• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative analysis modeling for the ChemCam spectral data based on laserinduced breakdown spectroscopy using convolutional neural network

    2020-11-10 03:02:02XueqiangCAO曹學(xué)強(qiáng)LiZHANG張立ZhongchenWU武中臣ZongchengLING凌宗成JialunLI李加倫andKaichenGUO郭愷琛
    Plasma Science and Technology 2020年11期
    關(guān)鍵詞:張立出版業(yè)變革

    Xueqiang CAO(曹學(xué)強(qiáng)),Li ZHANG(張立),Zhongchen WU(武中臣),Zongcheng LING(凌宗成),Jialun LI(李加倫) and Kaichen GUO(郭愷琛)

    1 School of Mechanical,Electrical & Information Engineering,Shandong University,Weihai 264209,People’s Republic of China

    2 Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment,Institute of Space Sciences,Shandong University,Weihai 264209,People’s Republic of China

    Abstract

    Keywords:laser-induced breakdown spectroscopy,convolutional neural network,activation function,optimization method,quantitative analysis

    1.Introduction

    As a powerful and convenient technique,laser-induced breakdown spectroscopy(LIBS)has been utilized to analyze the spectrum with multivariate regression algorithms in order to obtain the relative content of each compound in samples.So far,LIBS has been widely applied to many geochemical fields with the advantages of convenient operation and high working efficiency[1].Due to the miniaturization,the handheld LIBS analyzer has also been adopted to analyze iron,rock and other materials[2,3].Furthermore,considering it can characterize target chemistry remotely and rapidly,LIBS has also been successfully used in situ quantitative analysis of Martian materials[4,5].The ChemCam(an instrument containing a LIBS spectrometer and a Remote Micro-Imager)on the Curiosity rover of Mars Science Laboratory is the first LIBS payload whose major mission is to detect the compound composition of rocks and minerals[6,7].To date,the Curiosity rover has been traveling for more than seven years on Mars,and the ChemCam has collected large amounts of LIBS spectra which are conducive to finding out the elemental composition of soils and rocks on Mars.Currently,for better exploring the Mars surface,NASA Mars 2020 rover with the SuperCam(an instrument containing a LIBS spectrometer,a new Raman spectroscopy,an infrared passive spectrometer and a remote Micro-Imager with a new color detector)instrument and China Mars 2020 rover with the MarsCoDe(Mars Surface Composition Detection Package)instrument are scheduled to launch in 2020 and land on Mars in 2021 respectively[8,9].Therefore,improving the prediction accuracy of the elemental composition of soils and rocks by utilizing LIBS is of great significance for the Mars exploration.

    As known,the chemical matrix effects make the quantitative analysis of LIBS more complex and difficult by influencing the intensity of the given emission line,which can be reduced by multivariate regression algorithms[10,11].Containing the advantages of canonical correlation analysis and principle component analysis,partial least square regression(PLSR)is a commonly used method of multivariate linear regression(LR)for the LIBS quantification[12,13].PLSR has two forms:one is PLS1,predicting the concentration of one element; the other is PLS2,simultaneously predicting the concentrations of several elements[5].Because of the better performance of PLS1,PLS2 which is the initial method used by the ChemCam team was replaced by PLS1.Furthermore,the PLS1 ‘sub-model’ method presented by Anderson et al[14]has been proved to be able to improve the prediction accuracy for major oxides,which is a main quantitative method used by the ChemCam team.

    Some other multivariate methods,such as support vector regression(SVR),principal component regression(PCR),artificial neural network(ANN)and convolutional neural network(CNN),are also used in the quantitative analysis of various materials based on LIBS.Duan et al[15]discovered Adaboost back-propagation ANN(BP-Adaboost)as an ensemble learning method offered a better result than PLSR and back-propagation(BP)-ANN when used for detecting heavy and nutritional metals in agricultural biochar.Wang et al[16]presented PCR and Least absolute shrinkage and selection operator(Lasso)outperformed LR,PLSR and SVR when used for the quantification of the heavy metals in soils.Shi et al[17]proved that the SVR algorithm was more accurate than the PLSR algorithm in measuring the elemental concentrations(Si,Ca,Mg,Fe and Al)in the sedimentary rocks.In addition,Dyar et al[18]concluded that PLSR and Lasso gave comparable performance when they are used to analyze the elemental concentrations of 100 igneous and highly-metamorphosed rock samples.Zhang et al[19]presented a ‘DeepSpectra’ model based on CNN,which is more accurate than the other methods(SVR,PLSR and ANN)when used for detecting corn protein content,tablet AC,wheat protein content and soil organic content.

    In this paper,we constructed a CNN regression model for the quantitative analysis of the one-dimensional ChemCam spectral data.Besides,the effects of four different activation functions on the performance of the CNN regression model have been probed with the purpose to improve the prediction accuracy of the CNN model.Then,we chose a suitable optimization method and an initial learning rate for the CNN model.Eventually,the comparison among the CNN model,the SVR model and the PLSR model has been made in terms of prediction accuracy.

    Figure 1.The box plots of concentration distribution of eight oxides.Maximum whisker length is 1.5.The red points are outliers.

    2.Data set

    The ChemCam data sets are produced by the ChemCam team using LIBS under the Mars-like atmospheric conditions.The spectra used in this study are available for downloading on the NASA Planetary Data System at http://pds-geosciences.wustl.edu/missions/msl/chemcam.htm.In the ChemCam calibration data,there are 408 samples whose main chemical components are SiO2,TiO2,AL2O3,FeOT,MgO,CaO,Na2O and K2O[20].However,this paper only used 376 of 408 samples for experiments,because the relative contents of oxides in some samples are not found.Figure 1 shows the box plots of concentration distribution of eight oxides.Theoretically,we can obtain five average spectra from each sample,but in some samples there are only four average spectra.Besides,when we built a regression prediction model for an oxide,some samples that do not contain that oxide were discarded.Hence,the number of samples used for each oxide is different.We divided the samples into two groups(the training samples and the testing samples)according to a ratio of 4:1.The training samples and the testing samples are independent of one another.More details about the training set and the testing set used in this paper are shown in table 1.

    Table 1.The number of samples and spectra of training set and testing set used in this study.

    The spectra used in this paper have already been preprocessed.The pre-process included subtraction of non-laser dark spectrum,removal of noise,reduction of continuum spectrum,wavelength calibration,instrument response measurement and distance correction.More details about the preprocess can be found in[21].Besides,in order to reduce the order of magnitude,the min-max normalization is used to normalize spectra data,which is the only pre-process performed in this paper.The conversion function is as follows:

    where x is one of the observations,xminis the smallest observation,xmaxis the largest observation and z is the new observation.

    3.Methodology

    3.1.Convolutional neural network

    CNN is a deep learning method widely used for target classification,target detection,and target recognition[22-24].In recent years,CNN has been successfully utilized for the LIBS quantification due to its outstanding capability of feature extraction[19,25].CNN has two important characteristics(sparse connectivity and shared weights)which can greatly reduce the number of the parameters that the network needs to be compared to ANN.A CNN model generally consists of an input layer,convolutional layers,excitation layers,pooling layers,fully-connected layers and an output layer.The convolution kernel used for feature extraction is a core part of the CNN model.Convolutional kernels of different sizes can extract features of different levels and the stacked convolutional layers can extract features of higher abstraction.For one-dimensional spectral data,we used 1×n convolutions.There are activation functions in the excitation layer,which act on the outputs of the convolutional layers.The activation functions in the excitation layers make the CNN model have the capability of nonlinearly mapping.The CNN model with an activation function can better solve more complex problems.The hyperbolic tangent(tanh)function,the rectified linear unit(ReLU)function,the linear function and the Sigmoid function are used as activation functions to train the CNN models in this paper respectively.The forms of the tanh function,the ReLU function,the linear function and the Sigmoid function are:

    where x is one of the outputs of the convolutional layers.

    In addition,to improve the performance of the deep neural network,the Inception V2 architecture that can increase the depth and width of the network was used to construct the CNN regression model in this study.The Inception V2 architecture was proposed by Ioffe et al[26]in 2015.The Inception V2 architecture used in this paper is shown in figure 2.The four paratactic branches of the Inception V2 architecture have different functions.All the 1×1 convolutions of the four branches can reduce the number of the feature maps.The function of the 1×3 convolutions of the second branch is feature extracting.Two 1×3 convolutions in sequential order in the Inception V2 architecture(the third branch)are used to replace the 1×5 convolutions in Inception V1 architecture,which can provide more nonlinearly mapping and reduce the number of the parameters of the network.The role of the max pooling of the forth branch is improving the receptive field,reducing the dimension of the feature maps and increasing translationinvariant to some extent.However,because we used the max pooling with a stride of 1,the dimension of the feature maps did not reduce.In essence,the workings of the Inception V2 architecture can be described in the following two steps:(1)obtaining feature maps of different levels from four branches;(2)integrating feature maps of different levels together.

    3.2.Experiments

    3.2.1.Constructing CNN regression models.The CNN model we constructed for one-dimensional spectral data is shown in figure 3.There are three convolutional layers(Conv1,Conv2 and Conv3)behind the input layer,which can capture spectral details.The Inception V2 architecture behind the convolutional layers can further extract spectral features of different levels and the concatenation layer can integrate features of different levels together.The flatten layer can transform multi-dimensional data into one-dimensional data,which is the transition from a convolutional layer to a fully-connected layer.The settings of each convolutional kernel(or max pooling)are shown in table 2.

    Figure 2.The architecture of the Inception V2.

    Figure 3.The structure of the proposed model.

    We used the trial-and-error method to choose a better activation function for the CNN regression model.In our study,we compared the effects of four different activation functions(the tanh function,the ReLU function,the linear function and the Sigmoid function)on the regression model.Before comparison,we paired each activation function with an appropriate weight initialization method.The weight initialization that sets a corresponding initial value for each weight is an important part of the CNN model.A good initialization method can accelerate the process of training to converge and is more likely to find a better solution.Conversely,a bad initialization method may cause problems in the process of gradient propagation.Hence,choosing a suitable initialization method is essential for training a network.Two initialization methods namely ‘Xavier’ and‘He_normal’which are often utilized in neural networks were used in this study.The basic idea of the‘Xavier’initialization is to make the output and input of each network’s layer have a normal distribution and similar variance to avoid the output becoming zero.For the ReLU function,if the input value is less than zero,the output would be zero,which affects the output distribution.Hence,the‘He_normal’initialization was proposed to solve the above phenomenon.Since the ‘Xavier’initialization is helpful for the tanh function,we used the‘Xavier’ initialization for the CNN model with the tanh function(t-model).Being beneficial to the ReLU function,the‘He_normal’ initialization was selected for the CNN model with the ReLU function(r-model)[27,28].For the model with the linear function(l-model)and the model with the Sigmoid function(s-model),we used the ‘He_normal’initialization.When we compared the performance of four activation functions,the other parameters of the CNN model are exactly the same.

    After choosing a suitable activation function,we explored the effects of the optimization methods on the regression models.In the process of BP,the gradient descent optimization algorithms are often used to update the weights of the convolutional kernel.A good optimization method can make the model converge quickly and get a better solution.An inappropriate optimization method may make the model unable to converge or have a large prediction error.Besides,the initial learning rate of the optimization method is also an important part of training a neural network.In our study,we used the stochastic gradient descent(SGD)optimization[29]and the Adam optimization[30]to train the CNN model we built,respectively.SGD that updates the weights by a gradient from a stochastic spectrum in each epoch is one of the most commonly used algorithms.Adam which is an adaptive optimization algorithm has been a popular optimization method for a neural network in recent years.For these two optimization methods,three different initial learning rates(0.01,0.001 and 0.0005)were used to train the CNN model,respectively.

    Being an essential part of the CNN model,the loss function provides errors for error back propagation algorithms and concerns the performance of the regression model.The mean square error(MSE)loss function was thus selected for training the CNN model.To improve training speed and reduce overfitting,a batch normalization layer was placed behind the full-connected layer.A mechanism called ‘early stopping’ was used to stop the training model to avoid overfitting.

    Table 2.The settings of each convolutional kernel(or max pooling)used in the CNN regression model.

    Table 3.Optimized C and γ of the SVR model for all oxides.

    3.2.2.Comparison among the performance of the CNN model,the SVR model and the PLSR model.After choosing a better activation function,a suitable optimization method and an initial learning rate for the CNN model,the comparison among the performance of the CNN model,the SVR model and the PLSR model was performed.In this section,the process of parameter optimization of the SVR model and the PLSR model was described.

    國內(nèi)外文獻(xiàn)主要聚焦數(shù)字化變革給傳統(tǒng)出版業(yè)帶來的沖擊,例如,信息技術(shù)(如“云出版”)、管理創(chuàng)新(如編輯流程重構(gòu)、“融”出版、眾籌出版等)和政策扶持等對傳統(tǒng)出版業(yè)的經(jīng)營理念、營銷渠道和產(chǎn)業(yè)分工合作等產(chǎn)生重要影響。然而,現(xiàn)有文獻(xiàn)更多關(guān)注大型出版集團(tuán)的信息化變革與應(yīng)對,忽略了對中小出版企業(yè)的轉(zhuǎn)型升級(jí)研究。位于產(chǎn)業(yè)“金字塔”底部的中小出版企業(yè)轉(zhuǎn)型升級(jí)到底有哪些路徑可走?需要理論界進(jìn)一步開展研究。本文基于“新三板”掛牌新聞和出版企業(yè)數(shù)據(jù)分析,揭示中小出版企業(yè)轉(zhuǎn)型升級(jí)的實(shí)踐,彌補(bǔ)現(xiàn)有文獻(xiàn)對出版企業(yè)實(shí)踐分析的不足,對國家政策實(shí)施和企業(yè)經(jīng)營具有現(xiàn)實(shí)意義。

    To train an SVR model,two essential parameters(C and γ)need to be optimized,which determine the performance of the regression models.As a key factor for the establishment of the hyperplane,C represents the fault-tolerance.γ is the vital parameter of the radial basis function which maps the spectra into a higher dimensional linear separable space[31].Furthermore,the number of support vector influences the speed of model training.The solution for best choosing the two key parameters was to utilize the grid optimization algorithm coupled with a three-fold cross validation(CV)in the training set.C and γ under the minimum root mean square error of cross validation(RMSECV)were chosen as the final parameters of the SVR models.More details about the SVR model can be found in table 3.PLSR extracts the principal components(PCs)from two matrices(i.e.samples(X)and the corresponding labels(Y))respectively and then models the relationship between two matrices.The number of PCs is a key parameter of PLSR,which concerns the prediction capability of the PLSR model[32].In this paper,we optimized the number of PCs by a three-fold CV in training data.Table 4 shows the best number of PCs for all oxides.

    The CNN models in this research were done in Python using Keras.The SVR model and the PLSR model were completed using MATLAB 2016.The parameters-optimized process of the SVR model and the PLSR model was implemented on the MATLAB 2016.

    Table 4.The best number of PCs of the PLSR model for all oxides.

    3.3.Model evaluation

    Since the initial weights of the CNN model are not fixed values,there are little differences among the performance of the models trained at different times.Therefore,in this study,we repeated the process of training the CNN model ten times,and took the average value of ten root mean square errors of predicted concentrations(RMSEP)as one of the indicators to evaluate the prediction capability of the regression models.Besides,standard deviation(SD)of ten RMSEPs was used to evaluate the stability of the model.The forms of RMSEP and SD are described in the following equations:

    where yi,actualis the actual value of ith sample,yi,predictedis the predicted value of ith sample,N is the number of testing spectra,RMSEPjis the jth RMSEP,RMSEPaverageis the average value of all RMSEPs and M is the number of RMSEPs.

    4.Results

    4.1.Effects of four activation functions on the CNN model

    In order to find a suitable activation function for the CNN model,we compared the performance of the t-model,the r-model,the l-model and the s-model.There are some predetermined parameters in these CNN models:the SGD optimization,the initial learning rate=0.0005 and the batch size=256.Table 5 shows the performance of these CNN models for all oxides.For SiO2,TiO2,Al2O3,MgO and K2O,the t-model has the best performance when compared to the other three CNN models.For FeOTand CaO,the t-model has the second best performance which also is an acceptable result.For Na2O,the t-model obtains an average RMSEP of 0.44 wt%,which is almost the same as that of the r-model(average RMSEP=0.43 wt%).Overall,for each oxide,the t-model has a satisfactory performance.

    Table 5.The average RMSEP(wt%)of the t-model,the r-model,the l-model and the s-model for all oxides.

    Table 6.The SD(wt%)of ten RMSEPs of the t-model,the r-model,the l-model and the s-model for all oxides.

    In addition,we compared the SDs to study the stability of the CNN models.Table 6 exhibits the SDs of the abovementioned four models.The SD of l-model’s ten RMSEPs is lower than the SD of the other three CNN model’s ten RMSEPs for all oxides except Na2O.Compared with the other three models,for all oxides except SiO2and CaO,the s-model has the second best performance in terms of SD.Although the stability of the l-model and the s-model is better than that of the t-model and the r-model,their prediction error is greater than the prediction error of the t-model and the r-model for all oxides except SiO2.Notice here our priority is the prediction accuracy,and the SDs of the t-model and the r-model are acceptable for all oxides.For TiO2,Al2O3,MgO,CaO and K2O,the SD of the t-model’s ten RMSEPs is lower than the SD of r-model’s ten RMSEPs.For SiO2,FeOTand Na2O,although the SD of the t-model’s ten RMSEPs is bigger than the SD of the r-model’s ten RMSEPs,the difference value between them is very small.Based on the above analysis,it is obvious that the tanh function is more helpful than the ReLU function,the linear function and the Sigmoid function for constructing CNN models on the ChemCam calibration data.

    4.2.Choosing a suitable optimization method and an initial learning rate for the CNN model

    Before exploring the effects of different optimization methods on the performance of the CNN model,we predetermined the activation function:the tanh function.For the SGD optimization and the Adam optimization,three different initial learning rates were used to train the CNN model,respectively.Table 7 exhibits the average RMSEPs of the CNN models with different optimization methods and initial learning rates.For SiO2,Al2O3,FeOTand MgO,the model with the SGD optimization and the initial learning rate=0.0005 obtains the best performance compared with the other CNN models.For Na2O and K2O,the model with the SGD optimization and the initial learning rate=0.0005 has the second best performance which is not much different from the best model.For TiO2,the RMSEP of the model with the SGD optimization and the initial learning rate=0.0005 is 0.43 wt%,which is an acceptable result compared to the other models.For CaO,the model with the SGD optimization and the initial learning rate=0.0005 provides a bad RMSEP when compared to the other three CNN models with the Adam optimization.The reason why the CNN model with the SGD optimization and the initial learning rate=0.0005 did not find the global optimal solution may be the initial learning rate=0.0005 is not suitable for training the CNN model for CaO.For the SGD optimization,the model with the initial learning rate=0.0005 is slightly better than the model with the initial learning rate=0.001 for all oxides except Na2O.However,the model with the SGD optimization and the initial learning rate=0.01 did not converge for some oxides(SiO2,Al2O3,FeOT,MgO,CaO and K2O),which illustrates that a proper initial learning rate is important for the SGD optimization.For the Adam optimization,because of the feature of adaptive adjustment of the learning rate,several CNN models have similar performance for all oxides except FeOTand MgO.On the whole,the model with the SGD optimization and the initial learning rate=0.0005 models still has advantages over the other models.

    Table 7.The average RMSEP(wt%)of the CNN models for all oxides(‘’ represents the model did not converge).

    Figure 4.The performance of the t-model,the SVR model and the PLSR model.

    Table 8 shows the SD of each CNN model’s ten RMSEPs for all oxides.For the SGD optimization,the SD of the model with the initial learning rate=0.0005 is less than or equal to those of the other two models for all oxides except Al2O3.For the Adam optimization,the SD of the model with the initial learning rate=0.0005 is less than or equal to those of the other two models for all oxides except TiO2and CaO.From an overall perspective,the SD of the model with the SGD optimization and the initial learning rate=0.0005 is similar to the SD of the model with the Adam optimization and the initial learning rate=0.0005 for all oxides except Al2O3and FeOT.Therefore,the model with the SGD optimization and the initial learning rate=0.0005 has satisfactory stability.

    Considering the prediction accuracy and the stability,we think the SGD optimization and the initial learning rate=0.0005 are the best choice for the CNN model we constructed.Compared to setting a suitable set of parameters for the CNN model of each oxide,the model with unified parameters for all oxides is efficient and concise.

    Table 8.The SD(wt%)of ten RMSEPs of the CNN models for all oxides(‘’ represents the model did not converge).

    4.3.Comparison of the results obtained by the t-model,the SVR model and the PLSR model

    The t-model,the optimization of which is the SGD optimization and the initial learning rate of which is 0.0005,was chosen as the final CNN regression model in this study.To prove that the t-model has a better prediction capability than the SVR model and the PLSR model,we compared the performance of these three models.The performance of these three models is shown in figure 4.For SiO2,the SVR model obtains a RMSEP of 4.74 wt% which is smaller than the PLSR model’s RMSEP and bigger than the t-model’s average RMSEP.For TiO2,the RMSEP of the SVR model is equal to that of the PLSR model and is bigger than the average RMSEP of the t-model.For Al2O3,MgO and Na2O,the SVR model’s RMSEP is smaller than the PLSR model’s RMSEP and is bigger than the t-model’s average RMSEP.For FeOT,the average RMSEP of the t-model is lower than the RMSEPs of the SVR model and the PLSR model.For CaO,the RMSEP of the SVR model is 2.61 wt% and the RMSEP of the PLSR model is 2.36 wt%,which are all bigger than the average RMSEP of the t-model.For K2O,the t-model provides the best performance with an average RMSEP of 0.86 wt%and the second best model is the SVR model.In the mass,the t-model’s average RMSEP is much less than the other two models’ RMSEPs for all oxides.It is obvious that the t-model can effectively develop the prediction accuracy when compared to the SVR model and the PLSR model.

    Figure 5.For SiO2 and TiO2,the plots of the actual values versus the predicted values(red points:the best t-model,blue points:the SVR model,black points:the PLSR model).

    Figure 6.For Al2O3 and FeOT,the plots of the actual values versus the predicted values(red points:the best t-model,blue points:the SVR model,black points:the PLSR model).

    Figure 7.For MgO and CaO,the plots of the actual values versus the predicted values(red points:the best t-model,blue points:the SVR model,black points:the PLSR model).

    Figure 8.For Na2O and K2O,the plots of the actual values versus the predicted values(red points:the best t-model,blue points:the SVR model,black points:the PLSR model).

    We used the average value of ten RMSEPs of the t-model to evaluate the prediction capability of the t-model.However,if the t-model actually gets used,we need to use the best t-model among ten models for determining the components of the targets.Figures 5-8 show the plots of the actual concentrations against the predicted concentrations of testing samples for the best t-model(among ten t-models),the SVR model and the PLSR model.The distance of the point to the y=x line presents the loss of the predicted value.The shorter the distance is,the smaller the loss is,and the more accurate the predicted value is.For eight oxides,we can visually find the red points that belong to the t-model are closer to the y=x line than the blue points(the SVR model)and the black points(the PLSR model).It is no doubt that the t-model is superior to the SVR model and the PLSR model.We owed these phenomena to the powerful feature extraction capability of the CNN algorithm.Different convolution kernels can extract features of different levels and the Inception V2 architecture can integrate features of different levels together,which provides more spectral details.In addition,features of higher and lower abstraction can effectively reduce the chemical matrix effects.These advantages contribute to the CNN model with wonderful performance when applied for the LIBS quantification of the one-dimensional ChemCam spectral data.

    5.Conclusion

    In this study,we constructed a CNN regression model for the LIBS quantification of the one-dimensional ChemCam spectral data.In the first place,in order to choose a suitable activation function for the CNN regression model,we compared the effects of four activation functions on the performance of deep neural networks.The results show that the t-model outperforms the other three models(the r-model,the l-model and the s-model).Next,we explored the effects of optimization methods on the CNN models.By comparison,the model with the SGD optimization and the initial learning rate=0.0005 that has better prediction accuracy and satisfactory stability was chosen as the final CNN regression model.Finally,we compared the performance of the t-model,the SVR model and the PLSR model.The results show that the average RMSEP of the t-model is much smaller than the RMSEPs of the SVR model and the PLSR model.In conclusion,the t-model significantly improved the capability of predicting the elementary composition of diverse targets when used for the ChemCam calibration data.The excellent performance of the CNN regression model illustrates that CNN can effectively overcome the chemical matrix effects and can be successfully applied for the LIBS quantification of the one-dimensional ChemCam spectral data.

    In the first Mars Global remote sensing and regional survey mission of China,MarsCoDe based on LIBS will be used to explore Mars material composition.The CNN model proposed in this study can be served for the LIBS quantification of MarsCoDe.Improving the prediction capability of the regression model is still an important issue for the future exploration of Mars materials.Therefore,more research is needed to be conducted in the future to refine and improve the regression models used for the quantitative analysis of LIBS.

    Acknowledgments

    This work is supported by the Pre-research project on Civil Aerospace Technologies(No.D020102)funded by China National Space Administration(CNSA).We also thank the funding from National Natural Science Foundation of China(Nos.U1931211 and 41573056),the Natural Science Foundation of Shandong Province(No.ZR2019MD008)and the Major Research Project of Shandong Province(No.GG201809130208).

    猜你喜歡
    張立出版業(yè)變革
    以按需出版為抓手,推動(dòng)出版業(yè)數(shù)字化轉(zhuǎn)型
    陪你半程
    變革開始了
    AR與VR技術(shù)在兒童出版業(yè)中的應(yīng)用
    新聞傳播(2016年23期)2016-10-18 00:54:12
    對出版業(yè)供給側(cè)改革的思考
    出版與印刷(2016年1期)2016-01-03 08:53:34
    新媒體將帶來六大變革
    聲屏世界(2015年5期)2015-02-28 15:19:47
    信任
    三月三(2015年2期)2015-02-05 16:31:01
    變革中的戶籍制度
    創(chuàng)新IT 賦能變革
    浙江人大(2014年1期)2014-03-20 16:20:01
    南宋出版業(yè)考述
    古代文明(2013年2期)2013-10-21 23:20:50
    亚洲内射少妇av| 在线观看av片永久免费下载| av天堂中文字幕网| 女人久久www免费人成看片 | 热99在线观看视频| 亚洲自偷自拍三级| 听说在线观看完整版免费高清| 色哟哟·www| 国产黄a三级三级三级人| 久久精品久久精品一区二区三区| 春色校园在线视频观看| 建设人人有责人人尽责人人享有的 | 18+在线观看网站| 亚洲,欧美,日韩| 日韩一区二区视频免费看| 国产午夜精品论理片| 伦精品一区二区三区| 一级黄色大片毛片| 国产精品久久久久久久电影| 又粗又爽又猛毛片免费看| 日本一本二区三区精品| 国产色婷婷99| 久久久久久久国产电影| 亚洲国产精品久久男人天堂| 天堂影院成人在线观看| 观看免费一级毛片| 精品久久久久久久久久久久久| 亚洲天堂国产精品一区在线| 国产成人精品一,二区| 久久这里有精品视频免费| 特级一级黄色大片| 亚洲色图av天堂| 国产精品久久久久久久电影| 国产免费一级a男人的天堂| 亚洲av中文av极速乱| 久久精品国产自在天天线| 亚洲av.av天堂| 久久人人爽人人爽人人片va| or卡值多少钱| 视频中文字幕在线观看| 亚洲精品影视一区二区三区av| 日日干狠狠操夜夜爽| av国产久精品久网站免费入址| 99在线视频只有这里精品首页| 最近的中文字幕免费完整| 99热全是精品| 免费看日本二区| 亚洲av免费高清在线观看| 日韩欧美 国产精品| 最近中文字幕2019免费版| 少妇高潮的动态图| 亚洲欧美日韩东京热| 国产精品国产高清国产av| 欧美最新免费一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 亚洲激情五月婷婷啪啪| 午夜福利在线在线| 日韩精品青青久久久久久| 欧美又色又爽又黄视频| 精华霜和精华液先用哪个| 久久婷婷人人爽人人干人人爱| 亚洲av成人av| 国产精品三级大全| 九色成人免费人妻av| 18禁在线播放成人免费| videossex国产| 在现免费观看毛片| 色视频www国产| 日本一本二区三区精品| 九草在线视频观看| 亚洲欧美精品自产自拍| 国产极品精品免费视频能看的| 91久久精品电影网| 2021天堂中文幕一二区在线观| 男人舔女人下体高潮全视频| 久久久久久伊人网av| 欧美一区二区国产精品久久精品| 校园人妻丝袜中文字幕| 91久久精品国产一区二区成人| 欧美成人一区二区免费高清观看| 国产精品久久久久久精品电影小说 | 六月丁香七月| 亚洲一区高清亚洲精品| www.av在线官网国产| 哪个播放器可以免费观看大片| 国产精品精品国产色婷婷| 秋霞在线观看毛片| 中文资源天堂在线| 日本午夜av视频| 一区二区三区四区激情视频| 久久久久性生活片| 中文资源天堂在线| 精品久久久久久久久亚洲| 天美传媒精品一区二区| av线在线观看网站| 亚洲电影在线观看av| av免费在线看不卡| 简卡轻食公司| 国产探花在线观看一区二区| 亚洲精品久久久久久婷婷小说 | 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 2021天堂中文幕一二区在线观| 国产视频首页在线观看| 免费看av在线观看网站| 中文字幕av在线有码专区| kizo精华| 精品熟女少妇av免费看| 国产三级中文精品| 亚洲av男天堂| 青青草视频在线视频观看| av在线播放精品| 亚洲欧美清纯卡通| 亚洲av不卡在线观看| 国产乱人偷精品视频| 国产探花在线观看一区二区| 波野结衣二区三区在线| 国产精品无大码| 久久婷婷人人爽人人干人人爱| 变态另类丝袜制服| 最近中文字幕高清免费大全6| av国产久精品久网站免费入址| 乱系列少妇在线播放| 免费看av在线观看网站| 国产老妇女一区| 色吧在线观看| 成人性生交大片免费视频hd| 搞女人的毛片| 久久这里只有精品中国| 国语对白做爰xxxⅹ性视频网站| 免费看日本二区| 少妇高潮的动态图| АⅤ资源中文在线天堂| 成人二区视频| 小说图片视频综合网站| 九色成人免费人妻av| 少妇熟女欧美另类| 一个人看的www免费观看视频| 七月丁香在线播放| 国产淫片久久久久久久久| 国产精品电影一区二区三区| 婷婷色综合大香蕉| 久久久久网色| 少妇熟女aⅴ在线视频| 国产一区二区在线观看日韩| av国产久精品久网站免费入址| 国产日韩欧美在线精品| 久久国产乱子免费精品| 亚洲国产最新在线播放| 中文字幕av在线有码专区| 深夜a级毛片| 国产精品久久久久久av不卡| 亚洲在线观看片| 亚洲精品亚洲一区二区| 嫩草影院入口| 中文字幕av在线有码专区| 精品人妻视频免费看| 亚洲国产精品成人综合色| 国产乱人偷精品视频| 国产精品一区二区性色av| 久久久精品94久久精品| av线在线观看网站| 国内少妇人妻偷人精品xxx网站| 国产高清国产精品国产三级 | 久久亚洲精品不卡| 国产精品美女特级片免费视频播放器| 人人妻人人看人人澡| 日韩欧美精品v在线| 免费搜索国产男女视频| 久久久久久久久中文| 深夜a级毛片| 国模一区二区三区四区视频| 麻豆一二三区av精品| 美女大奶头视频| 亚洲五月天丁香| 国产综合懂色| 亚洲乱码一区二区免费版| 国产免费视频播放在线视频 | 在线a可以看的网站| 亚洲一级一片aⅴ在线观看| 久久久色成人| 日韩国内少妇激情av| 久久婷婷人人爽人人干人人爱| 久久久久网色| 国产黄片美女视频| 久久久久久国产a免费观看| 色视频www国产| 亚洲成色77777| 精品午夜福利在线看| 精品无人区乱码1区二区| 少妇高潮的动态图| 久久久久久大精品| 日韩欧美国产在线观看| 中文欧美无线码| 成人无遮挡网站| 成人美女网站在线观看视频| 神马国产精品三级电影在线观看| 丰满少妇做爰视频| 国产探花在线观看一区二区| 国内揄拍国产精品人妻在线| 秋霞在线观看毛片| 精品熟女少妇av免费看| 青春草亚洲视频在线观看| 别揉我奶头 嗯啊视频| 欧美区成人在线视频| 久久久久久久午夜电影| 亚洲欧美精品综合久久99| 人体艺术视频欧美日本| 精品免费久久久久久久清纯| 啦啦啦观看免费观看视频高清| 亚洲成人精品中文字幕电影| 国产淫片久久久久久久久| 国产精品99久久久久久久久| 亚洲熟妇中文字幕五十中出| 九九爱精品视频在线观看| 男的添女的下面高潮视频| АⅤ资源中文在线天堂| 午夜老司机福利剧场| 久久久久性生活片| 国产亚洲av片在线观看秒播厂 | 十八禁国产超污无遮挡网站| 欧美日韩综合久久久久久| 男人舔女人下体高潮全视频| 国产爱豆传媒在线观看| 男的添女的下面高潮视频| 亚洲熟妇中文字幕五十中出| 午夜免费激情av| 在线播放国产精品三级| 欧美激情久久久久久爽电影| 日韩精品青青久久久久久| 最近视频中文字幕2019在线8| 日本一二三区视频观看| 久久精品国产99精品国产亚洲性色| 99久久精品一区二区三区| 国产精品1区2区在线观看.| 少妇被粗大猛烈的视频| 欧美zozozo另类| 老司机福利观看| 黄色配什么色好看| 久久精品国产自在天天线| 亚洲av免费高清在线观看| 一个人看视频在线观看www免费| 国产私拍福利视频在线观看| 如何舔出高潮| 久久欧美精品欧美久久欧美| 禁无遮挡网站| 亚洲性久久影院| 国产私拍福利视频在线观看| 建设人人有责人人尽责人人享有的 | 亚洲无线观看免费| 亚洲国产精品sss在线观看| 丰满少妇做爰视频| 白带黄色成豆腐渣| 免费观看人在逋| 国产免费又黄又爽又色| 亚洲av.av天堂| 色视频www国产| 国产午夜福利久久久久久| 午夜亚洲福利在线播放| 国产欧美日韩精品一区二区| 七月丁香在线播放| 中文字幕亚洲精品专区| ponron亚洲| 男女视频在线观看网站免费| 亚洲在久久综合| 99在线人妻在线中文字幕| 中文字幕免费在线视频6| 国产爱豆传媒在线观看| 3wmmmm亚洲av在线观看| 麻豆成人午夜福利视频| 欧美三级亚洲精品| 精品久久久久久久末码| 看免费成人av毛片| 免费看美女性在线毛片视频| 看片在线看免费视频| 高清日韩中文字幕在线| 亚洲国产成人一精品久久久| 只有这里有精品99| 三级毛片av免费| 在线a可以看的网站| 观看美女的网站| 天堂网av新在线| 免费播放大片免费观看视频在线观看 | 中文在线观看免费www的网站| 亚洲真实伦在线观看| 禁无遮挡网站| 熟女电影av网| 国产成人a∨麻豆精品| 中国美白少妇内射xxxbb| 国产成年人精品一区二区| 晚上一个人看的免费电影| 午夜福利高清视频| 欧美色视频一区免费| 波野结衣二区三区在线| 日日摸夜夜添夜夜爱| 国产又色又爽无遮挡免| 国产精品人妻久久久影院| 午夜福利成人在线免费观看| 亚洲国产精品sss在线观看| 狂野欧美白嫩少妇大欣赏| 中文亚洲av片在线观看爽| 久久精品久久精品一区二区三区| av在线亚洲专区| 少妇的逼好多水| 尤物成人国产欧美一区二区三区| 久久精品久久久久久噜噜老黄 | 国产伦精品一区二区三区视频9| 少妇熟女欧美另类| 久久精品人妻少妇| 国产精品久久久久久精品电影小说 | 97在线视频观看| 久久人妻av系列| 亚洲欧美成人综合另类久久久 | 亚洲av男天堂| 级片在线观看| 日日撸夜夜添| 乱码一卡2卡4卡精品| 婷婷色综合大香蕉| 欧美成人精品欧美一级黄| 久久久亚洲精品成人影院| 美女cb高潮喷水在线观看| 欧美不卡视频在线免费观看| 免费看美女性在线毛片视频| 赤兔流量卡办理| 国产欧美另类精品又又久久亚洲欧美| 国产大屁股一区二区在线视频| eeuss影院久久| 久久精品久久久久久久性| 成人毛片a级毛片在线播放| 午夜免费激情av| 内射极品少妇av片p| 亚洲欧美成人综合另类久久久 | 国产精品国产高清国产av| 亚洲18禁久久av| 国产v大片淫在线免费观看| 三级国产精品欧美在线观看| 69人妻影院| 黄色欧美视频在线观看| 村上凉子中文字幕在线| 日韩欧美精品免费久久| 欧美人与善性xxx| 最近最新中文字幕免费大全7| 国产精品一二三区在线看| 日本-黄色视频高清免费观看| 亚洲av一区综合| 国产精品久久久久久久久免| 纵有疾风起免费观看全集完整版 | 变态另类丝袜制服| 国产91av在线免费观看| 男的添女的下面高潮视频| 日韩av在线大香蕉| 中文字幕av在线有码专区| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说 | 亚洲精华国产精华液的使用体验| 久久这里只有精品中国| 久久久久性生活片| av天堂中文字幕网| 乱人视频在线观看| 老女人水多毛片| 亚洲精品,欧美精品| 国产精品嫩草影院av在线观看| 麻豆成人av视频| 国产成人精品婷婷| 久久久久久久国产电影| 亚洲av日韩在线播放| 一级二级三级毛片免费看| 亚洲欧美精品自产自拍| 国产黄色小视频在线观看| 午夜精品一区二区三区免费看| 国产精品福利在线免费观看| 日韩高清综合在线| 国产淫语在线视频| 日韩制服骚丝袜av| 麻豆精品久久久久久蜜桃| 精品不卡国产一区二区三区| 国产国拍精品亚洲av在线观看| 青春草国产在线视频| 国产av码专区亚洲av| 国产视频首页在线观看| 天堂影院成人在线观看| 久久久午夜欧美精品| 日韩欧美精品免费久久| 亚洲国产精品国产精品| 国产三级在线视频| 好男人在线观看高清免费视频| 99久久九九国产精品国产免费| 日韩三级伦理在线观看| 欧美高清性xxxxhd video| 在线天堂最新版资源| eeuss影院久久| 简卡轻食公司| 中文字幕久久专区| 国产精品综合久久久久久久免费| 日本av手机在线免费观看| 久久精品国产鲁丝片午夜精品| 2021天堂中文幕一二区在线观| 99久久精品国产国产毛片| 国产免费男女视频| 日本猛色少妇xxxxx猛交久久| 亚洲国产成人一精品久久久| 精品一区二区三区人妻视频| 美女xxoo啪啪120秒动态图| 精品人妻一区二区三区麻豆| 汤姆久久久久久久影院中文字幕 | 91aial.com中文字幕在线观看| 国产精华一区二区三区| 国产伦在线观看视频一区| 国产男人的电影天堂91| 午夜福利成人在线免费观看| ponron亚洲| 美女内射精品一级片tv| 中国美白少妇内射xxxbb| 97超视频在线观看视频| 一级av片app| 女人被狂操c到高潮| 国产精品一区二区性色av| 卡戴珊不雅视频在线播放| 色5月婷婷丁香| 久久99热这里只有精品18| 中文字幕制服av| 国产精品福利在线免费观看| 精品人妻熟女av久视频| 国产一级毛片七仙女欲春2| 午夜福利在线观看吧| 91狼人影院| 亚洲欧洲日产国产| 午夜精品一区二区三区免费看| 色综合亚洲欧美另类图片| 国产v大片淫在线免费观看| 久久欧美精品欧美久久欧美| 六月丁香七月| 天堂av国产一区二区熟女人妻| 欧美一区二区国产精品久久精品| 国产伦一二天堂av在线观看| 亚洲国产精品成人综合色| 亚洲成人av在线免费| 亚洲va在线va天堂va国产| 国产一级毛片七仙女欲春2| 在线免费十八禁| 日日啪夜夜撸| 亚洲欧美精品综合久久99| 婷婷六月久久综合丁香| 天堂网av新在线| 成年女人永久免费观看视频| 欧美+日韩+精品| 日韩av在线大香蕉| 欧美日韩一区二区视频在线观看视频在线 | 免费观看在线日韩| 狂野欧美白嫩少妇大欣赏| 亚洲av不卡在线观看| 亚洲自拍偷在线| 特大巨黑吊av在线直播| 国产精品,欧美在线| 中文字幕久久专区| 中国国产av一级| 国产伦一二天堂av在线观看| 欧美成人a在线观看| 精品国产露脸久久av麻豆 | 麻豆乱淫一区二区| 精华霜和精华液先用哪个| 亚洲精品一区蜜桃| 国产成人精品婷婷| 欧美变态另类bdsm刘玥| 岛国在线免费视频观看| 全区人妻精品视频| 51国产日韩欧美| 中文欧美无线码| 亚洲美女搞黄在线观看| 黑人高潮一二区| 赤兔流量卡办理| 搡老妇女老女人老熟妇| 波野结衣二区三区在线| 国产真实乱freesex| 国产精品福利在线免费观看| 亚洲美女搞黄在线观看| 天堂√8在线中文| 亚洲无线观看免费| 午夜福利在线观看吧| 亚洲欧美精品自产自拍| 国产精品一二三区在线看| 久久精品久久久久久噜噜老黄 | a级毛片免费高清观看在线播放| 欧美激情国产日韩精品一区| 欧美成人一区二区免费高清观看| 国产爱豆传媒在线观看| 免费看av在线观看网站| 99热网站在线观看| 小蜜桃在线观看免费完整版高清| 欧美zozozo另类| 亚洲电影在线观看av| 中文字幕精品亚洲无线码一区| 日韩中字成人| 老女人水多毛片| 男女国产视频网站| 色综合色国产| 1024手机看黄色片| 成人三级黄色视频| 最近最新中文字幕大全电影3| 国产亚洲午夜精品一区二区久久 | 国产高清三级在线| 日韩强制内射视频| 欧美人与善性xxx| 青青草视频在线视频观看| 日日摸夜夜添夜夜添av毛片| 亚洲最大成人av| 赤兔流量卡办理| 中国国产av一级| 特级一级黄色大片| 一区二区三区乱码不卡18| 久久热精品热| 成年av动漫网址| 国产亚洲91精品色在线| 搞女人的毛片| 午夜免费激情av| 亚洲精品日韩在线中文字幕| 极品教师在线视频| 亚洲av免费在线观看| 在线播放无遮挡| 欧美xxxx黑人xx丫x性爽| 男的添女的下面高潮视频| 极品教师在线视频| 中文精品一卡2卡3卡4更新| 看黄色毛片网站| 日日摸夜夜添夜夜爱| 麻豆久久精品国产亚洲av| 啦啦啦啦在线视频资源| 七月丁香在线播放| 午夜免费男女啪啪视频观看| 欧美成人a在线观看| ponron亚洲| 久久久久久久国产电影| 少妇的逼好多水| 国内精品一区二区在线观看| 中文乱码字字幕精品一区二区三区 | 神马国产精品三级电影在线观看| 欧美成人午夜免费资源| 久久久精品94久久精品| 波野结衣二区三区在线| 狂野欧美白嫩少妇大欣赏| 热99在线观看视频| 少妇的逼水好多| 美女内射精品一级片tv| 国产乱人视频| 亚洲国产精品久久男人天堂| 亚洲精品国产成人久久av| 亚洲色图av天堂| 国产黄色视频一区二区在线观看 | 国产日韩欧美在线精品| 视频中文字幕在线观看| 日本黄大片高清| 女人被狂操c到高潮| 日韩欧美三级三区| 高清视频免费观看一区二区 | 又黄又爽又刺激的免费视频.| 中文字幕熟女人妻在线| 国产av码专区亚洲av| 日韩一区二区三区影片| 国产精品国产三级国产av玫瑰| 尾随美女入室| 久久久久九九精品影院| 国产精品福利在线免费观看| 99热这里只有是精品50| 日韩成人av中文字幕在线观看| 成人高潮视频无遮挡免费网站| 日日干狠狠操夜夜爽| .国产精品久久| 一区二区三区免费毛片| 人人妻人人看人人澡| 高清av免费在线| 成人欧美大片| av在线天堂中文字幕| 国产免费男女视频| 欧美成人a在线观看| 欧美日韩一区二区视频在线观看视频在线 | 干丝袜人妻中文字幕| 亚洲成人中文字幕在线播放| 国产乱人偷精品视频| 亚洲国产欧美在线一区| 成人一区二区视频在线观看| 丰满乱子伦码专区| 久久久久久久久久成人| 成人午夜高清在线视频| 精品不卡国产一区二区三区| 国产老妇伦熟女老妇高清| 日韩人妻高清精品专区| 免费在线观看成人毛片| 黄片无遮挡物在线观看| 国产真实乱freesex| 中文字幕av成人在线电影| 国产视频内射| 国内揄拍国产精品人妻在线| 精品久久久久久久久久久久久| 美女黄网站色视频| av在线老鸭窝| 九色成人免费人妻av| 91精品一卡2卡3卡4卡| 成人午夜高清在线视频| 插逼视频在线观看| 成人性生交大片免费视频hd| 自拍偷自拍亚洲精品老妇| 国产精品伦人一区二区| 九九久久精品国产亚洲av麻豆| 国产日韩欧美在线精品| 日韩强制内射视频| 国内精品一区二区在线观看| 国产亚洲av嫩草精品影院| 日韩一本色道免费dvd| 免费看日本二区| 久久久久久久久大av| 免费人成在线观看视频色| 一级毛片久久久久久久久女| 欧美激情久久久久久爽电影| 亚洲国产最新在线播放| 日韩欧美 国产精品|