楊靜宇
摘 要:本文主要研究截?cái)嗾{(diào)和Bergman空間bn2上以擬齊次函數(shù)為符號(hào)的小Hankel算子的有限秩半換位等問(wèn)題。
關(guān)鍵詞:截?cái)嗾{(diào)和Bergman空間;有限秩;半換位子
中圖分類號(hào):O174? 文獻(xiàn)標(biāo)識(shí)碼:A? 文章編號(hào):1673-260X(2020)10-0001-03
1 引言
調(diào)和Bergman空間是由于自身不是代數(shù)這一特點(diǎn)得對(duì)其上Toeplitz算子的研究變得更加困難,得到結(jié)論也比Bergman空間上的相關(guān)結(jié)論少,并且與Bergman空間上的相應(yīng)結(jié)論區(qū)別很大?;谶@樣的差別,很多學(xué)者都關(guān)注調(diào)和Bergman空間上相關(guān)算子的研究[5-7],本文作者也在調(diào)和Bergman空間做了相關(guān)研究[8]。
截?cái)嗾{(diào)和函數(shù)空間是調(diào)和函數(shù)空間的一種近似,截?cái)嗾{(diào)和函數(shù)空間上的Toeplitz算子依強(qiáng)算子拓?fù)涫諗坑谡{(diào)和函數(shù)空間上的Toeplitz算子,這使得截?cái)嗾{(diào)和函數(shù)空間上Toeplitz算子的研究能夠從另個(gè)角度更好地反映調(diào)和函數(shù)空間上相應(yīng)算子的性質(zhì).Ding[9]在截?cái)嗾{(diào)和Bergman空間bn2上給出以有界調(diào)和函數(shù)為符號(hào)的Toeplitz算子交換當(dāng)且僅當(dāng)兩個(gè)符號(hào)函數(shù)線性相關(guān),此結(jié)果不同于Bergman空間的相應(yīng)結(jié)果,但比調(diào)和Bergman空間的相應(yīng)結(jié)果更一般化.
受Bergman空間和截?cái)嗾{(diào)和Bergman空間上相關(guān)研究[4,9]啟發(fā),Yang和Lu[10]在截?cái)嗾{(diào)和Bergman空間上對(duì)擬齊次Toeplitz算子的代數(shù)性質(zhì)進(jìn)行刻畫,得到了一些好的結(jié)論。在上述工作的基礎(chǔ)上,本文將在截?cái)嗾{(diào)和Bergman空間bn2上討論與Toeplitz算子相似的一類算子——小Hankel算子的有限秩半換位等問(wèn)題。
2 預(yù)備知識(shí)
參考文獻(xiàn):
〔1〕Axler S, Chang S-Y A, Sarason D. Product of Toeplitz operators[J]. Integral Equations and Operator Theory, 1978, 1: 285-309.
〔2〕Ding? X H, Zheng D C . Finite rank commutator of Toeplitz operators or Hankel operators[J]. Houston J. Math, 2008, 34(04): 1099-1119.
〔3〕Guo K Y, Sun S H, Zheng D C. Finite rank commutators and semicommutators of Toeplitz operators with harmonic symbols[J]. Illionis J. Math., 2007, 52(2):583-596.
〔4〕Cuckovic, Louhichi I. Finite rank commutators and semicommutators of quasihomogeneous Toeplitz operators[J].Compl. Anal.Oper.Theory., 2008, 2(03): 429-439.
〔5〕Choe B R, Lee Y J. Commuting Toeplitz operators on the harmonic Bergman space[J].Michigan. Math. J., 1999, 46: 163-174.
〔6〕Choe B R, Lee Y J. Commutants of analytic Toeplitz operators on the harmonic Bergman space[J]. Integr. Equ. Oper. Theory,2004, 50: 559-564.
〔7〕Dong X T, Zhou Z H. Commuting quasihomogeneous Toeplitz operators on the harmonic Bergman space[J]. Complex Anal.Oper.Theory,2013, 7: 1267-1285.
〔8〕Yang J Y, Lu Y F, Wang. X Y. Algebraic properties of Toeplitz operators on the harmonic Bergman space[J]. Journal of Mathematical Research with Applications, 2016, 36(04): 495-504.
〔9〕丁宣浩.截?cái)嗾{(diào)和Bergman空間上的Toeplitz算子[J].數(shù)學(xué)年刊,2013,34A(1):81-86.
〔10〕Yang J Y, Lu Y F, Tang H. Algebraic properties of Toeplitz operators on Cutoff harmonic Bergman space[J]. Journal of Mathematical Research with Applications, 2020, 40(2): 169-186.