• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Outdoor Experimental Verification of Multicore Fiber Based On Multiparameter Measurement

    2020-11-10 11:36CaiSijia
    中阿科技論壇(中英阿文) 2020年8期

    Cai Sijia

    摘要:提出了一種基于多芯光纖的新型結(jié)構(gòu)健康監(jiān)測傳感系統(tǒng)。通過利用多芯光纖,光纖布拉格光柵(FBG)傳感器,拉曼光時域反射儀(ROTDR)和基于偏振檢測的振動傳感器(PVS)的豐富的空間劃分通道,成功實現(xiàn)了同時應變,溫度和強度的集成。振動感應。為了檢驗所提出的傳感技術(shù)在實際應用中的可行性,已將具有不同載荷水平的靜態(tài)載荷和具有不同振動頻率的動態(tài)載荷應用于具有表面粘結(jié)7芯光纖并受噪聲和環(huán)境影響的簡單支撐鋼工字梁外部壓力。測量結(jié)果表明,基于FBG和PVS的振動傳感可同時覆蓋低頻和高頻監(jiān)測,而FBG和ROTDR組合傳感可精確測量應變和溫度。提議的傳感技術(shù)在戶外實驗中的性能證明了其在結(jié)構(gòu)健康的多參數(shù)監(jiān)測中的潛在應用。

    關(guān)鍵詞:多芯光纖;振動傳感;高頻監(jiān)測

    Abstract: A novel structural health monitoring sensing system based on multicore fiber has been proposed in this paper. By utilizing the abundant space-division channels of the multicore fiber, fiber Bragg grating (FBG) sensor, the Raman optical time domain reflectometry (ROTDR) and polarization detection-based vibration sensor (PVS) are successfully integrated to realize simultaneous strain, temperature and vibration sensing. To examine the feasibility of the proposed sensing technology in practical application, static loads of different loading levels and dynamic loads of different vibration frequencies have been applied to a simple supported steel I-beam with surface bonded 7-core fiber with influence of noise and ambient external stress. The measurement results show that the FBG and PVS based vibration sensing covers the both low frequency as well as high frequency monitoring and the FBG and ROTDR combined sensing can precisely measure strain and temperature. The performances of proposed sensing technology in outdoor experiment demonstrate a potential application in multi-parameter monitoring of structural health.

    Key words: Disabled;Expression of intrests; Mechanism; Path

    CLC number:TP212? ? ? ? ? Document identification code: A

    1 Introduction

    Structural Health Monitoring (SHM) can be considered as an integration of sensing and characterization strategies to continuously detect the structure condition and identify structural damage. Optical fiber sensors and sensor networks are well suited for the application as non-destructive sensing paradigms in SHM field due to the particular characteristics of the optical fiber, such as flexibility, durability, immunity to electrical and magnetic interference, and the measuring distance can be very long, as compared with traditional sensors [1-3]. In recent years, optical fiber sensors have been successfully applied to buildings [4,5], piles [6], bridges [7,8], pipelines [9,10], tunnels [11] and hydroelectric dams [12] to measure strain and temperature, as well as to monitor displacements, cracks, and weight in motion. However, several problems limit the further commercial promotion.

    The most prominent problem is that cross-sensitivity of strain and temperature exists in most optical fiber sensors, such as the most widely used Fiber Bragg Grating (FBG) sensors in civil engineering. The strain on the surface of a structure can be inferred by measuring the Bragg resonance wavelength of surface-bonded FBG sensors. Meanwhile, ambient temperature variance also results in the shift in the Bragg resonance wavelength. Thus, single measurement cannot discriminate the temperature and strain effect. An alternative to overcome the cross-sensitivity is to use at least two FBG sensors. A tensioned FBG sensor is bonded tightly along the structure to detect the strain, while another loosely bonded FBG sensor is used to measure only the temperature and compensate for the temperature effect in the first sensor.

    A more attractive way to improve the multiparameter discriminative capability is using multicore-fiber based spatial-division-multiplexing (SDM) sensing technologies. The concept of SDM technologies allowing autonomous data streams to be transmitted in parallel spatial channels is not so new in the telecommunications industry [13]. Such spatial channels have recently been used in optical sensing applications where the returned echo is analyzed for the collection of essential environmental information [14]. As one kind of SDM implementation, a multicore-fiber simultaneously has parallel lightwave paths that permit the presence of multiple sensors in the same fiber cross-section. Therefore, the multicore fiber based SDM sensing systems exhibit great potential for simultaneous measurement of temperature and strain by utilizing one single-strand of fiber with many independent cores. Moreover, multicore-fiber based SDM sensing technologies are capable of vibration sensing, which is also a key parameter for SHM.

    The current research on multicore fibers sensing is mainly focused on their use as shape sensors [15,16] or high temperature sensors [17,18]. In the few studies of simultaneous multi-parameter sensing based on multicore fiber, Newkirk et al. [19] demonstrated a force and temperature sensor. They looked at the dependence of the strain sensitivity on the cladding diameter of the multicore fiber. To decouple the force and temperature they used two multicore fiber sections with different outer diameters. Silva et al. [20] proposed a suspended multicore fiber sensor for simultaneous measurement of curvature and strain. However, these physical parameters were also not simultaneous measured in separate cores in a multicore-fiber, but were discriminated by using matrix method. Aforementioned multicore-fiber based sensors only employed the multicore fiber as a single channel waveguide. When these sensors are applied to SHM, there may be some limitations, such as the measurement of static strain, temperature and vibration of the structure at the same time.

    In this paper, by utilizing inherent spatial-division multiplexing property in multicore fibers, we design and fabricate a multi-parameter sensor based on one single optical fiber. The optical fiber with seven cores arranged in a hexagonal array contains fiber Bragg gratings (FBGs), a distributed temperature sensor and polarization detection-based vibration sensors (PVS), which allows simultaneous strain, temperature, as well as vibration sensing. For sensors in SHM systems, the main challenge is to assure that the sensor system itself is stable when deployed in the field. For this purpose, an outdoor experiment has been conducted by bonding the multicore fiber to the surface of a simple supported steel I-beam. Results show that designed multi-parameter sensor is reliable and sensitive to detect early structural malfunction.

    2 Principle of multi-parameter measurement

    The cross-section of the multicore fiber used is shown in Figure 1. The multiparameter measurement is realized by spatially multiplexing the FBG sensor, ROTDR and PVS via different cores of the multicore fiber. The algorithms for detecting the state of the structure are described below.

    An Optical Fiber Grating (FBG) can be understood as an optical fiber with a periodic refractive index perturbation pattern inscribed in the core such that it diffracts the optical signal in the guided mode at specific wavelengths. When light is made to pass through the grating, at a particular wavelength, called the Bragg wavelength, the light reflected by the varying zones of refractive indices will be in phase and amplified. The Bragg wavelength is expressed as

    where? is the Bragg wavelength, is the effective refractive index of the FBG and? is the grating period. The shift in the Bragg wavelength due to the changes in the temperature and strain is expressed as

    where? ? ? is the change in temperature experienced at the FBG location and is the longitudinal strain on the FBG, the? ? ?and? ? ?are coefficients of wavelength sensitivity to temperature and strain, respectively [21]. Due to the fiber bending sensitivity of FBGs, two symmetrical outer cores FBG are designed to eliminate the shift effect caused by bending.

    For pure strain measurements, effects of temperature change on the Bragg wavelength has to be suitably compensated. To measure temperature distribution, we propose to monitor the temperature effects of spontaneous Raman backscattering of distributed temperature sensor called Raman Optical Time Domain Reflectometry (ROTDR). When light get through the optical fiber, collision between photonic and phonon will lead to Raman scattering. The backscattered Raman photons contains information about the temperature distribution along the optical fiber. The relation can be described by [22]:

    where? ? ? and? ? ? are the Stokes and anti-Stokes wavelengths, h and k are Plancks and Boltzmanns constants, c is the speed of light in vacuum,? ? ? is the amount of Migration wave, and T is the temperature in Kelvin. Because of it has no effect with strain, ROTDR has a high degree of accuracy, and is easy to fix up distributed.

    On the other, using a single FBG sensor in conjunction with an unbalanced fiber interferometer wavelength discriminator, high-resolution vibrations can be detected. The shift in the Bragg wavelength of the FBG detected in this way results in an interferometric signal output? ? ? ? ?, which is given by?and? where A is a constant, b is the fringe visibility,? φis the phase difference between the interferometer arms,? ? ? ? ? ?is the induced phase shift,? is the refractive index of the interferometer medium and? ? δL is the optical path-difference between the interferometer arms. If the wavelength-shift of the FBG is? δγB and the fibre strain isδσ , then δγB =kδσ, where k is a constant depending on the strain-to-wavelength-shift responsivity of the FBG. Thus, the dynamic strain-induced change of the reflected wavelength can be modulated [23].

    Taking advantage of abundant space-division channels of the multicore fiber, we propose to make use of analysis of polarization for distributed vibration monitoring. Since the polarization of the transmission light is very sensitive to perturbations, the information of external events can be obtained by measuring the change of the state of polarization (SOP) of the Rayleigh backscattering light along the fiber [24]. Assume that Sin, S(z), and Sb(z) are the SOP of the incident light, the light at the position z , and the Rayleigh backscattering light from the position z , respectively. This gives the equations [25]:

    where M is the Mueller matrix expressing the evolution of the SOP of the light from fiber initial end to the position z and R is the Mueller matrix for forward propagation. When the fiber is disturbed at a certain position on the fiber, the polarization is thereby modified and then detected by the analyzer via the coupler. Thus, the SOP change of any point z along the fiber, and therefore the vibration, can be detected. This technology can be used to probe vibration for its advantages such as high sensitivity and short response time, etc.

    3 Experimental setup and results

    3.1 Calibration of FBG and ROTDR

    Under the constant environmental temperature, the axial tensile strain of the gauge length fiber is changed to calibrate the strain sensitivity of the FBG. Table 1 presents the calibration data measured by the fiber grating demodulator, where? is strain induced wavelength shift and? is the Bragg wavelengths. For an intuitive perception, figure 2 shows the Bragg wavelength as a function of applied strain, while the line represents the linear fitting results of the original data. The results show a good linear relation of with the applied strain, the degree of fitting for which is 0.9996. On the basis of the calculation result, the wavelength-strain coefficient of the used FBG is found to be 1.2 pm/με.

    Based on the Raman temperature measurement equation mentioned above, Raman temperature constant need to be calibrated in advance. The calibration results measured by changing the temperature are shown in table 2. Finally, an average of the Raman temperature constant is calculated to be 0.0019.

    3.2 Multi-parameter sensing

    In order to verify the efficiency of SHM based on multicore fiber, a series of tests has been carried out outdoors. The experiment has been performed on a steel I-beam. The two ends of the I-beam are simply supported with a span length of 9 m. The sensing fiber is tightly glued to the bottom of the web of the steel beam.

    3.2.1 Static load test

    The purpose of this experiment is to investigate the performance of FBG sensors and ROTDR in quantifying strain and temperature. In the experiment, the strain is applied stepwise to two third-points of the length of the I-beam using masses with a weight of 113 kg each. That is, the loading values under six load levels are 0, 1.13 KN, 2.26 KN, 3.39 KN, 4.52 KN, 5.65 KN, 6.78 KN, respectively. The grating segments of the FBG are inscribed at the positions that coincides with the center span and two third-points of the I -beam. The strain at these positions under different loads is measured with the inscribed FBG sensor, while the deflection of these positions is measured with an electronic level. The results of strain measurement with FBG are then compared with the calculation results of the finite element method (FEM) by fitting the deflection values as shown in Figure 2. For each load level, the ambient temperature measured with ROTDR is compared with a thermometer. The measured results are exhibited in Figure 3.

    It can be seen that the temperature results measured with ROTDR are very close to the measurement results with the thermometer. The experiment has been conducted in the afternoon, and both results can reflect a gradual temperature decreasing at that time. Thus, the measured temperature can be readily used to compensate the temperature sensitive of the FBG sensor. On the other hand, strain measurement using FBG displays a satisfied consistence with the results obtained from finite element method under different ambient temperature, which demonstrates that proposed simultaneous measurement of strain and temperature using spatially multiplexed FGB and ROTDR via multicore fiber is reliable.

    3.2.2 Dynamic load test

    The aim of this experiment is to study the ability of vibration measurement. Different excitation events are generated by hammering on two third-points, center span and vibration motor with speed of 60 r/min, 80 r/min, 100 r/min, respectively. Here the hammering is an impact for the I-beam, and the vibration motor is the source of continuous vibration. For each dynamic load, the response of the structure is simultaneously measured by FBG sensor, FVS and accelerometer. Their measured time domain vibration signal at different frequency and the demodulated frequency spectral using FFT are shown in Figure 4-7. The measured inherent frequencies of the I-beam are compared as presented in table 4, and the change of inherent frequency can reflect the occurrence of early structural malfunction.

    As can be seen, the analyzed inherent frequency of the I-beam with the help of the FBG sensor matches very well with the results of accelerometer under different vibrational excitation. With the help of the FVS, there is no obvious result under the vibration motor with a speed of 60 r/min or lower frequency excitation. But it can measure the inherent frequency of the structure under higher frequency excitation. This phenomenon suggests that FVS is more sensitive to high-frequency vibration, which is suitable for application in seismic monitoring.

    4 Concluding remarks

    In this study, a multicore fiber based multiparameter smart sensing is proposed. By utilizing the spatial multiplexing of FBG, ROTDR and PVS in a 7-core fiber, this sensing technology enables simultaneous measurement of strain, temperature and vibration. To study the feasibility of the proposed sensing technology, experiment under the influence of noise and external stress has been carried out outdoors. The results of static load test demonstrate that the discriminated strain and temperature sensing combining FBG and ROTDR is validated. And the results of dynamic load test indicate that the proposed sensing design combining FBG and PVS can realize accurate measurement of both low frequency and high frequency vibration under complex outdoor environment. All the experimental results show great potential application of the proposed sensing technology for long-term SHM, condition assessment of structures, vibration and seismic response structures and traffic loading assessment on bridges.

    (責任編輯:陳之曦)

    References

    [1]Li H N, Li D S, Song G B. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering structures, 2004, 26(11): 1647-1657.

    [2]da Costa Antunes P F, Lima H F T, Alberto N J, et al. Optical fiber accelerometer system for structural dynamic monitoring[J]. IEEE Sensors Journal, 2009, 9(11): 1347-1354.

    [3]Guo H, Xiao G, Mrad N, et al. Fiber optic sensors for structural health monitoring of air platforms[J]. Sensors, 2011, 11(4): 3687-3705.

    [4]Whelan M P, Albrecht D, Capsoni A. Remote structural monitoring of the Cathedral of Como using an optical fiber Bragg sensor system[C]. Smart structures and materials 2002: smart sensor technology and measurement systems. International Society for Optics and Photonics, 2002, 4694: 242-252.

    [5]Iwaki H, Yamakawa H, Mita A. Health monitoring system using FBG-based sensors for a 12-story building with column dampers[C]. Smart Structures and materials 2001: Smart Systems for Bridges, Structures, and Highways. International Society for Optics and Photonics, 2001, 4330: 471-478.

    [6]Baldwin C S, Poloso T, Chen P C, et al. Structural monitoring of composite marine piles using fiber optic sensors[C]. Smart structures and materials 2001: smart systems for bridges, structures, and highways. International Society for Optics and Photonics, 2001, 4330: 487-497.

    [7]Chan T H T, Yu L, Tam H Y, et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation[J]. Engineering structures, 2006, 28(5): 648-659.

    [8]Tennyson R C, Mufti A A, Rizkalla S, et al. Structural health monitoring of innovative bridges in Canada with fiber optic sensors[J]. Smart materials and Structures, 2001, 10(3): 560.

    [9]Nikles M. Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection[C]. Fiber optic sensors and applications VI. International Society for Optics and Photonics, 2009, 7316: 731602.

    [10]Glisic B, Yao Y. Fiber optic method for health assessment of pipelines subjected to earthquake-induced ground movement[J]. Structural Health Monitoring, 2012, 11(6): 696-711.

    [11]Shi B, Xu H, Chen B, et al. A feasibility study on the application of fiber-optic distributed sensors for strain measurement in the Taiwan Strait Tunnel project[J]. Marine Georesources and Geotechnology, 2003, 21(3-4): 333-343.

    [12]Kronenberg P, Casanova N, Inaudi D, et al. Dam monitoring with fiber optics deformation sensors[C]. Smart Structures and Materials 1997: Smart Systems for Bridges, Structures, and Highways. International Society for Optics and Photonics, 1997, 3043: 2-11.

    [13]Iano S, Sato T, Sentsui S, et al. Multicore optical fiber[C]. Optical Fiber Communication Conference. Optical Society of America, 1979: WB1.

    [14]Weng Y, Ip E, Pan Z, et al. Advanced spatial-division multiplexed measurement systems propositions—from telecommunication to sensing applications: a review[J]. Sensors, 2016, 16(9): 1387.

    [15]Flockhart G M H, MacPherson W N, Barton J S, et al. Two-axis bend measurement with Bragg gratings in multicore optical fiber[J]. Optics letters, 2003, 28(6): 387-389.

    [16]Saffari P, Allsop T, Adebayo A, et al. Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures[J]. Optics letters, 2014, 39(12): 3508-3511.

    [17]Antonio-Lopez J E, Eznaveh Z S, LiKamWa P, et al. Multicore fiber sensor for high-temperature applications up to 1000 C[J]. Optics letters, 2014, 39(15): 4309-4312.

    [18]Van Newkirk A, Antonio-Lopez E, Salceda-Delgado G, et al. Optimization of multicore fiber for high-temperature sensing[J]. Optics letters, 2014, 39(16): 4812-4815.

    [19]Van Newkirk A, Antonio-Lopez J E, Salceda-Delgado G, et al. Multicore fiber sensors for simultaneous measurement of force and temperature[J]. IEEE Photonics Technology Letters, 2015, 27(14): 1523-1526.

    [20]Silva R M, Ferreira M S, Kobelke J, et al. Simultaneous measurement of curvature and strain using a suspended multicore fiber[J]. Optics letters, 2011, 36(19): 3939-3941.

    [21]Liu Y, Zongjiu Z. Design of distributed fiber optical temperature measurement system based on Raman scattering[C]. 2010 International Symposium on Signals, Systems and Electronics. IEEE, 2010, 2: 1-4.

    [22]Wang X, Zhang X, Wang F, et al. Application of frequency spectrum analysis in measuring multi-vibrations by using POTDR[C]. 2011 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Integration. International Society for Optics and Photonics, 2011, 8198: 819808.

    [23]Gangopadhyay T K. Prospects for fiber Bragg gratings and Fabry-Perot interferometers in fiber-optic vibration sensing[J]. Sensors and Actuators A: Physical, 2004, 113(1): 20-38.

    [24]Liu X, Jin B, Bai Q, et al. Distributed fiber-optic sensors for vibration detection[J]. Sensors, 2016, 16(8): 1164.

    [25]Majumder M, Gangopadhyay T K, Chakraborty A K, et al. Fibre Bragg gratings in structural health monitoring—Present status and applications[J]. Sensors and Actuators A: Physical, 2008, 147(1): 150-164.

    欧美成人午夜免费资源| 久久久精品大字幕| 男插女下体视频免费在线播放| 久久久久久伊人网av| 国产爱豆传媒在线观看| 亚洲国产精品久久男人天堂| 少妇人妻精品综合一区二区| 国产精品女同一区二区软件| 麻豆av噜噜一区二区三区| av天堂中文字幕网| 国产大屁股一区二区在线视频| 麻豆成人午夜福利视频| 97热精品久久久久久| 校园人妻丝袜中文字幕| 日韩 亚洲 欧美在线| 韩国高清视频一区二区三区| 国产伦精品一区二区三区四那| 国产午夜福利久久久久久| 国内少妇人妻偷人精品xxx网站| 国产一区二区三区av在线| 欧美bdsm另类| 精品久久国产蜜桃| 2021天堂中文幕一二区在线观| 高清在线视频一区二区三区 | 在线观看一区二区三区| 边亲边吃奶的免费视频| 国语自产精品视频在线第100页| 人妻制服诱惑在线中文字幕| 亚洲国产精品合色在线| 哪个播放器可以免费观看大片| 亚洲精品乱久久久久久| 亚洲国产精品成人综合色| 一级av片app| 国产成人a区在线观看| 麻豆成人av视频| 欧美又色又爽又黄视频| 国产成人精品婷婷| 一边摸一边抽搐一进一小说| 丝袜喷水一区| 亚洲最大成人中文| ponron亚洲| 日韩欧美三级三区| 国产成人a∨麻豆精品| 免费观看人在逋| av在线蜜桃| 免费在线观看成人毛片| 淫秽高清视频在线观看| 国产不卡一卡二| 日韩在线高清观看一区二区三区| 啦啦啦韩国在线观看视频| 国产伦一二天堂av在线观看| 人人妻人人澡欧美一区二区| 久久精品综合一区二区三区| 亚洲18禁久久av| 嫩草影院入口| 国产v大片淫在线免费观看| 亚洲人成网站在线观看播放| 国产精品一区二区在线观看99 | 综合色丁香网| 国产真实乱freesex| 黄色欧美视频在线观看| 亚洲欧美精品自产自拍| 神马国产精品三级电影在线观看| 青春草亚洲视频在线观看| 一区二区三区乱码不卡18| 69av精品久久久久久| a级毛色黄片| 日本一本二区三区精品| 国产午夜精品论理片| 亚洲av中文av极速乱| 国产成人免费观看mmmm| 床上黄色一级片| 男人和女人高潮做爰伦理| 亚洲美女搞黄在线观看| 亚洲在久久综合| 男女啪啪激烈高潮av片| 长腿黑丝高跟| 成人性生交大片免费视频hd| 十八禁国产超污无遮挡网站| 看片在线看免费视频| 日韩av不卡免费在线播放| 国产成人免费观看mmmm| 国产淫片久久久久久久久| 观看免费一级毛片| 精品酒店卫生间| 草草在线视频免费看| av在线天堂中文字幕| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久久久久| 亚洲,欧美,日韩| 美女脱内裤让男人舔精品视频| 高清日韩中文字幕在线| 一级毛片我不卡| 亚洲av不卡在线观看| 久久亚洲国产成人精品v| 国产精品人妻久久久久久| 1000部很黄的大片| 日韩欧美三级三区| 久久99热6这里只有精品| 中文字幕久久专区| 黄色欧美视频在线观看| 黄片无遮挡物在线观看| 综合色av麻豆| 丰满少妇做爰视频| 亚洲精品一区蜜桃| 成年版毛片免费区| 天堂中文最新版在线下载 | 欧美丝袜亚洲另类| 亚洲av成人精品一区久久| 人妻制服诱惑在线中文字幕| av免费在线看不卡| 日日摸夜夜添夜夜爱| av免费观看日本| 99热6这里只有精品| 性色avwww在线观看| 床上黄色一级片| 欧美一区二区亚洲| 床上黄色一级片| 国产精品女同一区二区软件| 亚洲内射少妇av| 日日摸夜夜添夜夜爱| 好男人视频免费观看在线| 好男人视频免费观看在线| 久久精品夜色国产| 国产一区有黄有色的免费视频 | 久久久a久久爽久久v久久| 日日干狠狠操夜夜爽| 久久久久国产网址| 白带黄色成豆腐渣| 中国美白少妇内射xxxbb| 黄色日韩在线| 久久精品熟女亚洲av麻豆精品 | 色吧在线观看| 久久这里只有精品中国| 久久99热这里只有精品18| 欧美精品国产亚洲| 亚洲国产精品成人综合色| 国产精品蜜桃在线观看| 亚洲美女搞黄在线观看| 久久久欧美国产精品| 国产白丝娇喘喷水9色精品| 一个人看的www免费观看视频| 亚洲精品乱码久久久久久按摩| 日韩中字成人| 国产亚洲午夜精品一区二区久久 | 亚洲av日韩在线播放| 国产成人91sexporn| 国产成人精品婷婷| 日日干狠狠操夜夜爽| 男女视频在线观看网站免费| 一边摸一边抽搐一进一小说| 蜜桃亚洲精品一区二区三区| 超碰97精品在线观看| 成人亚洲精品av一区二区| 久久久久久久久久久丰满| 天堂网av新在线| 成人毛片a级毛片在线播放| 一区二区三区高清视频在线| 亚洲欧美精品自产自拍| 欧美日韩精品成人综合77777| 综合色av麻豆| 国产麻豆成人av免费视频| 特大巨黑吊av在线直播| 国产成人精品一,二区| 国产精品久久久久久久久免| 亚洲欧美精品综合久久99| 亚洲久久久久久中文字幕| 成人欧美大片| 午夜免费男女啪啪视频观看| 日本免费在线观看一区| 久久久久久久久久成人| 人体艺术视频欧美日本| 深夜a级毛片| 久久99热这里只有精品18| 亚洲va在线va天堂va国产| 99久久人妻综合| 欧美不卡视频在线免费观看| 村上凉子中文字幕在线| 免费观看人在逋| 女的被弄到高潮叫床怎么办| 搞女人的毛片| 亚洲乱码一区二区免费版| 搡老妇女老女人老熟妇| 美女内射精品一级片tv| 欧美成人免费av一区二区三区| 高清毛片免费看| 欧美人与善性xxx| 国产午夜福利久久久久久| 干丝袜人妻中文字幕| 一级黄片播放器| 日韩欧美国产在线观看| 国产午夜精品论理片| 亚洲美女搞黄在线观看| 欧美97在线视频| 99视频精品全部免费 在线| 亚洲18禁久久av| 啦啦啦啦在线视频资源| 日韩欧美 国产精品| 在线观看美女被高潮喷水网站| 在线播放国产精品三级| 成人一区二区视频在线观看| 亚洲成人中文字幕在线播放| 春色校园在线视频观看| 内射极品少妇av片p| 99久久中文字幕三级久久日本| 国产黄色视频一区二区在线观看 | 久久婷婷人人爽人人干人人爱| 久久久国产成人免费| 黄色配什么色好看| 搡女人真爽免费视频火全软件| 国产精品嫩草影院av在线观看| 国产激情偷乱视频一区二区| 村上凉子中文字幕在线| 午夜免费激情av| 中文乱码字字幕精品一区二区三区 | 人体艺术视频欧美日本| 午夜福利成人在线免费观看| 亚洲av中文字字幕乱码综合| 久久久亚洲精品成人影院| 有码 亚洲区| 毛片一级片免费看久久久久| 亚洲欧美一区二区三区国产| videos熟女内射| 久久鲁丝午夜福利片| 男女啪啪激烈高潮av片| 男女啪啪激烈高潮av片| 亚洲一级一片aⅴ在线观看| 最近手机中文字幕大全| 老司机影院成人| 久久久久性生活片| 老女人水多毛片| 97超碰精品成人国产| 欧美日本亚洲视频在线播放| 最近视频中文字幕2019在线8| 国产中年淑女户外野战色| 久久亚洲国产成人精品v| 村上凉子中文字幕在线| 最近中文字幕高清免费大全6| 亚洲精品456在线播放app| 亚洲在久久综合| 在线观看一区二区三区| 亚洲五月天丁香| 国产在线一区二区三区精 | 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区 | 精品国产一区二区三区久久久樱花 | 欧美潮喷喷水| 夜夜看夜夜爽夜夜摸| 亚洲精品色激情综合| 日韩高清综合在线| 亚洲天堂国产精品一区在线| 日韩,欧美,国产一区二区三区 | 99在线视频只有这里精品首页| 国产免费又黄又爽又色| 亚洲av二区三区四区| 亚洲欧美成人综合另类久久久 | 欧美激情国产日韩精品一区| 婷婷色麻豆天堂久久 | 成人亚洲精品av一区二区| 国产欧美日韩精品一区二区| 精品人妻偷拍中文字幕| 亚洲国产欧洲综合997久久,| 国产亚洲精品久久久com| 亚洲图色成人| 国产成人freesex在线| 久久国产乱子免费精品| 成人av在线播放网站| 最近中文字幕2019免费版| 亚洲国产欧洲综合997久久,| 99久久人妻综合| 黄片无遮挡物在线观看| 在线免费十八禁| 国产精品1区2区在线观看.| 免费大片18禁| 成人午夜精彩视频在线观看| 国产av不卡久久| 久久久久久久久久久丰满| 日本免费一区二区三区高清不卡| 美女cb高潮喷水在线观看| 亚洲成av人片在线播放无| 久久久成人免费电影| 韩国高清视频一区二区三区| av在线蜜桃| 狠狠狠狠99中文字幕| 国产精品麻豆人妻色哟哟久久 | 中文字幕熟女人妻在线| 小蜜桃在线观看免费完整版高清| 久久99热这里只有精品18| 国产亚洲av嫩草精品影院| 国产亚洲91精品色在线| 最近2019中文字幕mv第一页| 国产在视频线在精品| 日韩av不卡免费在线播放| 免费观看人在逋| 极品教师在线视频| 伊人久久精品亚洲午夜| 高清日韩中文字幕在线| 在线免费观看不下载黄p国产| 中文在线观看免费www的网站| 日韩一本色道免费dvd| 我要看日韩黄色一级片| 51国产日韩欧美| 男女啪啪激烈高潮av片| 九色成人免费人妻av| 男女国产视频网站| 一区二区三区免费毛片| 中文字幕av在线有码专区| 欧美bdsm另类| 一夜夜www| 国产黄片视频在线免费观看| 日韩视频在线欧美| 国产不卡一卡二| 最近中文字幕高清免费大全6| 天堂网av新在线| 欧美bdsm另类| 国产精品嫩草影院av在线观看| 日韩国内少妇激情av| 床上黄色一级片| 国产69精品久久久久777片| 日日摸夜夜添夜夜添av毛片| 日本午夜av视频| 18禁裸乳无遮挡免费网站照片| 精品久久久噜噜| 一区二区三区高清视频在线| 九九热线精品视视频播放| 国产乱来视频区| 伊人久久精品亚洲午夜| 日本wwww免费看| 国产高清有码在线观看视频| 国产精品久久久久久久久免| 精品无人区乱码1区二区| 干丝袜人妻中文字幕| 精品久久久久久久人妻蜜臀av| 日韩av不卡免费在线播放| 国产黄色小视频在线观看| 国产亚洲av片在线观看秒播厂 | 亚洲国产色片| 夜夜爽夜夜爽视频| 男的添女的下面高潮视频| 综合色丁香网| 精品久久久久久久久久久久久| 午夜福利在线观看免费完整高清在| 舔av片在线| 麻豆av噜噜一区二区三区| 国产熟女欧美一区二区| 亚洲av成人av| 少妇熟女欧美另类| 尾随美女入室| 欧美日本亚洲视频在线播放| 亚洲av男天堂| 欧美zozozo另类| 成人午夜精彩视频在线观看| 亚洲成人精品中文字幕电影| 春色校园在线视频观看| 麻豆一二三区av精品| 国产成人91sexporn| 最近的中文字幕免费完整| 国产淫语在线视频| 免费观看a级毛片全部| 成人午夜高清在线视频| 特大巨黑吊av在线直播| 在线天堂最新版资源| 亚洲国产精品专区欧美| 大香蕉97超碰在线| 国产亚洲av片在线观看秒播厂 | 久久婷婷人人爽人人干人人爱| 日日摸夜夜添夜夜爱| 亚洲av电影不卡..在线观看| ponron亚洲| 最近视频中文字幕2019在线8| 亚洲精品乱码久久久v下载方式| 中文天堂在线官网| 免费看美女性在线毛片视频| 91精品国产九色| 精品酒店卫生间| 亚洲av福利一区| 啦啦啦啦在线视频资源| 美女脱内裤让男人舔精品视频| 中文精品一卡2卡3卡4更新| 久久99热6这里只有精品| 免费av不卡在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 一边摸一边抽搐一进一小说| 久久这里有精品视频免费| 日本wwww免费看| 能在线免费观看的黄片| 国产成人freesex在线| 久久久久久伊人网av| 国产精品一二三区在线看| 亚洲成人av在线免费| 日韩强制内射视频| 午夜久久久久精精品| 久久久亚洲精品成人影院| 久久韩国三级中文字幕| 欧美一级a爱片免费观看看| 国内少妇人妻偷人精品xxx网站| 免费观看性生交大片5| 麻豆一二三区av精品| 久久这里只有精品中国| 国产精品国产三级国产专区5o | 亚州av有码| 卡戴珊不雅视频在线播放| 国产成人a区在线观看| 国产爱豆传媒在线观看| 一夜夜www| av线在线观看网站| 亚洲av日韩在线播放| 亚洲av电影在线观看一区二区三区 | 午夜久久久久精精品| 亚洲国产高清在线一区二区三| or卡值多少钱| 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| 国产黄色小视频在线观看| 如何舔出高潮| 九九在线视频观看精品| 99久久精品热视频| 又爽又黄无遮挡网站| 欧美日韩综合久久久久久| 久久久久久久久久黄片| 亚洲人成网站在线播| 一个人看的www免费观看视频| 亚洲av免费在线观看| 精品一区二区三区视频在线| 特级一级黄色大片| 久久婷婷人人爽人人干人人爱| 久久久久久久午夜电影| 亚洲av免费高清在线观看| kizo精华| 日日啪夜夜撸| 一个人免费在线观看电影| 久久精品国产亚洲av天美| 国产免费福利视频在线观看| 国产精品女同一区二区软件| 三级国产精品片| 中文字幕av成人在线电影| 99久久无色码亚洲精品果冻| 黄色欧美视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 美女cb高潮喷水在线观看| 身体一侧抽搐| 成人漫画全彩无遮挡| 久久草成人影院| 美女脱内裤让男人舔精品视频| 久久综合国产亚洲精品| 天堂网av新在线| 亚洲精品乱久久久久久| 99热全是精品| 国产白丝娇喘喷水9色精品| 国产精品女同一区二区软件| 观看免费一级毛片| 五月伊人婷婷丁香| 少妇的逼水好多| 中国美白少妇内射xxxbb| 欧美又色又爽又黄视频| 午夜福利在线观看吧| 中文资源天堂在线| 又粗又硬又长又爽又黄的视频| 99久久成人亚洲精品观看| 日本与韩国留学比较| 天天躁日日操中文字幕| 久久精品熟女亚洲av麻豆精品 | 色播亚洲综合网| 国产又黄又爽又无遮挡在线| 日韩精品青青久久久久久| 亚洲国产欧美在线一区| 精品欧美国产一区二区三| 亚洲av中文字字幕乱码综合| 3wmmmm亚洲av在线观看| 色视频www国产| 男人舔女人下体高潮全视频| 高清毛片免费看| www.色视频.com| 99久久人妻综合| 久久久成人免费电影| 成人一区二区视频在线观看| 久久精品综合一区二区三区| 在线播放无遮挡| 18禁在线播放成人免费| 人妻制服诱惑在线中文字幕| 校园人妻丝袜中文字幕| 国产精品99久久久久久久久| 91在线精品国自产拍蜜月| 久久久久久久久久成人| 欧美成人一区二区免费高清观看| 欧美三级亚洲精品| 乱系列少妇在线播放| 亚洲av中文av极速乱| 国产视频内射| 成人国产麻豆网| 日韩欧美国产在线观看| 成年女人永久免费观看视频| 中国美白少妇内射xxxbb| 亚洲aⅴ乱码一区二区在线播放| 国产黄片美女视频| 日本爱情动作片www.在线观看| 九九在线视频观看精品| 国产精品嫩草影院av在线观看| 日本与韩国留学比较| 国产精品蜜桃在线观看| 高清日韩中文字幕在线| 日本一本二区三区精品| 亚洲欧洲日产国产| 18+在线观看网站| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 成人无遮挡网站| 亚洲国产高清在线一区二区三| 99热6这里只有精品| 国产 一区精品| 成年免费大片在线观看| 草草在线视频免费看| 观看免费一级毛片| 偷拍熟女少妇极品色| 日韩国内少妇激情av| 免费观看的影片在线观看| 国产精品一区二区性色av| 国产单亲对白刺激| 久久婷婷人人爽人人干人人爱| 一级毛片aaaaaa免费看小| 中文字幕熟女人妻在线| 欧美激情久久久久久爽电影| 日韩亚洲欧美综合| 蜜臀久久99精品久久宅男| 久久精品国产鲁丝片午夜精品| 97超视频在线观看视频| 秋霞伦理黄片| 青青草视频在线视频观看| 色5月婷婷丁香| 91精品伊人久久大香线蕉| 国内少妇人妻偷人精品xxx网站| 国产亚洲一区二区精品| 国产不卡一卡二| 国产欧美日韩精品一区二区| 听说在线观看完整版免费高清| 在线a可以看的网站| 久久久久网色| 国产不卡一卡二| 观看免费一级毛片| 亚洲av一区综合| 国产精品.久久久| 国产成人aa在线观看| 国产真实伦视频高清在线观看| 在线播放国产精品三级| 国产成人福利小说| 黄色一级大片看看| 最后的刺客免费高清国语| 国产av在哪里看| 精品99又大又爽又粗少妇毛片| 精品久久久久久久久av| 伊人久久精品亚洲午夜| 精品一区二区三区视频在线| 黄片无遮挡物在线观看| 亚洲在线自拍视频| 18禁在线播放成人免费| 国产一级毛片七仙女欲春2| 99热6这里只有精品| 亚洲av男天堂| 十八禁国产超污无遮挡网站| 国产亚洲午夜精品一区二区久久 | 99久久精品热视频| 乱码一卡2卡4卡精品| 听说在线观看完整版免费高清| 国产免费男女视频| 久久久色成人| 亚洲激情五月婷婷啪啪| 欧美另类亚洲清纯唯美| 国产成人免费观看mmmm| 国产免费男女视频| 69av精品久久久久久| 精品熟女少妇av免费看| 亚洲精品456在线播放app| 高清日韩中文字幕在线| 国产免费男女视频| 国产在视频线精品| 日本午夜av视频| 国产精品麻豆人妻色哟哟久久 | 能在线免费观看的黄片| 精品人妻视频免费看| 男女那种视频在线观看| 久久久久久久午夜电影| 99热这里只有精品一区| 欧美精品一区二区大全| av在线观看视频网站免费| 国语对白做爰xxxⅹ性视频网站| 九草在线视频观看| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 亚洲av男天堂| 黄色欧美视频在线观看| 欧美精品国产亚洲| 国产成人a区在线观看| 麻豆国产97在线/欧美| 最近最新中文字幕大全电影3| 99久久精品热视频| 亚洲av成人精品一区久久| 美女黄网站色视频| 成人午夜精彩视频在线观看| 一夜夜www| 精品国产露脸久久av麻豆 | 免费电影在线观看免费观看| 精品久久久噜噜| 亚洲av电影在线观看一区二区三区 | 99久久精品热视频| 青春草视频在线免费观看| 99九九线精品视频在线观看视频| 色综合色国产| 国产精品熟女久久久久浪| 亚洲精品日韩在线中文字幕| 特大巨黑吊av在线直播| 最近最新中文字幕免费大全7| 麻豆一二三区av精品| 两个人视频免费观看高清| 亚洲欧美精品自产自拍| 搡老妇女老女人老熟妇|