(山西應(yīng)用科技學(xué)院,山西 太原 030062)
強(qiáng)夯加固土體是將具有起重能力的起重設(shè)備將一定規(guī)格、重量為10到40噸的夯錘提升到10至40米高度后脫鉤自由下落,夯錘與土體碰撞后,土體獲得巨大的夯擊能,夯擊能以波的形式向四周傳播。
在采用強(qiáng)夯法處理地基時(shí),強(qiáng)夯引起的地面振動(dòng)可能會(huì)對(duì)周圍較近建筑物或構(gòu)筑物產(chǎn)生很大影響,地面振動(dòng)過(guò)大造成建筑物或構(gòu)筑物損壞。地面振動(dòng)幅值可以衡量強(qiáng)夯引起的地面振動(dòng)強(qiáng)度與能量的大小,地面振動(dòng)強(qiáng)弱可以用振動(dòng)速度和加速度來(lái)衡量。雷學(xué)文等[1],何少林等[2]應(yīng)用現(xiàn)場(chǎng)實(shí)測(cè)數(shù)據(jù)分析得出,距夯點(diǎn)水平長(zhǎng)度加大,強(qiáng)夯引起的速度、加速度減小,地面各點(diǎn)處速度、加速度隨擊數(shù)的增加而逐漸增大[3]。強(qiáng)夯對(duì)土體產(chǎn)生的動(dòng)力效應(yīng)的復(fù)雜性導(dǎo)致用解析法難以解決,就只能借助其他方法。ansys/ls-dyna是工程領(lǐng)域最好的解決動(dòng)力性問(wèn)題的程序[4]。范文超[5]等利用ansys/ls-dyna軟件建立強(qiáng)夯加固土體的模型,用沖擊荷載考慮強(qiáng)夯對(duì)土體的短暫作用,利用實(shí)測(cè)數(shù)據(jù)對(duì)數(shù)值分析結(jié)果進(jìn)行了驗(yàn)證,證明所采用的方法是正確的。J.L.Pan 和A.R.Selby[6]研究表明,直接定義夯錘與接觸土體之間的接觸來(lái)模擬,對(duì)土體中的應(yīng)力分析取得了成功。
土體本構(gòu)關(guān)系采用Drucker-Prager彈塑性本構(gòu)關(guān)系。將夯錘當(dāng)作剛體,鋼材材料作為其屬性,密度7850kg/m3,泊松比0.33,彈性模量206GPa;土體密度1760Kg/m3,泊松比0.3,剪切模量6MPa,C=18kPa,φ=19°。采用八節(jié)點(diǎn)六面體單元SOLID164模擬夯錘和土體。假設(shè)不考慮地下水的影響,土體是水平狀均質(zhì)土體,夯錘在夯擊接觸過(guò)程中底部保持水平,建立長(zhǎng)20米、寬20米、深25米的長(zhǎng)方體作為土的模型,取土體和夯錘的1/4,錘直徑為2.5米、重20噸。對(duì)夯錘和土體采用映射劃分網(wǎng)格進(jìn)行劃分,從夯點(diǎn)向周圍成等比例加大,模型如圖1所示。
圖1 減振溝模型
裘以惠[7]等對(duì)強(qiáng)夯進(jìn)行了現(xiàn)場(chǎng)實(shí)測(cè),結(jié)果表明強(qiáng)夯產(chǎn)生的應(yīng)力波有一個(gè)尖峰,沒(méi)有明顯的第二波峰,接觸時(shí)間是0.04~0.2s。本次分析求解時(shí)間設(shè)置為0.5s,主要是因?yàn)樵诘乇砻婢嗪粨酎c(diǎn)不同距離處,根據(jù)程序試算,強(qiáng)夯引起的的振動(dòng)在0.5s內(nèi)達(dá)到了峰值。
表1 建立各模型的參數(shù)
由模型O和A求解可得,水平速度最大值的減小對(duì)比曲線如圖2所示。由圖示知,距夯點(diǎn)4米到7米,水平向速度峰值減小90%,在無(wú)減振溝時(shí)水平向速度峰值減小66%,說(shuō)明溝后土體減小振動(dòng)的效果明顯。由模型O和B求解可得,豎向速度最大值的減小對(duì)比曲線如圖3所示。分析表明減振溝對(duì)位于減振溝后面的土體確實(shí)起到了很好的減振效果。
圖2 水平向振動(dòng)速度變化曲線對(duì)比
圖3 豎直向振動(dòng)速度變化曲線對(duì)比
分別距夯點(diǎn)水平距離5米、7米、9米三個(gè)不同位置處設(shè)置同樣減振溝(深度3米、寬度1米)建立模型A、B、C。豎向速度最大值的曲線如圖4所示??梢缘玫剑嗪稽c(diǎn)5米、7米、9米位置處設(shè)置減振溝,可以使6米、8米、10米處土體水平向速度峰值最小。表明在其他因素相同時(shí),應(yīng)盡可能加大夯擊點(diǎn)到減振溝的距離,減小需保護(hù)建筑或其他對(duì)象到減振溝的距離才能使減振效果最好。
圖4 豎直向振動(dòng)速度變化曲線對(duì)比
距夯點(diǎn)水平距離5米處設(shè)減振溝,分別建立寬為1米,深為3米、4米、5米、6米的減振溝模型A、D、E、F,求解得到豎向速度最大值曲線如圖5所示。由圖分析可得,溝深為3米與4米、5米、6米時(shí)減振效果比較,表明減振效果與溝深成正比。溝深為4米、5米、6米時(shí),距夯點(diǎn)不同水平距離豎向速度峰值比較接近,表明他們的減振效果都比較接近。這說(shuō)明溝深超過(guò)一個(gè)定值后,隨溝深的加大減振效果不再提高很大,因此我們?cè)谠O(shè)計(jì)減振溝時(shí)應(yīng)注意溝深的取值。
圖5 豎直向振動(dòng)速度變化曲線對(duì)比
距夯點(diǎn)5米的水平距離,分別建立深度3米,寬度1.0米、2.0米、3.0米的減振溝模型,即模型A、G、H。求解得到距夯點(diǎn)不同水平距離,豎向速度峰值變化曲線如圖6所示。由圖分析可得,不同寬度的減振溝,不同距離處水平向、豎向速度峰值都很接近,表明溝寬對(duì)減振效果的影響很小,在實(shí)際設(shè)計(jì)中按需要設(shè)置寬度即可。
圖6 豎直向振動(dòng)速度變化曲線對(duì)比
為了分析在同一能級(jí)4000KN·m時(shí),不同直徑的夯錘對(duì)周邊場(chǎng)地的振動(dòng)效應(yīng),建立在無(wú)減振溝狀態(tài)下,三個(gè)不同直徑夯錘(錘徑2.5m、2.0m、1.2m,高為0.52m、0.81m、2.25m的圓柱實(shí)體)的數(shù)值模型。夯錘密度都是7850Kg/m3,質(zhì)量為20噸。求解得到三種不同直徑夯錘強(qiáng)夯的豎向速度最大值的變化曲線如圖7所示。圖示分析表明強(qiáng)夯夯擊點(diǎn)附近近處,小直徑夯錘強(qiáng)夯引發(fā)的地面振動(dòng)速度遠(yuǎn)小于大直徑。隨距離夯擊點(diǎn)水平方向距離的加大,三種直徑夯錘引發(fā)的地面振動(dòng)速度越來(lái)越接近。因此,我們?cè)谠O(shè)計(jì)時(shí),可以選擇較小直徑夯錘強(qiáng)夯來(lái)滿足減弱地面振動(dòng)的要求。
圖7 豎直向振動(dòng)速度變化曲線對(duì)比
分析表明,在設(shè)計(jì)減振溝時(shí),要減少建筑物或構(gòu)筑物到減振溝的距離、利用現(xiàn)場(chǎng)試驗(yàn)確定某一最佳溝深來(lái)達(dá)到最佳減振效果。此外,還可以在滿足加固深度的前提下,利用小直徑夯錘在需保護(hù)對(duì)象附近強(qiáng)夯,也可以達(dá)到保護(hù)已有建筑物或構(gòu)筑物的目的。