夜福利电影在线观看| 美女cb高潮喷水在线观看|