• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    2017-05-12 06:58:02吉天翼劉艷成趙劍鋒王文鋒吳明紅
    物理化學學報 2017年4期
    關鍵詞:羥基自由基脈沖

    吉天翼 劉艷成 趙劍鋒,3 徐 剛 王文鋒,* 吳明紅,*

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    吉天翼1,2劉艷成2趙劍鋒2,3徐 剛1王文鋒2,*吳明紅1,*

    (1上海大學環(huán)境與化學工程學院,上海200444;2中國科學院上海應用物理研究所,上海201800;3中國科學院大學,北京100049)

    本文運用脈沖輻解探究了不同自由基與藥物氟西汀(FLX)之間的反應。羥基自由基(·OH)與FLX反應生成苯環(huán)上的羥基加成物,而硫酸根陰離子自由基則通過單電子氧化FLX生成苯陽離子自由基,該中間產(chǎn)物再進一步與水反應生成苯環(huán)上的羥基加成物。本研究測定了三種自由基·OH,水合電子以及與 FLX反應的反應速率常數(shù)分別為:7.8×109,2.3×109和1.1×109mol·L-1·s-1。本文還運用電子束輻照技術探究了不同輻照條件下的FLX降解效果,結合HPLC和紫外可見光譜儀進行分析。在N2O和空氣飽和的兩種條件下,F(xiàn)LX溶液經(jīng)1.5 kGy輻照后降解效率均達到90%以上,而N2飽和條件下,加入0.1 mol·L-1的叔丁醇的FLX溶液經(jīng)1.5 kGy輻照后僅有43%分解。此外,酸性和中性條件下FLX的降解效率均大于堿性條件下的。結果闡明了飽和空氣的FLX溶液在中性條件下的降解效果最佳,且·OH誘導的反應比更有利于FLX的分解。本研究期望對于進一步探究FLX的降解反應提供有益的幫助。

    氟西??;脈沖輻解;羥基自由基;硫酸根陰離子自由基;降解

    Key Words: Fluoxetine;Pulse radiolysis;Hydroxyl radical;Sulfate radical anion;Degradation

    1 Introduction

    Recently,social and scientific concerns about the occurrence of pharmaceutical and personal care products(PPCPs)in the environmental water have increased1,2.Many drugs have been detected in environmental water due to the widespread use of pharmaceuticals and the insufficient removal processes in ordinary water and wastewater treatment3,4.Furthermore,concerns have also been raised about the potential impacts of their parent compounds and biologically active metabolites on environmental and human health5.Therefore,PPCPs have been recognized as environmental pollutants6.

    Fluoxetine(FLX)(N-methyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine,shown in Fig.1),also named Prozac,is widely used for treating depression and other neurological or mental diseases.As a selective serotonin reuptake inhibitor(SSRI), fluoxetine(FLX)and its demethylated active metabolite norfluoxetine(NFLX)were proposed as being potentially dangerous to the environment in a list of 10 pharmaceuticals7.Since they undergo incomplete decomposition in the wastewater treatment process,FLX and NFLX have been detected with the concentration level of ng·L-1in surface waters of most of countries8-11. Hence,it implied that wastewater effluents are an important source of FLX and NFLX residue in the surface water12,13.Furthermore, it was reported that some freshwater fishes were toxic and the copulation and maturity of microorganisms were distributed after exposure to FLX14,15.Therefore,although FLX and its metabolites are present in the environment in very low concentrations,they may present a potential hazard to the environmental water as well as to human health.

    FLX shows the most absorbance in the range of UV spectrum, but its photodegradation is limited in environmental water,even under appropriate conditions of pH and temperature.Kwon and Armbrust16illustrated the low biological degradability of FLX in wastewater treatment plants,as it was not only stable during hydrolysis and photolysis but also resistant to micro-biodegradation.Nowadays,advanced oxidation processes(AOPs)are a rapid and high-efficiency technology that have been used successfully to remove multiple pollutants by forming strong oxidants such as hydroxyl radicals(·OH)to eliminate contaminants and mineralization.To improve this degradation efficiency,a study reported that using sonochemical treatment as a mean of pretreatment combined with biological treatment to remove FLX17. FLX was eliminated in an Ar-saturated solution after 60 min of sonication,and 15%was mineralized after 360 min of ultrasonic irradiation.Radiation technology is considered to be an advanced oxidation processes(AOP)technique,and the radicals formed by radiolysis of water can degrade pollutants18,19.Silva et al.20reported FLX eliminated completely by electron beam irradiation at a dose of more than 2.5 kGy,while TOC was removed only 22%even at a dose of 20 kGy.Garrido et al.21discovered that FLX was oxidized mainly through the oxidations of the secondary amine group and aromatic ring,which yielded a transient cation-radical and then conducted further reactions.

    Fig.1 Molecular structure of FLX

    In this paper,we studied that different intermediates of water radiolysis reacted with FLX by monitoring the growth/decay of transient intermediates by using pulse radiolysis.The rate constants of radical reactions with FLX were determined,and the yield of FLX decomposition was investigated in different conditions by electron beam irradiation.Finally,we compared the rate constants of different radical reactions with FLX and the degradation rates of FLX under different conditions to discern the optimal conditions for eliminating FLX.

    2 Materials and methods

    2.1 Materials

    Fluoxetine hydrochloride(FLX·HCl)was purchased from Tokyo Chemical Industry(>98%purity).Tert-butanol and K2S2O8were obtained from Sigma-Aldrich.NaOH and phosphate(used for preparation of buffers,pH=7.1)were purchased form J&K Chemical Ltd.All chemicals were analytical reagents and employed without further purification.Sample solutions were prepared using ultra-pure water,and experiments were carried out at ambient temperature.Solutions were bubbled with N2O or N2(high purity,99.999%)for at least 20 min.

    2.2 Pulse radiolysis and steady state radiolysis

    The nanosecond pulse radiolysis experiments were conducted using a 10 MeV linear electron accelerator with high-energy electron pulse duration of 8 ns,and the details were described elsewhere22,23.As a thiocyanate dosimeter,0.1 mol·L-1KSCN solution bubbled with N2O was used to measure the pulse dosimetry using G[(CNS)2·-]=5.8 and by taking ε480nm=7600 dm3· m-1·cm-122.The dose of each electron pulse was 10 Gy.A500 W xenon lamp was used as the source of analyzing light,and the electron pulse and the detecting beam passed vertically through a quartz cell with an optical path length of 10 mm.

    Main radicals generated by water radiolysis were shown in Eq. (1),in which the G-values(μmol·J-1)shown in brackets are the radiation chemical yields of radicals24-26.To study the hydroxyl radical(·OH)reaction,sample solutions were pre-saturated with N2O to convert the hydrated electron(e-aq)and hydrogen atom(·H) to·OH under pulse radiolysis,as shown in Eqs.(2)and(3)24,27,28. To research the reducing reactions oftert-butanol was used to scavenge·OH in the N2saturated solutions as shown in Eq.(4)27,29.

    H2O?·OH(0.28),·H(0.06),H3O+(0.27),H2(0.05),

    Electron beam irradiation was accomplished utilizing a GJ-2-II electron accelerator with a 1.8 MeV beam energy during the steady state radiolysis study.The experiments were irradiated with a dose range of 0.5-20 kGy and a dose rate of 0.045 kGy·s-1.

    2.3 Analytical procedures

    The UV-visible experiments were performed using a Hitachi U-3900 spectrophotometer with the detection wavelength in the range of 190-500 nm.The concentrations of FLX before and after irradiation were measured using an HPLC system(Agilent 1200 series)equipped with a reversed C18column(250 mm×4.6 mm); the detection wavelength of the VW monitor was set as 226 nm. The mobile phase was a mixture of acetonitrile(ACN)and 10 mmol·L-1potassium monophosphate(50:50)at an isocratic mode(1 mL·min-1)30.The injection volume of the auto-sampler was set to 10 μL.

    3 Results and discussion

    3.1 Pulse radiolysis

    3.1.1 Hydroxyl radical reactions

    The concentration of 0.5 mmol·L-1FLX in the N2O-saturated solution at pH=7.1 was studied by pulse radiolysis.As shown in Fig.2,the transient absorption spectrum for the reaction of·OH with FLX depicts a characteristic absorption at 340 nm.After 1 μs, it was quenched rapidly with time increased.Merga et al.31reported that the absorption peak in the range of 300-350 nm corresponded to the·OH adduct,which was generated by the·OH attack on the aromatic ring.According to a previous report,FLX degraded to produce the hydroxylated and O-dealkylated intermediates under indirect photodegradation32.It is possible that·OH reacted with FLX as shown in the following equation:

    Fig.2 Transient absorption spectra obtained from hydroxyl radical oxidation with 5×10-4mol·L-1FLX in N2O-saturated aqueous solutions(pH=7.1)

    The inset of Fig.2 shows the buildup rate constant(kobs)monitored at 340 nm,with various concentrations of FLX ranging from 0.02 to 1 mmol·L-1.Therefore,the rate constant was determined to be 7.8×109mol·L-1·s-1based on the linear trend of the pseudo-first-order transient rate constant.The value of the rate constant of·OH reaction with FLX is similar to those reported about·OH reaction with benzene32,demonstrating that the formation of the hydroxylcyclohexadienyl radical is the first step in the reaction of·OH with FLX24,33.This result also suggests that the majority of·OH added to the benzene ring,rather than reacting with alkylbenzene in the abstraction of the hydrogen atom.

    3.1.2 Hydrated electron reactions

    To investigate the reaction of FLX with hydrated electrons,the experiment was performed in an N2-saturated sample solution with the addition of 0.1 mol·L-1tert-butanol to scavenge·OH,where e-aqis main reactor partner.Astrong broad band at the peak of 690 nm was observed after electron pulse irradiation(as shown in Fig.3a).And the spectrum exhibits the decay ofat 690 nm with different time in the presence and absence of FLX solution.Thedecay ofwas faster with 0.5 mmol·L-1FLX solution than without the addition of FLX solution.After 1 μs,the characteristic absorption ofdecayed completely in the 0.5 mmol·L-1FLX solution.Hence,the hydrated electron decay appears to be accelerated in the presence of FLX.

    Fig.3 (a)Time-resolved absorption spectra obtained from thereaction with 5×10-4mol·L-1FLX in N-saturated solutions2containing 0.1 mol·L-1tert-butanol(pH=7.1);(b)plot of the observed decay rate constant(kobs)as monitored by the reaction ofwith different concentrations of FLX at 690 nm

    Fig.3b shows that the plot of decay rate constant for the reaction ofwith different concentrations of FLX was observed in the decay signal ofat 690 nm.The curve was fitted to a linear trend of the pseudo-first-order rate constant,the value of the reaction ofwith FLX was determined to be 2.3×109mol·L-1·s-1.The

    3.1.3 Sulfate radical anion

    aq,with a yield of G(SO4·-)=2.7 μmol·J-1(Eq.(6))35.Fig.4 depicts the time-resolved absorption spectra of the SO4·-reaction with FLX recorded at different time,which shows strong absorption peaks at 350 and 460 nm.The characteristic absorption ofwas reported to be at 460 nm in previous studies36.Compared to the absorption spectrum of transient intermediate in the absence of FLX at 1 μs, it has a new absorption peak at 350 nm in the 0.5 mmol·L-1FLX solution.The characteristic absorption ofdecayed rapidly with increasing time,while the absorbance of transient intermediate increased at 350 nm(shown in Eq.(7)).Theradicalinduced degradation of some benzene compounds formed the intermediates of hydroxylated adducts of the benzene ring18.In this study,we conjectured that the SO4·-attacked to the aromatic ring by single electron oxidation,forming benzene radical cation and then further reacted with H2O,forming·OH adduct37.The bimolecular rate constant of the SO4·-radical reaction with FLX was estimated with the range concentration from 0.06-0.22 mmol·L-1, based on the pseudo-first-order decay rate constant(inset of Fig.4).And the value is 1.1×109mol·L-1·s-1,as determined from the decay of SO4·-at 460 nm.

    Fig.4 Time-resolved absorption spectra obtained in the reaction of SO·4-with 5×10-4mol·L-1FLX in N2-saturated solutions containing 0.1 mol·L-1K2S2O8and 0.1 mol·L-1tert-butanol(pH=7.1)

    3.2 Steady state radiolysis

    The initial concentration of 0.29 mmol·L-1FLX in air,N2O or N2bubbled solutions were irradiated with different doses by the electron beam irradiation.In the N2O-saturated solution,·OH is the dominant oxidant to oxidizes pollutants.While e-aqis an important reducing agent in the N2-saturated solution containing 0.1 mol·L-1tert-butanol as the selected radical scavenger.In the presence of dissolved O2,and H·were both converted into O2·-/ HO2·(Eqs.(8,9)),therefore,·OH+O2·-/HO2·reactions occur in the aerated solution19.

    Fig.5 displays the·OH-induced degradation efficiency of FLX in the N2O-saturated solution at pH=7.At a dose of 1.5 kGy,the decomposition yield of FLX was approximately 90%;at an absorbed dose of 5 kGy,more than 99%FLX was consumed.With the increasing dose,the characteristic absorption of FLX decreased at 226 nm,indicating the decomposition of FLX in the aqueous solution(inset of Fig.5).Meanwhile,when the absorbed dose was increased,the absorption peak at 265 nm also increased. It was also observed that the peak at approximately 265 nm was slightly redshifted after irradiation,and this same phenomenon also was observed in the spectrum of the air-saturated solution (data not shown).The peak at 265 nm was denoted the formation of changed aromatic rings38.It was also illustrated the hydroxylated product formed by·OH attacked to the aromatic ring.

    To study reactions of individual radical with FLX,the atmo-

    Fig.5 Effect of various doses on the yield of decomposition of the initial concentration of 0.29 mmol·L-1FLX in the

    N2O-saturated solution as determined by the HPLC system and integrating the area under the chromatographic peaksphere condition was changed to produce reactive radical intermediates.And the above experiments suggested that SO4·-can oxide with FLX,so we also further explored the efficiency ofoxidation with FLX.From the Fig.6,the efficiency of the·OH-induced reaction was slightly higher than the·OH+O2·-/HO2· reaction in the N2O and air atmospheres,but both reactions were much higher than theandreactions in the N2atmosphere. After being irradiated with a dose of 1.5 kGy,the initial FLX molecules deceased by 95%and 93%in N2O and air bubbled

    solutions,respectively,in contrast with 43%reaction)and 73%reaction)reductions in the N2-saturated solution.FLX were decomposed completely with·OH and·OH+reactions at a dose of 5 kGy,and more than 90%FLX were decomposed withandreactions.It was reported that the mineralization of ibuprofen by

    radical is better than·OH at pH=7 since the yield of oxidizing radicals increased about 2.2 times in the presence of K2S2O818.However,as proved by our transient study,·OH reaction with FLX was observed to be faster than SO4·-.Meanwhile,as shown by the steady state results,·OH-induced degradation of FLX is more efficient thanradicalinduced degradation.This is probably due to two reasons listed

    adical could not fully or mostly react with FLX because of the competitive reaction between the selfdecay of radical andradical reaction with FLX.The other reason is that the addition reaction of·OH radical is more efficient than the single electron oxidation ofradical in the ring opening reaction of FLX.

    The effect of degradation efficiency of FLX at different pH values was also examined.Fig.7 displays the decomposition yield of FLX in air-saturated solutions at pH 4,7 and 11.At a dose of 2 kGy,FLX had decomposed by more than 95%at pH 4 and 7. The decompositions of FLX both under acidic condition and the neutral condition were better than alkaline condition at a low absorbed dose.Additionally,it has been reported that the degradation of FLX increased at a condition of acidic pH by sonochemical treatment,which has been interpreted to reflect the

    Fig.6 Dependence of the yield of FLX radiolytic decomposition on the·OH reaction(■)in the N2O-saturated solution,the

    ·OH+O2·-/HO2·reaction(▲)in the air-saturated solution,and the(●)and? Fig.7 Dose dependence of the decomposition yield of the initial concentration of 0.29 mmol·L-1FLX in the

    air-saturated solution(·OH+O2·-/HO2·reaction) dominance of the hydrophilic form of FLX17.The pKavalue of FLX is 10.0530.Therefore,the substance exists mainly in its neutral form at pH=11,which is more stable at the time of radical attacking. 4 Conclusions

    This study has shown the transient reactions of FLX with different radicals in pulse radiolysis,and the degradation efficiencies of FLX by electron beam irradiation under different conditions. The·OH radical,solvated electrons,and sulfate radical anions quickly reacted with FLX with the rate constants of 7.8×109, 2.3×109,and 1.1×109mol·L-1·s-1,respectively.The experiments illustrated that the degradation of FLX was occurred both by oxidative and reducing radicals,and the oxidative radicals tend to be more efficient for the decomposition of FLX.Based on the results obtained in this study,we thought that hydroxylated adduct was formed by hydroxyl radical attacking the aromatic ring directly.While it was found that SO4·-reaction preferentially formed a benzene radial cation by single electron oxidation,the intermediates were further transformed into the·OH adduct by reacting with H2O.

    For the steady study,over 90%FLX degraded with an absorbed dose of 1.5 kGy both in the presence of oxygen(·OH+O2·-/HO2· reaction)and in its absence(·OH reaction).In comparing different oxidants,it was observed that the degradation rates of FLX with·OH were higher than that with SO4·-radical.It is possible that the yield of SO4·-radical reacted with FLX was not as much as the yield of·OH,and·OH adduct was more efficient for the ring opening reaction of FLX.Therefore,radiolytic degradation is likely an effective way of eliminating FLX in aqueous solution. And it is also recommended that the radiolytic degradation of FLX molecule was performed by·OH-induced reaction at a neutral condition.

    Acknowledgment: The authors gratefully thank the Shanghai Institute of Applied Physics,Chinese Academy of Sciences and the University of Shanghai.References

    (1)Sui,Q.;Huang,J.;Deng,S.B.;Chen,W.W.;Yu,G.Environ.

    (2) Subedi,B.;Kannan,K.Environ.Sci.Technol.2014,48,6661.

    (20) Silva,V.H.O.;Batista,A.P.D.S.;Borrely,S.I.Environ.Sci. Pollut.R 2016,23,11927.doi:10.1007/s11356-016-6410-1

    (21) Garrido,E.M.;Garrido,J.;Calheiros,R.;Marques,M.P.M.; Borges,F.J.Phys.Chem.A 2009,113,9934.doi:10.1021/ jp904306b

    (22)Yao,S.D.;Sheng,S.G.;Cai,J.H.;Zhang,J.S.;Lin,N.Y. Radiat.Phys.Chem.1995,46,105.doi:10.1016/0969-806X(94) 00120-9

    (23) Liu,Y.C.;Zhang,P.;Li,H.X.;Tang,R.Z.;Cui,R.R.;Wang, W.F.J.Photochem.Photobiol.B 2013,118,58.doi:10.1016/j. jphotobiol.2012.11.002

    (24) Buxton,G.V.J.Phys.Chem.Ref.Data 1988,17,513.

    Radical-Induced Degradation of Fluoxetine in Aqueous Solution by Pulse and Steady-State Radiolysis Studies

    JI Tian-Yi1,2LIU Yan-Cheng2ZHAO Jian-Feng2,3XU Gang1WANG Wen-Feng2,*WU Ming-Hong1,*
    (1School of Environment and Chemical Engineering,Shanghai University,Shanghai 200444,P.R.China;2Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,P.R.China;3University of Chinese Academy of Sciences,Beijing 100049,P.R.China)

    The reactions of the pharmaceutical fluoxetine(FLX)with different radicals were investigated by pulse radiolysis.The reaction of hydroxyl radical(·OH)with FLX formed hydroxylated adduct of the aromatic ring,while oxidation of FLX by sulfate radical anion(SO4·-)formed benzene radical cation that further reacted with H2O to yield the·OH adduct.The determined rate constants of·OH,hydrated electrons(e-aq),and SO4·-with FLX were 7.8×109,2.3×109,and 1.1×109mol·L-1·s-1,respectively.In the steady-state radiolysis study, the degradation of FLX in different radiolytic conditions by electron beam irradiation was detected by HPLC and UV-Vis spectra techniques.It was found that FLX concentration decreased by more than 90%in both N2O and air-saturated solutions after 1.5 kGy irradiation.In contrast,only 43%of FLX was decomposed in N2-saturated solution containing 0.1 mol·L-1tert-butanol.The degradation rates of FLX in acidic and neutral solutions were higher than those in alkaline solutions.Our results showed that the degradation of FLX is optimal in air-saturated neutral solution,and·OH-induced degradation is more efficient than SO4·-oxidation of FLX.The obtained kinetic data and optimal conditions give some hints to understand the degradation of FLX.

    O644

    Technol.2011,45,3341.

    10.1021/es200248d

    doi:10.3866/PKU.WHXB201701092

    Received:November 8,2016;Revised:January 9,2017;Published online:January 9,2017.

    *Corresponding authors.WANG Wen-Feng,Email:wangwenfeng@sinap.ac.cn.WU Ming-Hong,Email:mhwu@shu.edu.cn.國家自然科學基金(21173252,41430644,11675098)資助項目

    doi:10.1021/es501709a

    (3) Wawryniuk,M.;Pietrzak,A.;Nalecz-Jawecki,G.Ecotox.

    Environ.Safe 2015,115,144.doi:10.1016/j.ecoenv.2015.02.014 (4) Subedi,B.;Kannan,K.Sci.Total Environ.2015,514,273.

    doi:10.1016/j.scitotenv.2015.01.098

    (5) Kümmerer,K.J.Environ.Manage.2009,90,2354.

    doi:10.1016/j.jenvman.2009.01.023

    (6)Boxall,A.B.;Rudd,M.A.;Brooks,B.W.;Caldwell,D.J.;

    Choi,K.;Hickmann,S.;Innes,E.;Ostapyk,K.;Staveley,J.P.;

    Verslycke,T.Environ.Health Perspect.2012,120,1221.

    doi:10.1289/ehp.1104477

    (7)Santos,L.H.M.L.M.;Gros,M.;Rodriguez-Mozaz,S.;

    Delerue-Matos,C.;Pena,A.;Barcelo,D.;Montenegro,M.C.B.

    S.M.Sci.Total Environ.2013,461,302.doi:10.1016/j.

    scitotenv.2013.04.077

    (8)Kolpin,D.W.;Furlong,E.T.;Meyer,M.T.;Thurman,E.M.; Zaugg,S.D.;Barber,L.B.;Buxton,H.T.Environ.Sci.Technol. 2003,36,1202.doi:10.1021/es0202356

    (9) Metcalfe,C.D.;Miao,X.S.;Koenig,B.G.;Struger,J.Environ.

    Toxicol.Chem.2003,22,2881.doi:10.1897/02-627

    (10) Wu,M.H.;Xiang,J.J.;Que,C.J.;Chen,F.F.;Xu,G.

    Chemosphere 2015,138,486.doi:10.1016/j. chemosphere.2015.07.002

    (11)Ma,R.X.;Wang,B.;Lu,S.Y.;Zhang,Y.Z.;Yin,L.;Huang,J.; Deng,S.B.;Wang,Y.J.;Yu,G.Sci.Total Environ.2016,557, 268.doi:10.1016/j.scitotenv.2016.03.053

    (12) Ottmar,K.J.;Colosi,L.M.;Smith,J.A.B Environ.Contam.

    Tox.2010,84,507.doi:10.1007/s00128-010-9990-3

    (13) Cardoso,O.;Porcher,J.M.;Sanchez,W.Chemosphere 2014,

    115,20.doi:10.1016/j.chemosphere.2014.02.004

    (14) Schultz,M.M.;Painter,M.M.;Bartell,S.E.;Logue,A.;

    Furlong,E.T.;Werner,S.L.;Schoenfuss,H.L.Aquat.Toxicol. 2011,104,38.doi:10.1016/j.aquatox.2011.03.011

    (15) Mendez,N.;Barata,C.Ecotoxicology 2015,24,106.

    doi:10.1007/s10646-014-1362-z

    (16)Kwon,J.W.;Armbrust,K.L.Environ.Toxicol.Chem.2006,25, 2561.doi:10.1897/05-613r.1

    (17) Serna-Galvis,E.A.;Silva-Agredo,J.;Giraldo-Aguirre,A.L.; Torres-Palma,R.A.Sci.Total Environ.2015,524,354. doi:10.1016/j.scitotenv.2015.04.053

    (18) Paul,J.;Naik,D.B.;Bhardwaj,Y.K.;Varshney,L.Radiat. Phys.Chem.2014,100,38.doi:10.1016/j. radphyschem.2014.03.016

    (19) Kovacs,K.;Mile,V.;Csay,T.;Takacs,E.;Wojnarovits,L. Environ.Sci.Pollut.R 2014,21,12693.doi:10.1007/s11356-014-3197-9doi:10.1063/1.555805

    (25) Song,W.H.;Cooper,W.J.;Mezyk,S.P.;Greaves,J.;Peake,B. M.Environ.Sci.Technol.2008,42,1256.doi:10.1021/ es702245n

    (26)Wu,M.H.;Liu,N.;Xu,G.;Ma,J.;Tang,L.;Wang,L.;Fu,H. Y.Radiat.Phys.Chem.2011,80,420.doi:10.1016/j. radphyschem.2010.10.008

    (27) Czapski,G.;Peled,E.Isr.J.Chem.1968,6,421.doi:10.1002/ ijch.196800054

    (28) Spinks,J.W.T.;Woods,R.J.Introduction to Radiation Chemistry;Wiley:New York,1990.

    (29) Wolfenden,B.S.;Willson,R.L.J.Chem.Soc.Perkin Trans. 1982,2,805.doi:10.1039/P29820000805

    (30) Mendez-Arriaga,F.;Otsu,T.;Oyama,T.;Gimenez,J.;Esplugas, S.;Hidaka,H.;Serpone,N.Water.Res.2011,45,2782. doi:10.1016/j.watres.2011.02.030

    (31) Merga,G.;Rao,B.S.M.;Mohan,H.;Mittal,J.P.J.Phys. Chem.2002,98,9158.doi:10.1021/j100088a012

    (32)Lam,M.W.;Young,C.J.;Mabury,S.A.Environ.Sci.Tech. 2005,39,513.doi:10.1021/es0494757

    (33) Sehested,K.;Christensen,H.C.;Hart,E.J.;Corfitzen,H.J. Phys.Chem.-Us 1975,79,310.doi:10.1021/J100571a005

    (34)Neta,P.;Madhavan,V.;Zemel,H.;Fessenden,R.W. Chemischer Informationsdienst 1977,8,163.doi:10.1002/ chin.197714152

    (35) Hentz,R.R.;Farhataziz;Hansen,E.M.J.Chem.Phys.1972, 57,2959.doi:10.1063/1.1678690

    (36)Choure,S.C.;Bamatraf,M.M.M.;Rao,B.S.M.;Das,R.; Mohan,H.;Mittal,J.P.J.Phys.Chem.A 1997,101,9837. doi:10.1021/jp971986a

    (37)Shibin,N.B.;Sreekanth,R.;Aravind,U.K.;Mohammed,K.M. A.;Chandrashekhar,N.V.;Joseph,J.;Sarkar,S.K.;Naik,D.B.; Aravindakumar,C.T.J.Phys.Org.Chem.2014,27,478. doi:10.1002/poc.3285

    (38) Illes,E.;Takacs,E.;Dombi,A.;Gajda-Schrantz,K.;Racz,G.; Gonter,K.;Wojnarovits,L.Sci.Total Environ.2013,447,286. doi:10.1016/j.scitotenv.2013.01.007

    猜你喜歡
    羥基自由基脈沖
    他們使阿秒光脈沖成為可能
    脈沖離散Ginzburg-Landau方程組的統(tǒng)計解及其極限行為
    自由基損傷與魚類普發(fā)性肝病
    自由基損傷與巴沙魚黃肉癥
    陸克定:掌控污染物壽命的自由基
    科學中國人(2018年8期)2018-07-23 02:26:46
    羥基喜樹堿PEG-PHDCA納米粒的制備及表征
    中成藥(2018年2期)2018-05-09 07:20:05
    黃芩苷脈沖片的制備
    中成藥(2017年12期)2018-01-19 02:06:54
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結構
    TEMPO催化合成3α-羥基-7-酮-5β-膽烷酸的研究
    檞皮苷及其苷元清除自由基作用的研究
    麻豆乱淫一区二区| 日韩不卡一区二区三区视频在线| 日本av手机在线免费观看| 国内精品宾馆在线| 国产欧美日韩一区二区三区在线 | 晚上一个人看的免费电影| 免费黄频网站在线观看国产| 亚洲色图av天堂| 纵有疾风起免费观看全集完整版| 又粗又硬又长又爽又黄的视频| 女人十人毛片免费观看3o分钟| 在线免费十八禁| 亚洲av在线观看美女高潮| 色5月婷婷丁香| 久久久精品免费免费高清| 九草在线视频观看| av网站免费在线观看视频| 一本—道久久a久久精品蜜桃钙片| 久久6这里有精品| 国产人妻一区二区三区在| 国产深夜福利视频在线观看| 最近中文字幕2019免费版| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 乱系列少妇在线播放| 精品亚洲乱码少妇综合久久| 免费av不卡在线播放| 两个人的视频大全免费| 五月玫瑰六月丁香| 亚洲精品日本国产第一区| av在线app专区| 国产精品一区二区在线观看99| 观看av在线不卡| 国产精品欧美亚洲77777| 亚洲国产精品成人久久小说| 国产成人午夜福利电影在线观看| 在线观看免费日韩欧美大片 | 精品国产乱码久久久久久小说| 在线观看美女被高潮喷水网站| 韩国av在线不卡| 80岁老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 免费av中文字幕在线| 国产老妇伦熟女老妇高清| 观看免费一级毛片| 亚洲精品aⅴ在线观看| 久久久久视频综合| 免费观看的影片在线观看| videos熟女内射| 黑丝袜美女国产一区| 免费播放大片免费观看视频在线观看| 中文字幕精品免费在线观看视频 | 日韩大片免费观看网站| 亚洲国产精品成人久久小说| 国产av一区二区精品久久 | 插阴视频在线观看视频| 又黄又爽又刺激的免费视频.| 欧美日韩综合久久久久久| 视频区图区小说| 国产黄片视频在线免费观看| 内地一区二区视频在线| 美女脱内裤让男人舔精品视频| 亚洲怡红院男人天堂| 亚洲,一卡二卡三卡| 久久久久久久大尺度免费视频| 十八禁网站网址无遮挡 | 综合色丁香网| 中文字幕免费在线视频6| 高清视频免费观看一区二区| 日本av免费视频播放| 偷拍熟女少妇极品色| 99热这里只有是精品在线观看| 亚洲av中文字字幕乱码综合| 日日啪夜夜撸| 国产精品精品国产色婷婷| 国产中年淑女户外野战色| 国产精品人妻久久久久久| 丝袜脚勾引网站| 久久久久久久久久久丰满| 日韩国内少妇激情av| 日韩av不卡免费在线播放| 大码成人一级视频| 秋霞在线观看毛片| 国产成人freesex在线| 国产精品福利在线免费观看| 人人妻人人添人人爽欧美一区卜 | 免费观看av网站的网址| 又粗又硬又长又爽又黄的视频| 一级毛片我不卡| 亚洲美女搞黄在线观看| 国产男女超爽视频在线观看| 各种免费的搞黄视频| 欧美日韩国产mv在线观看视频 | 激情五月婷婷亚洲| 国产69精品久久久久777片| 尾随美女入室| 成人国产麻豆网| 天天躁日日操中文字幕| 久久久久久久亚洲中文字幕| av网站免费在线观看视频| 免费久久久久久久精品成人欧美视频 | 午夜精品国产一区二区电影| 黑丝袜美女国产一区| 99久久精品热视频| 国产精品久久久久久精品电影小说 | 3wmmmm亚洲av在线观看| 久久99热这里只频精品6学生| 成年免费大片在线观看| 亚洲国产日韩一区二区| 亚洲欧洲国产日韩| av国产精品久久久久影院| 男人狂女人下面高潮的视频| 亚洲久久久国产精品| 欧美日韩在线观看h| 国产精品女同一区二区软件| 免费黄网站久久成人精品| 国产精品一区二区在线观看99| 亚洲av男天堂| 午夜激情福利司机影院| 高清视频免费观看一区二区| 亚洲国产精品专区欧美| 亚洲国产精品成人久久小说| 中国美白少妇内射xxxbb| 国产黄频视频在线观看| 美女内射精品一级片tv| 一级爰片在线观看| 日韩欧美 国产精品| 男女边吃奶边做爰视频| 亚洲精品中文字幕在线视频 | 日本免费在线观看一区| 国国产精品蜜臀av免费| 久久精品国产亚洲网站| 岛国毛片在线播放| av免费在线看不卡| 美女内射精品一级片tv| 精品一区二区三卡| 国产黄频视频在线观看| 亚洲高清免费不卡视频| av线在线观看网站| 午夜福利在线观看免费完整高清在| 亚洲内射少妇av| 麻豆乱淫一区二区| 国产熟女欧美一区二区| 国国产精品蜜臀av免费| 亚洲成人一二三区av| 成人高潮视频无遮挡免费网站| 搡女人真爽免费视频火全软件| 免费观看的影片在线观看| 80岁老熟妇乱子伦牲交| 国产伦精品一区二区三区视频9| 亚洲四区av| 成人午夜精彩视频在线观看| 欧美日韩精品成人综合77777| 亚洲成人手机| 又黄又爽又刺激的免费视频.| 男女边摸边吃奶| 免费大片18禁| 一级爰片在线观看| 久久国产乱子免费精品| 麻豆成人午夜福利视频| 亚洲色图av天堂| xxx大片免费视频| 国产视频内射| 肉色欧美久久久久久久蜜桃| 在线观看美女被高潮喷水网站| 熟妇人妻不卡中文字幕| 精品人妻偷拍中文字幕| 少妇猛男粗大的猛烈进出视频| 国产日韩欧美在线精品| 看非洲黑人一级黄片| 国产在视频线精品| 小蜜桃在线观看免费完整版高清| 精品久久久久久电影网| 少妇人妻精品综合一区二区| 精品国产一区二区三区久久久樱花 | 日本一二三区视频观看| 一个人看视频在线观看www免费| 久久久久久久久大av| 久久久久精品性色| 久久精品国产亚洲av涩爱| 国产成人91sexporn| 亚洲国产精品成人久久小说| 成人高潮视频无遮挡免费网站| 亚州av有码| 国产视频内射| 成人毛片60女人毛片免费| 欧美日韩视频高清一区二区三区二| 极品少妇高潮喷水抽搐| 2022亚洲国产成人精品| av国产久精品久网站免费入址| 精品一品国产午夜福利视频| 国内揄拍国产精品人妻在线| 少妇熟女欧美另类| 日本-黄色视频高清免费观看| 精品一区在线观看国产| 成年av动漫网址| 高清黄色对白视频在线免费看 | 亚洲精品成人av观看孕妇| 国产精品.久久久| 又粗又硬又长又爽又黄的视频| 免费看日本二区| 免费观看在线日韩| 在线观看美女被高潮喷水网站| 麻豆精品久久久久久蜜桃| 成年女人在线观看亚洲视频| 最新中文字幕久久久久| 欧美成人一区二区免费高清观看| 最近最新中文字幕大全电影3| 这个男人来自地球电影免费观看 | 久久久久久久精品精品| 日本欧美视频一区| 久久国产乱子免费精品| 国产黄色视频一区二区在线观看| 在线天堂最新版资源| 99九九线精品视频在线观看视频| 男人添女人高潮全过程视频| 99热网站在线观看| 中文字幕亚洲精品专区| 午夜福利在线在线| 插阴视频在线观看视频| 久久av网站| 99久久中文字幕三级久久日本| 久久人人爽人人片av| .国产精品久久| 国产亚洲最大av| 亚洲av在线观看美女高潮| 久久久午夜欧美精品| 亚洲国产最新在线播放| 久久久久国产网址| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 亚洲成人中文字幕在线播放| 麻豆成人午夜福利视频| 大陆偷拍与自拍| 欧美一区二区亚洲| 免费人成在线观看视频色| 99热国产这里只有精品6| 男人爽女人下面视频在线观看| 一个人看视频在线观看www免费| xxx大片免费视频| 欧美成人精品欧美一级黄| 久久久久久九九精品二区国产| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 26uuu在线亚洲综合色| 国产精品99久久99久久久不卡 | 不卡视频在线观看欧美| 成人18禁高潮啪啪吃奶动态图 | 国产淫片久久久久久久久| 五月开心婷婷网| 狂野欧美激情性xxxx在线观看| 精品亚洲成国产av| 在线观看一区二区三区| 亚洲精品456在线播放app| 午夜福利高清视频| 国产亚洲精品久久久com| 不卡视频在线观看欧美| 国产亚洲最大av| 免费黄频网站在线观看国产| 99久久精品热视频| 国产爽快片一区二区三区| 国产乱人视频| 久久久色成人| 国产有黄有色有爽视频| 91精品伊人久久大香线蕉| kizo精华| 免费av中文字幕在线| 新久久久久国产一级毛片| 欧美日韩在线观看h| 日韩亚洲欧美综合| 免费av不卡在线播放| 久久综合国产亚洲精品| 在线观看免费视频网站a站| 99久久精品热视频| 欧美高清性xxxxhd video| 一区二区三区精品91| 日本欧美国产在线视频| 欧美日韩一区二区视频在线观看视频在线| 91精品伊人久久大香线蕉| 尾随美女入室| 国国产精品蜜臀av免费| 久久婷婷青草| 777米奇影视久久| 国产久久久一区二区三区| 久久99蜜桃精品久久| 一二三四中文在线观看免费高清| 久久久久久久国产电影| 高清视频免费观看一区二区| 26uuu在线亚洲综合色| 国产乱来视频区| av在线蜜桃| 毛片女人毛片| h日本视频在线播放| 国产精品爽爽va在线观看网站| 黄色欧美视频在线观看| 日日撸夜夜添| 精品亚洲乱码少妇综合久久| 亚洲国产av新网站| 99热这里只有精品一区| 男女边摸边吃奶| 热99国产精品久久久久久7| 国产白丝娇喘喷水9色精品| 我要看日韩黄色一级片| 赤兔流量卡办理| 国产精品人妻久久久影院| 国产爽快片一区二区三区| av播播在线观看一区| 久久精品夜色国产| 男女啪啪激烈高潮av片| 国产精品嫩草影院av在线观看| 一个人看的www免费观看视频| 亚洲精品国产成人久久av| 最近最新中文字幕大全电影3| 亚洲成人中文字幕在线播放| 蜜桃亚洲精品一区二区三区| 精品人妻视频免费看| 少妇 在线观看| 亚洲第一区二区三区不卡| 99久久综合免费| 免费大片黄手机在线观看| 日韩强制内射视频| 国产淫语在线视频| 啦啦啦在线观看免费高清www| 国产 一区 欧美 日韩| 国产伦精品一区二区三区视频9| 极品教师在线视频| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影| 日韩精品有码人妻一区| 亚洲不卡免费看| 看非洲黑人一级黄片| 日本黄色片子视频| 精品人妻视频免费看| 少妇人妻精品综合一区二区| 亚洲激情五月婷婷啪啪| 午夜激情福利司机影院| 国产精品国产三级专区第一集| 熟女人妻精品中文字幕| 男女边摸边吃奶| 国产 精品1| 国产免费一级a男人的天堂| 夜夜骑夜夜射夜夜干| 免费av不卡在线播放| 免费观看无遮挡的男女| 国产探花极品一区二区| 午夜免费鲁丝| 日韩,欧美,国产一区二区三区| 一级二级三级毛片免费看| 80岁老熟妇乱子伦牲交| 狂野欧美激情性xxxx在线观看| 国产av一区二区精品久久 | 老熟女久久久| 日本vs欧美在线观看视频 | 国产男女超爽视频在线观看| 能在线免费看毛片的网站| 亚洲成色77777| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av涩爱| 天堂8中文在线网| 在线播放无遮挡| 日韩强制内射视频| 人人妻人人爽人人添夜夜欢视频 | 日韩欧美精品免费久久| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区黑人 | 中文字幕久久专区| 国产伦精品一区二区三区视频9| 黄色视频在线播放观看不卡| 久久久亚洲精品成人影院| 国产精品久久久久成人av| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| kizo精华| 国产黄片视频在线免费观看| 亚洲色图av天堂| av卡一久久| 成人免费观看视频高清| 国产成人a∨麻豆精品| 亚洲经典国产精华液单| 亚洲欧美清纯卡通| 男女免费视频国产| 亚洲人与动物交配视频| 日本与韩国留学比较| 热re99久久精品国产66热6| 久久99蜜桃精品久久| 超碰97精品在线观看| 亚洲精品日韩av片在线观看| 纯流量卡能插随身wifi吗| 免费播放大片免费观看视频在线观看| 国产乱人偷精品视频| 高清日韩中文字幕在线| 成人美女网站在线观看视频| 国产精品三级大全| 中文资源天堂在线| 色视频在线一区二区三区| 久久精品国产亚洲av涩爱| 久久青草综合色| 国产在线免费精品| 97热精品久久久久久| 国产熟女欧美一区二区| 在线免费十八禁| 日韩av不卡免费在线播放| 秋霞在线观看毛片| 少妇人妻一区二区三区视频| 国产久久久一区二区三区| 99热网站在线观看| 青春草视频在线免费观看| 国产国拍精品亚洲av在线观看| 国产伦精品一区二区三区四那| 亚洲内射少妇av| 另类亚洲欧美激情| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看 | 亚洲国产精品999| 一级二级三级毛片免费看| 在线精品无人区一区二区三 | 亚洲欧美精品自产自拍| 狂野欧美激情性bbbbbb| 少妇人妻一区二区三区视频| 亚洲av在线观看美女高潮| 成人国产av品久久久| 热99国产精品久久久久久7| 日韩欧美 国产精品| 水蜜桃什么品种好| 国产真实伦视频高清在线观看| 嘟嘟电影网在线观看| 亚洲欧美成人综合另类久久久| 日日啪夜夜爽| 最近最新中文字幕免费大全7| 美女中出高潮动态图| 欧美国产精品一级二级三级 | 日产精品乱码卡一卡2卡三| 超碰97精品在线观看| 欧美日韩精品成人综合77777| 午夜精品国产一区二区电影| 免费不卡的大黄色大毛片视频在线观看| 黄色欧美视频在线观看| 在线观看美女被高潮喷水网站| kizo精华| 一区二区三区四区激情视频| 国产有黄有色有爽视频| 国产精品99久久99久久久不卡 | av在线蜜桃| 水蜜桃什么品种好| 亚洲熟女精品中文字幕| 99热这里只有精品一区| 五月玫瑰六月丁香| 小蜜桃在线观看免费完整版高清| av在线播放精品| 看十八女毛片水多多多| 亚洲av免费高清在线观看| 国内少妇人妻偷人精品xxx网站| 国产亚洲一区二区精品| 欧美bdsm另类| 亚洲第一av免费看| 多毛熟女@视频| 99re6热这里在线精品视频| 女人十人毛片免费观看3o分钟| 精品国产一区二区三区久久久樱花 | 国产高清三级在线| 黑丝袜美女国产一区| 日韩亚洲欧美综合| 欧美亚洲 丝袜 人妻 在线| 如何舔出高潮| 国产精品国产三级国产av玫瑰| 成年女人在线观看亚洲视频| 在线观看美女被高潮喷水网站| 欧美激情极品国产一区二区三区 | 久久久午夜欧美精品| 亚洲精品456在线播放app| 少妇人妻久久综合中文| 国产免费又黄又爽又色| 18禁在线播放成人免费| 伦理电影大哥的女人| 男人和女人高潮做爰伦理| 欧美精品人与动牲交sv欧美| 国产亚洲一区二区精品| 精品久久久久久电影网| 久久精品熟女亚洲av麻豆精品| 少妇裸体淫交视频免费看高清| 看十八女毛片水多多多| 亚洲国产色片| 国产一区二区三区av在线| 国产在线一区二区三区精| 777米奇影视久久| 亚洲无线观看免费| 欧美成人一区二区免费高清观看| 欧美精品一区二区大全| 女的被弄到高潮叫床怎么办| 自拍欧美九色日韩亚洲蝌蚪91 | 99视频精品全部免费 在线| 国产片特级美女逼逼视频| 亚洲精品,欧美精品| 久久久久久久国产电影| 2018国产大陆天天弄谢| 高清视频免费观看一区二区| 日韩免费高清中文字幕av| 国产高潮美女av| 嘟嘟电影网在线观看| 日本vs欧美在线观看视频 | 午夜福利在线在线| 午夜精品国产一区二区电影| 大码成人一级视频| 99re6热这里在线精品视频| 六月丁香七月| 交换朋友夫妻互换小说| 亚洲成人一二三区av| 99久久中文字幕三级久久日本| h视频一区二区三区| 国产高清有码在线观看视频| 黄色日韩在线| 久久久久精品性色| 看非洲黑人一级黄片| 久久久久久久亚洲中文字幕| 欧美日韩视频高清一区二区三区二| 夫妻性生交免费视频一级片| 欧美xxxx性猛交bbbb| 少妇被粗大猛烈的视频| 久久精品熟女亚洲av麻豆精品| 在线观看美女被高潮喷水网站| 在线天堂最新版资源| 国产乱来视频区| 亚洲av成人精品一二三区| 久久婷婷青草| 啦啦啦中文免费视频观看日本| 国产成人精品久久久久久| 国产亚洲一区二区精品| 97超视频在线观看视频| 熟女av电影| 插阴视频在线观看视频| 亚洲精品久久久久久婷婷小说| 久久久久久久久久久丰满| 夫妻午夜视频| 久久女婷五月综合色啪小说| 国产中年淑女户外野战色| 成人国产麻豆网| 午夜视频国产福利| 久久 成人 亚洲| 22中文网久久字幕| 日本黄色片子视频| 亚洲一级一片aⅴ在线观看| 亚洲精品一二三| 日韩欧美精品免费久久| 国产极品天堂在线| 老师上课跳d突然被开到最大视频| 成人特级av手机在线观看| 一个人看的www免费观看视频| 乱系列少妇在线播放| 搡女人真爽免费视频火全软件| 秋霞伦理黄片| 精品久久久久久久末码| 国产黄色免费在线视频| 99久久人妻综合| 久久久久人妻精品一区果冻| 性高湖久久久久久久久免费观看| 丝袜脚勾引网站| 搡女人真爽免费视频火全软件| 国产淫语在线视频| 美女福利国产在线 | 日韩免费高清中文字幕av| 免费高清在线观看视频在线观看| 欧美成人午夜免费资源| 搡老乐熟女国产| 欧美日韩综合久久久久久| 国产亚洲一区二区精品| 最近最新中文字幕免费大全7| 欧美人与善性xxx| 中文字幕精品免费在线观看视频 | 国产日韩欧美亚洲二区| 国产精品一区二区在线不卡| 免费观看av网站的网址| 干丝袜人妻中文字幕| 午夜激情久久久久久久| 岛国毛片在线播放| 在线免费观看不下载黄p国产| 亚洲欧洲国产日韩| 熟女av电影| 插阴视频在线观看视频| 亚洲精品日韩av片在线观看| 欧美一级a爱片免费观看看| 免费观看无遮挡的男女| 22中文网久久字幕| 极品少妇高潮喷水抽搐| 99九九线精品视频在线观看视频| 寂寞人妻少妇视频99o| 国产精品伦人一区二区| 高清av免费在线| 看十八女毛片水多多多| 三级国产精品片| 最近最新中文字幕免费大全7| 不卡视频在线观看欧美| 国产精品久久久久久精品电影小说 | 最近的中文字幕免费完整| 草草在线视频免费看| 色5月婷婷丁香| av不卡在线播放| 黄片wwwwww| 99久久精品一区二区三区| 最后的刺客免费高清国语| 中文欧美无线码| 欧美97在线视频| 校园人妻丝袜中文字幕| 中文字幕av成人在线电影| 亚洲不卡免费看| 久久综合国产亚洲精品| 国产成人精品久久久久久| 九九爱精品视频在线观看| 日韩强制内射视频| 亚洲欧美精品自产自拍| 欧美日韩亚洲高清精品| 免费av中文字幕在线| 欧美日韩综合久久久久久| 欧美 日韩 精品 国产| 麻豆国产97在线/欧美|