• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on the real-time signal conditioning method for dispersion interferometer in HL-2M

    2020-11-10 03:02:20WeiZHANG張偉TongyuWU吳彤宇JianZHANG張健ZejieYIN陰澤杰andYanZHOU周艷
    Plasma Science and Technology 2020年11期
    關(guān)鍵詞:張健張偉

    Wei ZHANG(張偉),Tongyu WU(吳彤宇),Jian ZHANG(張健),Zejie YIN(陰澤杰) and Yan ZHOU(周艷)

    1 College of Electronics and Information,Hangzhou Dianzi University,Hangzhou 310018,People’s Republic of China

    2 State Key Laboratory of Particle Detection and Electronics,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 Department of Modern Physics,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    4 Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China

    Abstract

    Keywords:signal conditioning,electron density,dispersion interferometer,HL-2M

    1.Introduction

    Recently,HL-2M tokamak,upgraded from HL-2A tokamak,is under assembly progress in Southwestern Institute of Physics(SWIP)[1].The mission of HL-2M is to undertake plasma experiments under high-performance plasmas.The plasma electron density is one of the components of the fusion triple product.The density measurement is an indispensable part in the magnetically confined fusion plasma diagnostics.Since the electron density measurement system is one of the real-time feedback control systems,the accuracy and stability of the system are particularly crucial.

    Far-infrared(FIR)laser interferometers have been regarded as an effective diagnostic tool dedicated to the plasma electron density measurement[2].An heterodyne interferometer system has been deployed in HL-2A[3-6].It is based on the methanoic acid laser whose wavelength is 432.5 μm.The long wavelength laser interferometers are prone to occur more fringe jumps which is a serious problem in high-performance plasma measurements[7,8].Therefore,a new dispersion interferometer(DI)is proposed with 10.6 μm laser[9-11].The DI is much more stable than heterodyne interferometer because of the shorter wavelength of the laser[12,13].

    However,the intensity of the signal laser is weak near the detectors because of the complexity of DI light path.To process a valid measurement,a high sensitive detector is used for optical-to-electrical conversion.Thus,the intensity of the detected signal is easily affected by environmental factors.For instance,mechanical vibration,light path changes,and plasma refraction effect during the experiment will distort the signal amplitude.The insufficient signal amplitude results in worse signal-to-noise ratio(SNR)and lower accuracy.This is a hidden danger for the feedback and control in tokamak.In order to solve this problem,an amplifier with adjustable gain is used for HCOOH laser interferometers in HL-2A.It works well in some situations caused by effects that change slowly such as the attenuation of optical paths and cables[14].But it cannot deal with mechanical vibration and plasma refraction effects occurred during the plasma discharge.

    In this study,we focus on improving the accuracy of the DI system and proposed a real-time signal conditioning(RSC)method.It replaces traditional analog circuits with real-time,low latency feedback circle implemented on FPGA.It is able to adjust the amplitude changes caused by mechanical vibration and plasma refraction effects.After the RSC module outputs the signal with a sufficient amplitude,a synchronous demodulation module extracts the electron density signal to achieve real time and high temporal resolution measurements.

    Figure 1.Schematic diagram of the dispersion interferometer in HL-2M.

    2.Basic principle of the DI and demodulation system

    The principle of the DI system in HL-2M[7]is shown in figure 1,for more details,see the[11].

    The beam from the CO2laser is focused on a nonlinear crystal to generate a second harmonic beam.The beams propagate through the HL-2M plasma and get the information of the electron density.A photoelastic modulator(PEM)is placed after the plasma to phase modulate the second harmonic beam and the modulation angular frequency is ω0.Then,another nonlinear crystal generates a new second harmonic beam from the fundamental wave.There is a filter before the detector to ensure that only the beams with frequency of 2ω can reach the detector.The beams interfere with each other and the interference intensity is detected as

    where ω is the angular frequency of the laser.is the line-integrated electron density.A is the direct current component.ρ0is the amplitude of phase modulation by PEM.The term A is cut off by an analog filter,because it has no contribution to measurement.Thus,the digital signal from ADC is

    The signal I(t)contains many harmonic components,and n is a positive integer which represents the order of each harmonic component.Since the base frequency ω0is 50 kHz,I(t)contains components such as 50,100,and 150 kHz.The amplitudes with frequencies of 50 and 100 kHz are

    J1and J2refer the Bessel function of the first kind.By setρ0to 1.3rad,the value ofJ1( 2ρ0)is equaltoJ2( 2ρ0).Then,the densityisderived from equations(4)or(5):

    A synchronous demodulation system has been developed for HL-2M to get the amplitudes with the frequencies of 50 and 100 kHz[15].After the input signal I(t)passes through a high-pass filter,it is mixed with the reference signal output by PEM.Therefore,the specified frequency components are moved to direct current component.There are some digital low-pass filters after the mixer to recover the amplitudes with the frequencies of 50 and 100 kHz.Finally,we obtain the target signals I2/2 and?I1/2.More details about the synchronous demodulation algorithm are described in[16].

    3.The RSC method

    Signal with insufficient amplitude will lead to low measurement accuracy because of the low SNR.On the other hand,the digital signal will be cut off if the signal amplitude exceeds the ADC dynamic range.The cut-off distortions have more impacts on the measurement accuracy.Due to mechanical vibration and plasma refraction effects,the signal amplitude changes rapidly in plasma discharge experiments.In order to stabilize the signal amplitude during plasma discharge,the signal conditioning method should adjust the amplitude in real time.We proposed a RSC method based on negative feedback.

    Figure 2.The block diagram of the real-time signal conditioning method for DI.

    Figure 2 shows the block diagram of the RSC method.First,the signal from the interferometer passes through a high-pass filter to eliminate the low frequency component.The baseline variation is caused by environmental factors and the frequency of the variation is lower than 1 kHz.So the cutoff frequency of the filter is set to 1 kHz.The RSC method cannot make full use of the dynamic range of the ADC without the filter.Second,the signal from the filter feeds into a programmable-gain amplifier(PGA).The PGA is the main module of the RSC to implement the signal conditioning.Third,the output of PGA is fanned out by an amplifier to drive the ADC and the synchronous demodulation module.Fourth,the ADC transfers the analog signal to digital data.Finally,the FPGA monitors the signal amplitude and adjusts the gain of the PGA to maintain the suitable signal amplitude[17-19].The whole loop delay is less than 1 μs.

    There are some amplitude estimation methods in recent reports.Reference[20]focused on the amplitude estimation of a distorted sine wave by a windowed FFT algorithm.Nevertheless,it is difficult to get the amplitude of the signal I(t)with the FFT algorithm because there are many harmonic components in I(t).Hence,a digital envelope detection algorithm(DEDA)is proposed to replace analog circuits.It can get the amplitude in real time with low delay and low calculation resource consumption.

    Figure 3 shows the basic principle of the analog envelope detection circuit.The relationship between the output and input voltage can be written as

    Figure 3.The basic principle of the analog envelope detection circuit.

    The discrete forms of equations(7)and(8)are provided as

    where the ReLU is an activation function called rectified linear unit function.The time interval Δt is 0.1 μs,which corresponds to the sample rate of the ADC.The time constant τ=RC determines the rate at which the RC circuit discharges.Considering that the frequency of the signal is greater than 50 kHz,we choose a time constant of 0.25 ms which ensures the real-time performance of the method.

    The amplitude is estimated from the envelope calculation by DEDA.Accordingly,we can establish a negative feedback loop by setting the upper and lower thresholds.The FPGA decreases the gain of the PGA by 1 dB when the envelope exceeds the upper threshold.In contrast,the FPGA increases the gain of the PGA by 1 dB when the envelope drops below the lower threshold.Considering the latency of the feedback loop,the envelope monitoring process will be suspended after the gain adjustment signal is sent.The upper and lower thresholds are set to 90% and 72% of the ADC’s dynamic range,respectively.Therefore,the output from the RSC module will fall into a suitable range,as long as the gain adjustment does not exceed the upper and lower limits that the PGA can adjust.

    Figure 4.The block architecture of the synchronous demodulation system with RSC.

    4.Hardware implementation

    Based on the PCI Express eXtension for Instrumentation(PXIe)platform,a new PXIe RSC module has been designed for the synchronous demodulation system in HL-2M.As shown in figure 4,the DI data acquisition(DAQ)system with RSC consists of a PXIe RSC module,PXIe demodulation modules and a PXIe system controller.There are two independent DI channels in the system.

    4.1.PXIe RSC module

    The PXIe RSC module is a plug-in board which implements the RSC method.The module contains two independent DI channels with ultra-low crosstalk.

    A first-order RC high-pass filter is employed in each channel to filter out the low frequency component.The signal is amplified or attenuated by the PGA after passing through the filter[21,22].This module requires a wide reconfigurable gain range,a flat frequency and phase response to maintain low distortion.We choose the PGA870 manufactured by Texas Instruments as the critical part in the PXIe RSC module.It is a wideband PGA with low distortion and low noise for high-speed systems.It is ideally suited for RSC applications.The configurable gain range is?11.5 to 20 dB,and the gain settling time is less than 5 ns.These parameters meet the system requirements.

    The signal is sampled by the ADC after passing through the driver amplifier.The ADC is a 14 bit,105 Msps,lowpower dual-channel LTC2284.The RSC method is implemented in the Xilinx Spartan-6 high-speed FPGA.It also realized some other functions like DEDA and data uploading.The on board FPGA communicates with the PXIe controller through PXIe bus.

    4.2.PXIe demodulation module

    The signals from the PXIe RSC module are transferred to the PXIe demodulation modules which are the main components of the DAQ system.The PXIe demodulation module implements the synchronous demodulation algorithm described in section 2.To correct the fringe jump errors,the real-time phase jump process algorithm is applied after the Arc tangent operation in equation(6).It extends the phase measurement range of synchronous demodulation[23].Then the phase is multiplied by a factor to get the electron density.The modules use a fast digital-to-analog converter to transfer the electron density data to analog signal for low latency feedback in HL-2M.At the same time,the electron density data are uploaded for storage.

    4.3.PXIe controller

    The PXIe controller is a PXIe-8135 manufactured by National Instruments.It supports real-time operating system,which reduces the delay of the control system.The controller obtains the output of DEDA through PXIe bus for stability analysis.The data can be used to optimize the optical layout and interferometer signals.Meanwhile,the electron density measurement data are transferred to the controller for saving locally.It receives control commands from the central control system of HL-2M and uploads the experiments data to the remote storage server.

    5.Performance evaluation

    5.1.Test experiments

    To test the performance of the RSC method,we generated an artificial interferometer signal distorted by mechanical vibration and plasma refraction effects.It is assumed that the plasma electron density rises linearly.According to equation(1),the artificial waveform can be expressed as

    where ρ0=1.3.Fm,corresponding to the PEM phase modulation angular frequency ω0,is 50 kHz.The model density term is 2πfnelt,which corresponds to the linearly rising electron density.The frequency of the model density term is set to fnel=10 kHz.[sin(2πFAMt)+1.2]is the distortion term affected by the environment.To test the function of the RSC method,the frequency of the distortion term is set to FAM=0.5 kHz and the maximum value of the term is set to 11 times the minimum value.

    The artificial waveform is downloaded to an arbitrary waveform generator whose model is AFG3102C.It is used to generate the analog signal to imitate the interferometer signal.Figure 5 shows the artificial waveform with FAM=0.5 kHz and the envelope detection curve.The envelope detection curve was measured by using the amplitude estimation methods.We can see that the curve outlines the signal amplitude with high precision.

    The artificial waveform was fed into the PXIe RSC module.Figure 6 shows the output from the PXIe RSC module with automatic gain adjustment.They show that the RSC method can follow the signal amplitude variation and maintain the amplitude in the suitable range.

    The PXIe demodulation module measured the linearly rising electron density directly from the artificial waveform.The errors between the model density(2πFnelt)and the measured density are shown in figure 7(a).In contrast,figure 7(b)shows the errors of the DI system using the RSC module.The maximum error without the RSC module is up to 6×1018m?2while the error with the RSC module is better than 2×1018m?2.The result indicates that the RSC method can improve the measurement accuracy in complex environments.

    Figure 6.The output from the PXIe RSC module and the corresponding envelope detection curve.

    Figure 7.(a)The errors between the model density and the measured density without RSC.(b)The errors between the model density and the measured density with the RSC.

    5.2.Application experiments

    An experiment of the RSC method for DI has been successfully carried out in HL-2A at the SWIP,China.The probe beam path in HL-2A vacuum chamber is tangential chord to increase the line-integrated density.

    Two synchronous demodulation systems were used to verify the performance of the RSC method.One of the system was directly fed with the interferometer signal and the input signal of the other system is processed by the PXIe RSC module.In shot 31124 of HL-2A,the raw ADC data of the systems with and without the RSC module are shown in figures 9 and 8.

    In figure 8,we can see the low signal amplitude and the large baseline variation around 35 ms,which is difficult for synchronous demodulation.In figure 9,the signal from the PXIe RSC module is sufficient to measure the electron density.

    The density measurement results of the two systems for DI have been obtained and compared with the results from the existing FIR HCOOH laser interferometer.Figure 10 shows the electron density curve of the system without the RSC method.The accuracy is particularly low and the measurement is dangerous for tokamak real-time feedback.

    Figure 11 shows the electron density curve of the system with the RSC method.The accuracy improvement is remarkable.The interferometry chord of the heterodyne interferometer is radial which is different from the probing chord of the DI.Considering the difference in the direction of the probing line,the DI curve is slightly different from the heterodyne interferometer curve.Nevertheless,the curve trends between the DI and the FIR are still highly consistent.

    Figure 8.The raw ADC data of the systems without the RSC module.

    Figure 9.The raw ADC data of the systems with the RSC module.

    Figure 10.Measurement results of DI without the RSC method and the far infrared laser heterodyne interferometer in HL-2A.

    Figure 11.Measurement results of DI with the RSC method and the far infrared laser heterodyne interferometer in HL-2A.

    6.Conclusion

    This paper describes the study of a RSC method for DI on HL-2M tokamak.As one of the key subsystems,the DI system supports signal conditioning,DAQ,processing and feedback control.The RSC method is based on DEDA and negative feedback loop.It can maintain the sufficient signal amplitude in real time with low delay and low calculation resource consumption.The RSC method is robust in complex tokamak devices.It can improve the density measurement of most shots.In harsh environments,the maximum error of the line-integrated density measurement is still better than 2×1018m?2with the RSC method.Both simulation and application results reasonably reflected the stability of the DI system with the RSC method.The results demonstrate the capability of the RSC method to improve the accuracy of the DI system in complex environments.

    ORCID iDs

    猜你喜歡
    張健張偉
    Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
    Nonlinear vibration of iced cable under wind excitation using three-degree-of-freedom model?
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    張健書法作品
    廣告大觀(2020年3期)2020-10-20 12:34:00
    張健書法作品
    青年生活(2020年23期)2020-08-04 10:27:43
    藝術(shù)百家:張偉 何是雯
    電影文學(2018年10期)2018-12-10 00:48:32
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    張健的傳銷邪教
    數(shù)學潛能知識月月賽
    “勾股定理”之我見
    一级a做视频免费观看| 男人添女人高潮全过程视频| 少妇被粗大的猛进出69影院 | 欧美人与善性xxx| av网站免费在线观看视频| 七月丁香在线播放| 亚洲精品国产av成人精品| 免费黄网站久久成人精品| 国产精品人妻久久久久久| 国产成人精品无人区| 中国三级夫妇交换| 亚洲精品av麻豆狂野| 大片免费播放器 马上看| 免费日韩欧美在线观看| 精品一区二区三卡| 美女大奶头黄色视频| 国产精品人妻久久久影院| 王馨瑶露胸无遮挡在线观看| 三上悠亚av全集在线观看| 午夜福利,免费看| 久久99一区二区三区| 18禁裸乳无遮挡动漫免费视频| 毛片一级片免费看久久久久| 中文字幕亚洲精品专区| 人人妻人人澡人人爽人人夜夜| 国产熟女午夜一区二区三区 | 久久精品人人爽人人爽视色| 少妇丰满av| 精品少妇久久久久久888优播| 秋霞在线观看毛片| 国产成人一区二区在线| av免费观看日本| 国产精品女同一区二区软件| 亚洲国产色片| 大又大粗又爽又黄少妇毛片口| 日本免费在线观看一区| 欧美精品国产亚洲| 中文乱码字字幕精品一区二区三区| 国产亚洲精品第一综合不卡 | 精品国产乱码久久久久久小说| 天堂8中文在线网| 亚洲精品第二区| av专区在线播放| 高清黄色对白视频在线免费看| 97超视频在线观看视频| 亚洲欧美中文字幕日韩二区| 青春草视频在线免费观看| 午夜福利在线观看免费完整高清在| 十分钟在线观看高清视频www| 久久午夜福利片| 免费黄网站久久成人精品| videosex国产| 最新中文字幕久久久久| 国精品久久久久久国模美| 香蕉精品网在线| 免费看光身美女| 欧美日韩视频精品一区| 免费观看无遮挡的男女| 国产亚洲av片在线观看秒播厂| 久久国产精品大桥未久av| 九九久久精品国产亚洲av麻豆| 精品少妇内射三级| 国产一区有黄有色的免费视频| 插逼视频在线观看| 高清av免费在线| 中文乱码字字幕精品一区二区三区| 精品视频人人做人人爽| 蜜臀久久99精品久久宅男| 亚洲欧洲精品一区二区精品久久久 | 国产亚洲精品第一综合不卡 | 亚洲精品乱久久久久久| 亚洲国产色片| 亚洲久久久国产精品| 如日韩欧美国产精品一区二区三区 | 青春草国产在线视频| 亚洲精华国产精华液的使用体验| 国产黄频视频在线观看| 国产精品久久久久久av不卡| 国产乱人偷精品视频| 成人亚洲欧美一区二区av| 国产成人91sexporn| 午夜91福利影院| 丁香六月天网| 国产免费福利视频在线观看| 有码 亚洲区| 少妇 在线观看| 97超碰精品成人国产| 超色免费av| 亚洲情色 制服丝袜| 另类精品久久| 五月开心婷婷网| 草草在线视频免费看| 好男人视频免费观看在线| 亚洲图色成人| 午夜福利在线观看免费完整高清在| 亚洲综合色网址| 简卡轻食公司| 午夜福利,免费看| 美女主播在线视频| 精品国产国语对白av| 精品亚洲成国产av| 伊人亚洲综合成人网| 精品一区在线观看国产| 亚洲精品456在线播放app| 久久久久国产网址| 草草在线视频免费看| 午夜福利影视在线免费观看| 国产免费又黄又爽又色| 亚洲精品,欧美精品| 日韩成人av中文字幕在线观看| 久久久久久久大尺度免费视频| 黄色一级大片看看| 九九久久精品国产亚洲av麻豆| 高清欧美精品videossex| 国产淫语在线视频| 国产一区二区三区av在线| 久久 成人 亚洲| 久久精品国产鲁丝片午夜精品| 国产有黄有色有爽视频| 国产片内射在线| 成人二区视频| 高清午夜精品一区二区三区| 日韩av免费高清视频| 国产成人aa在线观看| 亚洲精华国产精华液的使用体验| 国产一区二区在线观看日韩| 午夜老司机福利剧场| tube8黄色片| 精品人妻偷拍中文字幕| 国精品久久久久久国模美| av黄色大香蕉| 久久久午夜欧美精品| 亚洲精品久久午夜乱码| 老熟女久久久| 男女边摸边吃奶| 黑人欧美特级aaaaaa片| 国产高清三级在线| 一区二区三区精品91| 亚洲欧美日韩卡通动漫| 男人添女人高潮全过程视频| 街头女战士在线观看网站| 亚洲精品av麻豆狂野| 免费黄频网站在线观看国产| 国产精品国产三级专区第一集| 视频中文字幕在线观看| 亚洲第一av免费看| 日韩 亚洲 欧美在线| 午夜福利,免费看| 日韩不卡一区二区三区视频在线| 亚洲精品日本国产第一区| 欧美变态另类bdsm刘玥| 九九久久精品国产亚洲av麻豆| 日韩亚洲欧美综合| a级片在线免费高清观看视频| av在线观看视频网站免费| 国产免费视频播放在线视频| 亚洲国产毛片av蜜桃av| freevideosex欧美| 国产在视频线精品| 久久av网站| 亚洲国产av新网站| 韩国av在线不卡| 看免费成人av毛片| 国产午夜精品久久久久久一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲少妇的诱惑av| 欧美日韩成人在线一区二区| 国模一区二区三区四区视频| 国产av一区二区精品久久| 国产熟女午夜一区二区三区 | 久久久午夜欧美精品| 一区二区三区四区激情视频| 国产成人精品一,二区| 亚洲av中文av极速乱| 国精品久久久久久国模美| 久久久久久久亚洲中文字幕| 免费高清在线观看视频在线观看| 成人无遮挡网站| 少妇的逼水好多| 69精品国产乱码久久久| 国产精品一区www在线观看| 亚洲在久久综合| 99热网站在线观看| 美女视频免费永久观看网站| 永久网站在线| 丰满迷人的少妇在线观看| 国产深夜福利视频在线观看| 国产精品 国内视频| 国精品久久久久久国模美| 午夜影院在线不卡| 最黄视频免费看| 免费观看的影片在线观看| 蜜桃在线观看..| 人人妻人人澡人人看| 国产精品嫩草影院av在线观看| a级片在线免费高清观看视频| 日韩制服骚丝袜av| 久久人人爽人人片av| 国产免费现黄频在线看| 久久影院123| 老熟女久久久| 制服诱惑二区| 亚洲精品日本国产第一区| 欧美日本中文国产一区发布| 精品久久国产蜜桃| 国产亚洲av片在线观看秒播厂| 日产精品乱码卡一卡2卡三| 精品少妇内射三级| 欧美+日韩+精品| 中国三级夫妇交换| 精品99又大又爽又粗少妇毛片| 日本黄大片高清| 日本av手机在线免费观看| av在线老鸭窝| 最黄视频免费看| a 毛片基地| 久久精品人人爽人人爽视色| 久久ye,这里只有精品| 欧美 日韩 精品 国产| 午夜福利网站1000一区二区三区| 男男h啪啪无遮挡| 国产精品国产av在线观看| 精品久久久久久电影网| 久热久热在线精品观看| 午夜日本视频在线| 女性被躁到高潮视频| 一个人看视频在线观看www免费| 大码成人一级视频| 国产深夜福利视频在线观看| 免费人妻精品一区二区三区视频| 2021少妇久久久久久久久久久| 人人妻人人爽人人添夜夜欢视频| 国产亚洲欧美精品永久| 新久久久久国产一级毛片| 国产精品成人在线| 99久国产av精品国产电影| 亚洲精品美女久久av网站| 大片电影免费在线观看免费| 纯流量卡能插随身wifi吗| a级毛片在线看网站| av卡一久久| 91精品一卡2卡3卡4卡| 成人国产av品久久久| 91国产中文字幕| 亚洲四区av| 成年人免费黄色播放视频| 日本猛色少妇xxxxx猛交久久| 午夜精品国产一区二区电影| 国产精品 国内视频| 国模一区二区三区四区视频| 亚洲精品美女久久av网站| 国产精品欧美亚洲77777| 亚洲国产精品国产精品| 美女主播在线视频| 丰满饥渴人妻一区二区三| 全区人妻精品视频| 卡戴珊不雅视频在线播放| 欧美变态另类bdsm刘玥| 亚洲内射少妇av| 精品亚洲乱码少妇综合久久| 如日韩欧美国产精品一区二区三区 | 在线观看一区二区三区激情| 少妇丰满av| 一边摸一边做爽爽视频免费| 永久网站在线| 日韩欧美精品免费久久| 国产精品一区二区三区四区免费观看| 青青草视频在线视频观看| 免费人成在线观看视频色| 色婷婷av一区二区三区视频| 国产一级毛片在线| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频| 欧美激情 高清一区二区三区| 成人国语在线视频| 99久久人妻综合| 欧美日韩视频精品一区| 久久精品久久久久久久性| 人妻夜夜爽99麻豆av| av卡一久久| 99国产精品免费福利视频| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美亚洲二区| 少妇人妻 视频| 国产亚洲一区二区精品| 亚洲精品视频女| 免费观看的影片在线观看| 国产精品.久久久| 成人18禁高潮啪啪吃奶动态图 | 成人国产麻豆网| 韩国高清视频一区二区三区| 亚洲精品视频女| 亚洲四区av| 亚洲成色77777| 黄片播放在线免费| 国产精品不卡视频一区二区| 男女边吃奶边做爰视频| 久久精品熟女亚洲av麻豆精品| 亚洲国产av影院在线观看| 国产无遮挡羞羞视频在线观看| 美女大奶头黄色视频| 美女cb高潮喷水在线观看| 亚洲中文av在线| 18禁在线播放成人免费| 91精品一卡2卡3卡4卡| 欧美bdsm另类| 丝袜脚勾引网站| 成年美女黄网站色视频大全免费 | 亚洲国产精品一区二区三区在线| 国语对白做爰xxxⅹ性视频网站| 日韩,欧美,国产一区二区三区| 久久影院123| 午夜免费观看性视频| 免费不卡的大黄色大毛片视频在线观看| 中文字幕免费在线视频6| 亚洲精品乱码久久久久久按摩| 精品国产国语对白av| 国产精品一区二区三区四区免费观看| 国产黄片视频在线免费观看| 久久精品国产亚洲av涩爱| 男女高潮啪啪啪动态图| 热99久久久久精品小说推荐| 欧美少妇被猛烈插入视频| 男人添女人高潮全过程视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲不卡免费看| 国产午夜精品久久久久久一区二区三区| 国产 精品1| 男女免费视频国产| 日本欧美国产在线视频| 免费观看av网站的网址| av卡一久久| 日韩,欧美,国产一区二区三区| 国产精品一区二区在线不卡| 久久久久久久亚洲中文字幕| 成人国产av品久久久| 男的添女的下面高潮视频| 一本久久精品| 日本-黄色视频高清免费观看| 丝袜美足系列| 免费av不卡在线播放| 亚洲精品av麻豆狂野| 伊人久久精品亚洲午夜| 日日爽夜夜爽网站| 久久久国产精品麻豆| 一区二区三区四区激情视频| www.av在线官网国产| 国产黄片视频在线免费观看| 黄色配什么色好看| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 国产精品久久久久久av不卡| .国产精品久久| 男男h啪啪无遮挡| 日韩熟女老妇一区二区性免费视频| 国产黄片视频在线免费观看| 九草在线视频观看| 亚洲成人手机| 在线天堂最新版资源| 王馨瑶露胸无遮挡在线观看| 精品国产露脸久久av麻豆| 美女内射精品一级片tv| 久久久久久久久久人人人人人人| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久久电影| 高清欧美精品videossex| 中文字幕人妻丝袜制服| 久久久久久久久大av| 内地一区二区视频在线| 国产伦精品一区二区三区视频9| 亚洲国产成人一精品久久久| 日韩不卡一区二区三区视频在线| 十八禁高潮呻吟视频| 亚洲欧美成人综合另类久久久| 久久久久久久国产电影| 国产成人91sexporn| av黄色大香蕉| 亚洲av福利一区| 日本欧美视频一区| 亚洲国产欧美在线一区| h视频一区二区三区| 午夜久久久在线观看| 精品视频人人做人人爽| 国产视频首页在线观看| 国产成人一区二区在线| 久久 成人 亚洲| 久久精品人人爽人人爽视色| 一本久久精品| 午夜福利网站1000一区二区三区| 97精品久久久久久久久久精品| 亚洲av国产av综合av卡| 免费看av在线观看网站| 国产国语露脸激情在线看| 亚洲美女搞黄在线观看| 一本色道久久久久久精品综合| tube8黄色片| 777米奇影视久久| 精品视频人人做人人爽| 国产精品一区二区在线不卡| 国产一区二区三区综合在线观看 | 蜜桃久久精品国产亚洲av| 又大又黄又爽视频免费| 国产乱人偷精品视频| 成人国产av品久久久| 日本猛色少妇xxxxx猛交久久| 精品人妻在线不人妻| 亚洲精品国产色婷婷电影| 欧美激情 高清一区二区三区| 青青草视频在线视频观看| 日本黄色日本黄色录像| 美女内射精品一级片tv| 天堂中文最新版在线下载| 一本一本综合久久| 亚洲av中文av极速乱| 在线观看www视频免费| 国产 一区精品| 亚洲人成网站在线播| 亚洲综合色惰| 日韩视频在线欧美| av天堂久久9| 国产精品99久久久久久久久| 午夜福利视频精品| 日本-黄色视频高清免费观看| 亚洲国产精品成人久久小说| 久久久午夜欧美精品| 亚洲av综合色区一区| 国产欧美日韩综合在线一区二区| 十八禁高潮呻吟视频| 五月玫瑰六月丁香| 欧美变态另类bdsm刘玥| 日本爱情动作片www.在线观看| 青春草视频在线免费观看| 男女国产视频网站| 亚洲国产日韩一区二区| 好男人视频免费观看在线| 欧美三级亚洲精品| 国产黄色视频一区二区在线观看| 欧美精品一区二区免费开放| av线在线观看网站| 高清av免费在线| 亚洲欧美成人精品一区二区| 亚洲欧美日韩卡通动漫| 欧美日韩一区二区视频在线观看视频在线| 成年人午夜在线观看视频| 国产黄色免费在线视频| 中文字幕制服av| 女人精品久久久久毛片| 日韩精品免费视频一区二区三区 | 美女内射精品一级片tv| 亚洲欧美一区二区三区黑人 | 99久国产av精品国产电影| 国产永久视频网站| 国产精品久久久久久久久免| 国产成人免费观看mmmm| 欧美变态另类bdsm刘玥| 亚洲欧洲国产日韩| 乱码一卡2卡4卡精品| 亚洲综合色网址| 日韩在线高清观看一区二区三区| 高清不卡的av网站| 中文字幕人妻丝袜制服| 秋霞在线观看毛片| 亚洲欧美成人综合另类久久久| 少妇精品久久久久久久| av天堂久久9| 岛国毛片在线播放| 在现免费观看毛片| 街头女战士在线观看网站| 内地一区二区视频在线| 2018国产大陆天天弄谢| 一个人看视频在线观看www免费| 国产免费一区二区三区四区乱码| 中文天堂在线官网| 飞空精品影院首页| 99久久中文字幕三级久久日本| 日韩欧美一区视频在线观看| 天美传媒精品一区二区| 国产熟女欧美一区二区| 亚洲精品成人av观看孕妇| 欧美人与性动交α欧美精品济南到 | 啦啦啦在线观看免费高清www| 18+在线观看网站| 一二三四中文在线观看免费高清| 满18在线观看网站| 视频区图区小说| 在线观看一区二区三区激情| 久久人人爽av亚洲精品天堂| .国产精品久久| 简卡轻食公司| av福利片在线| 欧美97在线视频| 国产精品女同一区二区软件| 精品国产一区二区三区久久久樱花| 国产 精品1| 五月伊人婷婷丁香| 午夜影院在线不卡| 欧美日韩视频高清一区二区三区二| 老司机影院毛片| 九色亚洲精品在线播放| 国产欧美日韩综合在线一区二区| 亚洲三级黄色毛片| 综合色丁香网| 午夜福利在线观看免费完整高清在| 日韩一区二区三区影片| 99热网站在线观看| 亚洲精华国产精华液的使用体验| 国产精品久久久久久av不卡| a级毛片在线看网站| 中文字幕制服av| 欧美精品国产亚洲| 欧美日本中文国产一区发布| 女性被躁到高潮视频| 日本av免费视频播放| videos熟女内射| 国产高清国产精品国产三级| 国产成人精品在线电影| 熟女人妻精品中文字幕| 成人国产麻豆网| 在线观看免费视频网站a站| 啦啦啦中文免费视频观看日本| 夜夜看夜夜爽夜夜摸| 99热6这里只有精品| 26uuu在线亚洲综合色| 久久狼人影院| av国产精品久久久久影院| 寂寞人妻少妇视频99o| 热re99久久精品国产66热6| 极品人妻少妇av视频| 久久毛片免费看一区二区三区| 精品少妇内射三级| 午夜日本视频在线| 亚洲少妇的诱惑av| 国产日韩一区二区三区精品不卡 | 亚洲色图综合在线观看| 人成视频在线观看免费观看| 欧美日韩亚洲高清精品| 欧美精品国产亚洲| 国产欧美亚洲国产| 国产 精品1| 人人妻人人澡人人看| 国产av一区二区精品久久| 精品少妇内射三级| 这个男人来自地球电影免费观看 | 97在线视频观看| 成人亚洲精品一区在线观看| 午夜激情福利司机影院| 搡女人真爽免费视频火全软件| 午夜影院在线不卡| 久久97久久精品| 中文天堂在线官网| 国产深夜福利视频在线观看| 国产亚洲最大av| 精品国产一区二区三区久久久樱花| 日韩一区二区三区影片| 18禁裸乳无遮挡动漫免费视频| 伦精品一区二区三区| 2021少妇久久久久久久久久久| 男人操女人黄网站| 精品视频人人做人人爽| 男男h啪啪无遮挡| 婷婷色麻豆天堂久久| 国产日韩欧美亚洲二区| 欧美日韩视频高清一区二区三区二| 国产成人精品久久久久久| 女的被弄到高潮叫床怎么办| 少妇的逼好多水| 人人妻人人澡人人爽人人夜夜| 99热6这里只有精品| 桃花免费在线播放| 99国产精品免费福利视频| 女性被躁到高潮视频| 又大又黄又爽视频免费| 国产不卡av网站在线观看| 亚洲国产最新在线播放| 国产黄频视频在线观看| 国产免费又黄又爽又色| 久久韩国三级中文字幕| freevideosex欧美| 欧美精品高潮呻吟av久久| 中国国产av一级| 永久网站在线| 成年av动漫网址| a级毛片免费高清观看在线播放| 99国产综合亚洲精品| 超碰97精品在线观看| 亚洲内射少妇av| 老司机影院毛片| 欧美3d第一页| 国产精品免费大片| 久久久久久久久久人人人人人人| 热re99久久精品国产66热6| 一级片'在线观看视频| 久久久国产精品麻豆| 建设人人有责人人尽责人人享有的| 亚洲一级一片aⅴ在线观看| 亚洲国产日韩一区二区| 少妇 在线观看| 亚州av有码| 女人久久www免费人成看片| 人妻系列 视频| 日韩中文字幕视频在线看片| av有码第一页| 建设人人有责人人尽责人人享有的| 亚洲av福利一区| 国产精品一区二区在线观看99| 丰满饥渴人妻一区二区三| 久久久国产一区二区| 国产男女超爽视频在线观看| 国产精品久久久久久精品古装| 亚洲欧洲日产国产| 在线天堂最新版资源| 午夜精品国产一区二区电影| 青春草亚洲视频在线观看| 国产成人精品久久久久久| 久久精品国产a三级三级三级|