• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative analysis modeling for the ChemCam spectral data based on laserinduced breakdown spectroscopy using convolutional neural network

    2020-11-10 03:02:02XueqiangCAO曹學(xué)強(qiáng)LiZHANG張立ZhongchenWU武中臣ZongchengLING凌宗成JialunLI李加倫andKaichenGUO郭愷琛
    Plasma Science and Technology 2020年11期
    關(guān)鍵詞:張立出版業(yè)變革

    Xueqiang CAO(曹學(xué)強(qiáng)),Li ZHANG(張立),Zhongchen WU(武中臣),Zongcheng LING(凌宗成),Jialun LI(李加倫) and Kaichen GUO(郭愷琛)

    1 School of Mechanical,Electrical & Information Engineering,Shandong University,Weihai 264209,People’s Republic of China

    2 Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment,Institute of Space Sciences,Shandong University,Weihai 264209,People’s Republic of China

    Abstract

    Keywords:laser-induced breakdown spectroscopy,convolutional neural network,activation function,optimization method,quantitative analysis

    1.Introduction

    As a powerful and convenient technique,laser-induced breakdown spectroscopy(LIBS)has been utilized to analyze the spectrum with multivariate regression algorithms in order to obtain the relative content of each compound in samples.So far,LIBS has been widely applied to many geochemical fields with the advantages of convenient operation and high working efficiency[1].Due to the miniaturization,the handheld LIBS analyzer has also been adopted to analyze iron,rock and other materials[2,3].Furthermore,considering it can characterize target chemistry remotely and rapidly,LIBS has also been successfully used in situ quantitative analysis of Martian materials[4,5].The ChemCam(an instrument containing a LIBS spectrometer and a Remote Micro-Imager)on the Curiosity rover of Mars Science Laboratory is the first LIBS payload whose major mission is to detect the compound composition of rocks and minerals[6,7].To date,the Curiosity rover has been traveling for more than seven years on Mars,and the ChemCam has collected large amounts of LIBS spectra which are conducive to finding out the elemental composition of soils and rocks on Mars.Currently,for better exploring the Mars surface,NASA Mars 2020 rover with the SuperCam(an instrument containing a LIBS spectrometer,a new Raman spectroscopy,an infrared passive spectrometer and a remote Micro-Imager with a new color detector)instrument and China Mars 2020 rover with the MarsCoDe(Mars Surface Composition Detection Package)instrument are scheduled to launch in 2020 and land on Mars in 2021 respectively[8,9].Therefore,improving the prediction accuracy of the elemental composition of soils and rocks by utilizing LIBS is of great significance for the Mars exploration.

    As known,the chemical matrix effects make the quantitative analysis of LIBS more complex and difficult by influencing the intensity of the given emission line,which can be reduced by multivariate regression algorithms[10,11].Containing the advantages of canonical correlation analysis and principle component analysis,partial least square regression(PLSR)is a commonly used method of multivariate linear regression(LR)for the LIBS quantification[12,13].PLSR has two forms:one is PLS1,predicting the concentration of one element; the other is PLS2,simultaneously predicting the concentrations of several elements[5].Because of the better performance of PLS1,PLS2 which is the initial method used by the ChemCam team was replaced by PLS1.Furthermore,the PLS1 ‘sub-model’ method presented by Anderson et al[14]has been proved to be able to improve the prediction accuracy for major oxides,which is a main quantitative method used by the ChemCam team.

    Some other multivariate methods,such as support vector regression(SVR),principal component regression(PCR),artificial neural network(ANN)and convolutional neural network(CNN),are also used in the quantitative analysis of various materials based on LIBS.Duan et al[15]discovered Adaboost back-propagation ANN(BP-Adaboost)as an ensemble learning method offered a better result than PLSR and back-propagation(BP)-ANN when used for detecting heavy and nutritional metals in agricultural biochar.Wang et al[16]presented PCR and Least absolute shrinkage and selection operator(Lasso)outperformed LR,PLSR and SVR when used for the quantification of the heavy metals in soils.Shi et al[17]proved that the SVR algorithm was more accurate than the PLSR algorithm in measuring the elemental concentrations(Si,Ca,Mg,Fe and Al)in the sedimentary rocks.In addition,Dyar et al[18]concluded that PLSR and Lasso gave comparable performance when they are used to analyze the elemental concentrations of 100 igneous and highly-metamorphosed rock samples.Zhang et al[19]presented a ‘DeepSpectra’ model based on CNN,which is more accurate than the other methods(SVR,PLSR and ANN)when used for detecting corn protein content,tablet AC,wheat protein content and soil organic content.

    In this paper,we constructed a CNN regression model for the quantitative analysis of the one-dimensional ChemCam spectral data.Besides,the effects of four different activation functions on the performance of the CNN regression model have been probed with the purpose to improve the prediction accuracy of the CNN model.Then,we chose a suitable optimization method and an initial learning rate for the CNN model.Eventually,the comparison among the CNN model,the SVR model and the PLSR model has been made in terms of prediction accuracy.

    Figure 1.The box plots of concentration distribution of eight oxides.Maximum whisker length is 1.5.The red points are outliers.

    2.Data set

    The ChemCam data sets are produced by the ChemCam team using LIBS under the Mars-like atmospheric conditions.The spectra used in this study are available for downloading on the NASA Planetary Data System at http://pds-geosciences.wustl.edu/missions/msl/chemcam.htm.In the ChemCam calibration data,there are 408 samples whose main chemical components are SiO2,TiO2,AL2O3,FeOT,MgO,CaO,Na2O and K2O[20].However,this paper only used 376 of 408 samples for experiments,because the relative contents of oxides in some samples are not found.Figure 1 shows the box plots of concentration distribution of eight oxides.Theoretically,we can obtain five average spectra from each sample,but in some samples there are only four average spectra.Besides,when we built a regression prediction model for an oxide,some samples that do not contain that oxide were discarded.Hence,the number of samples used for each oxide is different.We divided the samples into two groups(the training samples and the testing samples)according to a ratio of 4:1.The training samples and the testing samples are independent of one another.More details about the training set and the testing set used in this paper are shown in table 1.

    Table 1.The number of samples and spectra of training set and testing set used in this study.

    The spectra used in this paper have already been preprocessed.The pre-process included subtraction of non-laser dark spectrum,removal of noise,reduction of continuum spectrum,wavelength calibration,instrument response measurement and distance correction.More details about the preprocess can be found in[21].Besides,in order to reduce the order of magnitude,the min-max normalization is used to normalize spectra data,which is the only pre-process performed in this paper.The conversion function is as follows:

    where x is one of the observations,xminis the smallest observation,xmaxis the largest observation and z is the new observation.

    3.Methodology

    3.1.Convolutional neural network

    CNN is a deep learning method widely used for target classification,target detection,and target recognition[22-24].In recent years,CNN has been successfully utilized for the LIBS quantification due to its outstanding capability of feature extraction[19,25].CNN has two important characteristics(sparse connectivity and shared weights)which can greatly reduce the number of the parameters that the network needs to be compared to ANN.A CNN model generally consists of an input layer,convolutional layers,excitation layers,pooling layers,fully-connected layers and an output layer.The convolution kernel used for feature extraction is a core part of the CNN model.Convolutional kernels of different sizes can extract features of different levels and the stacked convolutional layers can extract features of higher abstraction.For one-dimensional spectral data,we used 1×n convolutions.There are activation functions in the excitation layer,which act on the outputs of the convolutional layers.The activation functions in the excitation layers make the CNN model have the capability of nonlinearly mapping.The CNN model with an activation function can better solve more complex problems.The hyperbolic tangent(tanh)function,the rectified linear unit(ReLU)function,the linear function and the Sigmoid function are used as activation functions to train the CNN models in this paper respectively.The forms of the tanh function,the ReLU function,the linear function and the Sigmoid function are:

    where x is one of the outputs of the convolutional layers.

    In addition,to improve the performance of the deep neural network,the Inception V2 architecture that can increase the depth and width of the network was used to construct the CNN regression model in this study.The Inception V2 architecture was proposed by Ioffe et al[26]in 2015.The Inception V2 architecture used in this paper is shown in figure 2.The four paratactic branches of the Inception V2 architecture have different functions.All the 1×1 convolutions of the four branches can reduce the number of the feature maps.The function of the 1×3 convolutions of the second branch is feature extracting.Two 1×3 convolutions in sequential order in the Inception V2 architecture(the third branch)are used to replace the 1×5 convolutions in Inception V1 architecture,which can provide more nonlinearly mapping and reduce the number of the parameters of the network.The role of the max pooling of the forth branch is improving the receptive field,reducing the dimension of the feature maps and increasing translationinvariant to some extent.However,because we used the max pooling with a stride of 1,the dimension of the feature maps did not reduce.In essence,the workings of the Inception V2 architecture can be described in the following two steps:(1)obtaining feature maps of different levels from four branches;(2)integrating feature maps of different levels together.

    3.2.Experiments

    3.2.1.Constructing CNN regression models.The CNN model we constructed for one-dimensional spectral data is shown in figure 3.There are three convolutional layers(Conv1,Conv2 and Conv3)behind the input layer,which can capture spectral details.The Inception V2 architecture behind the convolutional layers can further extract spectral features of different levels and the concatenation layer can integrate features of different levels together.The flatten layer can transform multi-dimensional data into one-dimensional data,which is the transition from a convolutional layer to a fully-connected layer.The settings of each convolutional kernel(or max pooling)are shown in table 2.

    Figure 2.The architecture of the Inception V2.

    Figure 3.The structure of the proposed model.

    We used the trial-and-error method to choose a better activation function for the CNN regression model.In our study,we compared the effects of four different activation functions(the tanh function,the ReLU function,the linear function and the Sigmoid function)on the regression model.Before comparison,we paired each activation function with an appropriate weight initialization method.The weight initialization that sets a corresponding initial value for each weight is an important part of the CNN model.A good initialization method can accelerate the process of training to converge and is more likely to find a better solution.Conversely,a bad initialization method may cause problems in the process of gradient propagation.Hence,choosing a suitable initialization method is essential for training a network.Two initialization methods namely ‘Xavier’ and‘He_normal’which are often utilized in neural networks were used in this study.The basic idea of the‘Xavier’initialization is to make the output and input of each network’s layer have a normal distribution and similar variance to avoid the output becoming zero.For the ReLU function,if the input value is less than zero,the output would be zero,which affects the output distribution.Hence,the‘He_normal’initialization was proposed to solve the above phenomenon.Since the ‘Xavier’initialization is helpful for the tanh function,we used the‘Xavier’ initialization for the CNN model with the tanh function(t-model).Being beneficial to the ReLU function,the‘He_normal’ initialization was selected for the CNN model with the ReLU function(r-model)[27,28].For the model with the linear function(l-model)and the model with the Sigmoid function(s-model),we used the ‘He_normal’initialization.When we compared the performance of four activation functions,the other parameters of the CNN model are exactly the same.

    After choosing a suitable activation function,we explored the effects of the optimization methods on the regression models.In the process of BP,the gradient descent optimization algorithms are often used to update the weights of the convolutional kernel.A good optimization method can make the model converge quickly and get a better solution.An inappropriate optimization method may make the model unable to converge or have a large prediction error.Besides,the initial learning rate of the optimization method is also an important part of training a neural network.In our study,we used the stochastic gradient descent(SGD)optimization[29]and the Adam optimization[30]to train the CNN model we built,respectively.SGD that updates the weights by a gradient from a stochastic spectrum in each epoch is one of the most commonly used algorithms.Adam which is an adaptive optimization algorithm has been a popular optimization method for a neural network in recent years.For these two optimization methods,three different initial learning rates(0.01,0.001 and 0.0005)were used to train the CNN model,respectively.

    Being an essential part of the CNN model,the loss function provides errors for error back propagation algorithms and concerns the performance of the regression model.The mean square error(MSE)loss function was thus selected for training the CNN model.To improve training speed and reduce overfitting,a batch normalization layer was placed behind the full-connected layer.A mechanism called ‘early stopping’ was used to stop the training model to avoid overfitting.

    Table 2.The settings of each convolutional kernel(or max pooling)used in the CNN regression model.

    Table 3.Optimized C and γ of the SVR model for all oxides.

    3.2.2.Comparison among the performance of the CNN model,the SVR model and the PLSR model.After choosing a better activation function,a suitable optimization method and an initial learning rate for the CNN model,the comparison among the performance of the CNN model,the SVR model and the PLSR model was performed.In this section,the process of parameter optimization of the SVR model and the PLSR model was described.

    國內(nèi)外文獻(xiàn)主要聚焦數(shù)字化變革給傳統(tǒng)出版業(yè)帶來的沖擊,例如,信息技術(shù)(如“云出版”)、管理創(chuàng)新(如編輯流程重構(gòu)、“融”出版、眾籌出版等)和政策扶持等對傳統(tǒng)出版業(yè)的經(jīng)營理念、營銷渠道和產(chǎn)業(yè)分工合作等產(chǎn)生重要影響。然而,現(xiàn)有文獻(xiàn)更多關(guān)注大型出版集團(tuán)的信息化變革與應(yīng)對,忽略了對中小出版企業(yè)的轉(zhuǎn)型升級(jí)研究。位于產(chǎn)業(yè)“金字塔”底部的中小出版企業(yè)轉(zhuǎn)型升級(jí)到底有哪些路徑可走?需要理論界進(jìn)一步開展研究。本文基于“新三板”掛牌新聞和出版企業(yè)數(shù)據(jù)分析,揭示中小出版企業(yè)轉(zhuǎn)型升級(jí)的實(shí)踐,彌補(bǔ)現(xiàn)有文獻(xiàn)對出版企業(yè)實(shí)踐分析的不足,對國家政策實(shí)施和企業(yè)經(jīng)營具有現(xiàn)實(shí)意義。

    To train an SVR model,two essential parameters(C and γ)need to be optimized,which determine the performance of the regression models.As a key factor for the establishment of the hyperplane,C represents the fault-tolerance.γ is the vital parameter of the radial basis function which maps the spectra into a higher dimensional linear separable space[31].Furthermore,the number of support vector influences the speed of model training.The solution for best choosing the two key parameters was to utilize the grid optimization algorithm coupled with a three-fold cross validation(CV)in the training set.C and γ under the minimum root mean square error of cross validation(RMSECV)were chosen as the final parameters of the SVR models.More details about the SVR model can be found in table 3.PLSR extracts the principal components(PCs)from two matrices(i.e.samples(X)and the corresponding labels(Y))respectively and then models the relationship between two matrices.The number of PCs is a key parameter of PLSR,which concerns the prediction capability of the PLSR model[32].In this paper,we optimized the number of PCs by a three-fold CV in training data.Table 4 shows the best number of PCs for all oxides.

    The CNN models in this research were done in Python using Keras.The SVR model and the PLSR model were completed using MATLAB 2016.The parameters-optimized process of the SVR model and the PLSR model was implemented on the MATLAB 2016.

    Table 4.The best number of PCs of the PLSR model for all oxides.

    3.3.Model evaluation

    Since the initial weights of the CNN model are not fixed values,there are little differences among the performance of the models trained at different times.Therefore,in this study,we repeated the process of training the CNN model ten times,and took the average value of ten root mean square errors of predicted concentrations(RMSEP)as one of the indicators to evaluate the prediction capability of the regression models.Besides,standard deviation(SD)of ten RMSEPs was used to evaluate the stability of the model.The forms of RMSEP and SD are described in the following equations:

    where yi,actualis the actual value of ith sample,yi,predictedis the predicted value of ith sample,N is the number of testing spectra,RMSEPjis the jth RMSEP,RMSEPaverageis the average value of all RMSEPs and M is the number of RMSEPs.

    4.Results

    4.1.Effects of four activation functions on the CNN model

    In order to find a suitable activation function for the CNN model,we compared the performance of the t-model,the r-model,the l-model and the s-model.There are some predetermined parameters in these CNN models:the SGD optimization,the initial learning rate=0.0005 and the batch size=256.Table 5 shows the performance of these CNN models for all oxides.For SiO2,TiO2,Al2O3,MgO and K2O,the t-model has the best performance when compared to the other three CNN models.For FeOTand CaO,the t-model has the second best performance which also is an acceptable result.For Na2O,the t-model obtains an average RMSEP of 0.44 wt%,which is almost the same as that of the r-model(average RMSEP=0.43 wt%).Overall,for each oxide,the t-model has a satisfactory performance.

    Table 5.The average RMSEP(wt%)of the t-model,the r-model,the l-model and the s-model for all oxides.

    Table 6.The SD(wt%)of ten RMSEPs of the t-model,the r-model,the l-model and the s-model for all oxides.

    In addition,we compared the SDs to study the stability of the CNN models.Table 6 exhibits the SDs of the abovementioned four models.The SD of l-model’s ten RMSEPs is lower than the SD of the other three CNN model’s ten RMSEPs for all oxides except Na2O.Compared with the other three models,for all oxides except SiO2and CaO,the s-model has the second best performance in terms of SD.Although the stability of the l-model and the s-model is better than that of the t-model and the r-model,their prediction error is greater than the prediction error of the t-model and the r-model for all oxides except SiO2.Notice here our priority is the prediction accuracy,and the SDs of the t-model and the r-model are acceptable for all oxides.For TiO2,Al2O3,MgO,CaO and K2O,the SD of the t-model’s ten RMSEPs is lower than the SD of r-model’s ten RMSEPs.For SiO2,FeOTand Na2O,although the SD of the t-model’s ten RMSEPs is bigger than the SD of the r-model’s ten RMSEPs,the difference value between them is very small.Based on the above analysis,it is obvious that the tanh function is more helpful than the ReLU function,the linear function and the Sigmoid function for constructing CNN models on the ChemCam calibration data.

    4.2.Choosing a suitable optimization method and an initial learning rate for the CNN model

    Before exploring the effects of different optimization methods on the performance of the CNN model,we predetermined the activation function:the tanh function.For the SGD optimization and the Adam optimization,three different initial learning rates were used to train the CNN model,respectively.Table 7 exhibits the average RMSEPs of the CNN models with different optimization methods and initial learning rates.For SiO2,Al2O3,FeOTand MgO,the model with the SGD optimization and the initial learning rate=0.0005 obtains the best performance compared with the other CNN models.For Na2O and K2O,the model with the SGD optimization and the initial learning rate=0.0005 has the second best performance which is not much different from the best model.For TiO2,the RMSEP of the model with the SGD optimization and the initial learning rate=0.0005 is 0.43 wt%,which is an acceptable result compared to the other models.For CaO,the model with the SGD optimization and the initial learning rate=0.0005 provides a bad RMSEP when compared to the other three CNN models with the Adam optimization.The reason why the CNN model with the SGD optimization and the initial learning rate=0.0005 did not find the global optimal solution may be the initial learning rate=0.0005 is not suitable for training the CNN model for CaO.For the SGD optimization,the model with the initial learning rate=0.0005 is slightly better than the model with the initial learning rate=0.001 for all oxides except Na2O.However,the model with the SGD optimization and the initial learning rate=0.01 did not converge for some oxides(SiO2,Al2O3,FeOT,MgO,CaO and K2O),which illustrates that a proper initial learning rate is important for the SGD optimization.For the Adam optimization,because of the feature of adaptive adjustment of the learning rate,several CNN models have similar performance for all oxides except FeOTand MgO.On the whole,the model with the SGD optimization and the initial learning rate=0.0005 models still has advantages over the other models.

    Table 7.The average RMSEP(wt%)of the CNN models for all oxides(‘’ represents the model did not converge).

    Figure 4.The performance of the t-model,the SVR model and the PLSR model.

    Table 8 shows the SD of each CNN model’s ten RMSEPs for all oxides.For the SGD optimization,the SD of the model with the initial learning rate=0.0005 is less than or equal to those of the other two models for all oxides except Al2O3.For the Adam optimization,the SD of the model with the initial learning rate=0.0005 is less than or equal to those of the other two models for all oxides except TiO2and CaO.From an overall perspective,the SD of the model with the SGD optimization and the initial learning rate=0.0005 is similar to the SD of the model with the Adam optimization and the initial learning rate=0.0005 for all oxides except Al2O3and FeOT.Therefore,the model with the SGD optimization and the initial learning rate=0.0005 has satisfactory stability.

    Considering the prediction accuracy and the stability,we think the SGD optimization and the initial learning rate=0.0005 are the best choice for the CNN model we constructed.Compared to setting a suitable set of parameters for the CNN model of each oxide,the model with unified parameters for all oxides is efficient and concise.

    Table 8.The SD(wt%)of ten RMSEPs of the CNN models for all oxides(‘’ represents the model did not converge).

    4.3.Comparison of the results obtained by the t-model,the SVR model and the PLSR model

    The t-model,the optimization of which is the SGD optimization and the initial learning rate of which is 0.0005,was chosen as the final CNN regression model in this study.To prove that the t-model has a better prediction capability than the SVR model and the PLSR model,we compared the performance of these three models.The performance of these three models is shown in figure 4.For SiO2,the SVR model obtains a RMSEP of 4.74 wt% which is smaller than the PLSR model’s RMSEP and bigger than the t-model’s average RMSEP.For TiO2,the RMSEP of the SVR model is equal to that of the PLSR model and is bigger than the average RMSEP of the t-model.For Al2O3,MgO and Na2O,the SVR model’s RMSEP is smaller than the PLSR model’s RMSEP and is bigger than the t-model’s average RMSEP.For FeOT,the average RMSEP of the t-model is lower than the RMSEPs of the SVR model and the PLSR model.For CaO,the RMSEP of the SVR model is 2.61 wt% and the RMSEP of the PLSR model is 2.36 wt%,which are all bigger than the average RMSEP of the t-model.For K2O,the t-model provides the best performance with an average RMSEP of 0.86 wt%and the second best model is the SVR model.In the mass,the t-model’s average RMSEP is much less than the other two models’ RMSEPs for all oxides.It is obvious that the t-model can effectively develop the prediction accuracy when compared to the SVR model and the PLSR model.

    Figure 5.For SiO2 and TiO2,the plots of the actual values versus the predicted values(red points:the best t-model,blue points:the SVR model,black points:the PLSR model).

    Figure 6.For Al2O3 and FeOT,the plots of the actual values versus the predicted values(red points:the best t-model,blue points:the SVR model,black points:the PLSR model).

    Figure 7.For MgO and CaO,the plots of the actual values versus the predicted values(red points:the best t-model,blue points:the SVR model,black points:the PLSR model).

    Figure 8.For Na2O and K2O,the plots of the actual values versus the predicted values(red points:the best t-model,blue points:the SVR model,black points:the PLSR model).

    We used the average value of ten RMSEPs of the t-model to evaluate the prediction capability of the t-model.However,if the t-model actually gets used,we need to use the best t-model among ten models for determining the components of the targets.Figures 5-8 show the plots of the actual concentrations against the predicted concentrations of testing samples for the best t-model(among ten t-models),the SVR model and the PLSR model.The distance of the point to the y=x line presents the loss of the predicted value.The shorter the distance is,the smaller the loss is,and the more accurate the predicted value is.For eight oxides,we can visually find the red points that belong to the t-model are closer to the y=x line than the blue points(the SVR model)and the black points(the PLSR model).It is no doubt that the t-model is superior to the SVR model and the PLSR model.We owed these phenomena to the powerful feature extraction capability of the CNN algorithm.Different convolution kernels can extract features of different levels and the Inception V2 architecture can integrate features of different levels together,which provides more spectral details.In addition,features of higher and lower abstraction can effectively reduce the chemical matrix effects.These advantages contribute to the CNN model with wonderful performance when applied for the LIBS quantification of the one-dimensional ChemCam spectral data.

    5.Conclusion

    In this study,we constructed a CNN regression model for the LIBS quantification of the one-dimensional ChemCam spectral data.In the first place,in order to choose a suitable activation function for the CNN regression model,we compared the effects of four activation functions on the performance of deep neural networks.The results show that the t-model outperforms the other three models(the r-model,the l-model and the s-model).Next,we explored the effects of optimization methods on the CNN models.By comparison,the model with the SGD optimization and the initial learning rate=0.0005 that has better prediction accuracy and satisfactory stability was chosen as the final CNN regression model.Finally,we compared the performance of the t-model,the SVR model and the PLSR model.The results show that the average RMSEP of the t-model is much smaller than the RMSEPs of the SVR model and the PLSR model.In conclusion,the t-model significantly improved the capability of predicting the elementary composition of diverse targets when used for the ChemCam calibration data.The excellent performance of the CNN regression model illustrates that CNN can effectively overcome the chemical matrix effects and can be successfully applied for the LIBS quantification of the one-dimensional ChemCam spectral data.

    In the first Mars Global remote sensing and regional survey mission of China,MarsCoDe based on LIBS will be used to explore Mars material composition.The CNN model proposed in this study can be served for the LIBS quantification of MarsCoDe.Improving the prediction capability of the regression model is still an important issue for the future exploration of Mars materials.Therefore,more research is needed to be conducted in the future to refine and improve the regression models used for the quantitative analysis of LIBS.

    Acknowledgments

    This work is supported by the Pre-research project on Civil Aerospace Technologies(No.D020102)funded by China National Space Administration(CNSA).We also thank the funding from National Natural Science Foundation of China(Nos.U1931211 and 41573056),the Natural Science Foundation of Shandong Province(No.ZR2019MD008)and the Major Research Project of Shandong Province(No.GG201809130208).

    猜你喜歡
    張立出版業(yè)變革
    以按需出版為抓手,推動(dòng)出版業(yè)數(shù)字化轉(zhuǎn)型
    陪你半程
    變革開始了
    AR與VR技術(shù)在兒童出版業(yè)中的應(yīng)用
    新聞傳播(2016年23期)2016-10-18 00:54:12
    對出版業(yè)供給側(cè)改革的思考
    出版與印刷(2016年1期)2016-01-03 08:53:34
    新媒體將帶來六大變革
    聲屏世界(2015年5期)2015-02-28 15:19:47
    信任
    三月三(2015年2期)2015-02-05 16:31:01
    變革中的戶籍制度
    創(chuàng)新IT 賦能變革
    浙江人大(2014年1期)2014-03-20 16:20:01
    南宋出版業(yè)考述
    古代文明(2013年2期)2013-10-21 23:20:50
    色综合亚洲欧美另类图片| 欧美精品亚洲一区二区| 欧美日韩亚洲国产一区二区在线观看| 女警被强在线播放| 一个人免费在线观看的高清视频| 成人三级黄色视频| 成人av一区二区三区在线看| 搞女人的毛片| 看片在线看免费视频| 久久久久精品国产欧美久久久| 熟女少妇亚洲综合色aaa.| www.精华液| 成人亚洲精品av一区二区| 久久久久国产一级毛片高清牌| 成年女人毛片免费观看观看9| 成熟少妇高潮喷水视频| 国产精品永久免费网站| 午夜成年电影在线免费观看| 多毛熟女@视频| 最近最新中文字幕大全电影3 | 少妇被粗大的猛进出69影院| 婷婷六月久久综合丁香| 婷婷六月久久综合丁香| 亚洲av美国av| 久久久水蜜桃国产精品网| 成人免费观看视频高清| 精品乱码久久久久久99久播| 久久亚洲精品不卡| 国产在线观看jvid| 久久精品91蜜桃| 九色亚洲精品在线播放| 欧美性长视频在线观看| 精品久久久精品久久久| 久久青草综合色| 人妻丰满熟妇av一区二区三区| 国产精品一区二区在线不卡| 国产精品美女特级片免费视频播放器 | 久久久精品欧美日韩精品| 一二三四社区在线视频社区8| 亚洲一区二区三区色噜噜| 成人特级黄色片久久久久久久| 欧美乱色亚洲激情| 人妻久久中文字幕网| 成人国语在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇裸体淫交视频免费看高清 | 中文字幕人妻丝袜一区二区| 他把我摸到了高潮在线观看| 丁香欧美五月| 日韩成人在线观看一区二区三区| 国产午夜福利久久久久久| 午夜免费鲁丝| 国产高清videossex| 亚洲欧美精品综合久久99| 黄频高清免费视频| 欧美激情 高清一区二区三区| 日本五十路高清| 乱人伦中国视频| 成人特级黄色片久久久久久久| 精品国产超薄肉色丝袜足j| 侵犯人妻中文字幕一二三四区| 亚洲午夜精品一区,二区,三区| 亚洲色图综合在线观看| 看免费av毛片| 精品国产乱子伦一区二区三区| 黄片播放在线免费| 人人澡人人妻人| 久久热在线av| 亚洲情色 制服丝袜| 精品久久久久久久久久免费视频| 日韩欧美国产在线观看| 伦理电影免费视频| 国产片内射在线| 级片在线观看| 天堂影院成人在线观看| 国产激情久久老熟女| 老司机午夜福利在线观看视频| 欧美成人免费av一区二区三区| 大码成人一级视频| 亚洲免费av在线视频| 久久这里只有精品19| 日本一区二区免费在线视频| 欧美人与性动交α欧美精品济南到| a在线观看视频网站| 视频在线观看一区二区三区| 亚洲精品久久国产高清桃花| 老鸭窝网址在线观看| 日本 欧美在线| 国产精品亚洲美女久久久| 91老司机精品| 一级毛片女人18水好多| 可以在线观看毛片的网站| 欧美日本视频| 亚洲av五月六月丁香网| 亚洲欧美精品综合一区二区三区| 精品少妇一区二区三区视频日本电影| www日本在线高清视频| 9热在线视频观看99| 一二三四在线观看免费中文在| 亚洲专区国产一区二区| 亚洲三区欧美一区| 国产视频一区二区在线看| 香蕉久久夜色| 亚洲最大成人中文| 亚洲国产欧美网| 一本综合久久免费| 岛国在线观看网站| 久热爱精品视频在线9| 国产亚洲av高清不卡| 999久久久精品免费观看国产| 一区二区三区高清视频在线| 成人国产一区最新在线观看| 日韩免费av在线播放| 日本五十路高清| 精品国产一区二区三区四区第35| 国产高清激情床上av| 国产91精品成人一区二区三区| 亚洲久久久国产精品| 国产精品九九99| 精品久久久久久久毛片微露脸| 精品国产乱码久久久久久男人| 最近最新中文字幕大全免费视频| 中亚洲国语对白在线视频| www.www免费av| av网站免费在线观看视频| 丝袜美腿诱惑在线| 日本a在线网址| 亚洲精华国产精华精| tocl精华| 夜夜夜夜夜久久久久| aaaaa片日本免费| 国产麻豆成人av免费视频| 国产97色在线日韩免费| 色综合欧美亚洲国产小说| 91麻豆av在线| 日本三级黄在线观看| 淫妇啪啪啪对白视频| 很黄的视频免费| 老司机午夜十八禁免费视频| 多毛熟女@视频| 搡老熟女国产l中国老女人| 午夜两性在线视频| 涩涩av久久男人的天堂| 国产成年人精品一区二区| 日本a在线网址| 国产极品粉嫩免费观看在线| 日本三级黄在线观看| 9191精品国产免费久久| 亚洲成人免费电影在线观看| 国产亚洲精品第一综合不卡| 国产精品一区二区三区四区久久 | 午夜福利欧美成人| 国产三级黄色录像| 在线观看午夜福利视频| 亚洲一区高清亚洲精品| 高潮久久久久久久久久久不卡| 老熟妇乱子伦视频在线观看| 韩国精品一区二区三区| 99热只有精品国产| 亚洲欧美一区二区三区黑人| 中文字幕人妻熟女乱码| 色尼玛亚洲综合影院| 精品久久久精品久久久| 黄色 视频免费看| 男女做爰动态图高潮gif福利片 | 大码成人一级视频| 亚洲中文日韩欧美视频| 精品国产超薄肉色丝袜足j| 中文字幕人成人乱码亚洲影| videosex国产| 国产精华一区二区三区| 亚洲欧美精品综合久久99| 在线国产一区二区在线| 亚洲av美国av| 一边摸一边抽搐一进一出视频| 欧美一区二区精品小视频在线| 亚洲激情在线av| 色播亚洲综合网| x7x7x7水蜜桃| 国产成人av激情在线播放| 久久久久久久久中文| 亚洲国产日韩欧美精品在线观看 | 国产精品,欧美在线| 51午夜福利影视在线观看| 国产成人一区二区三区免费视频网站| 成人18禁在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | avwww免费| 久久久久久国产a免费观看| 国产成人影院久久av| 欧美成人免费av一区二区三区| 亚洲在线自拍视频| 国产精品98久久久久久宅男小说| 天天躁狠狠躁夜夜躁狠狠躁| 国产黄a三级三级三级人| 禁无遮挡网站| 国产高清videossex| 手机成人av网站| 亚洲成人精品中文字幕电影| 亚洲av日韩精品久久久久久密| 真人一进一出gif抽搐免费| 日韩欧美国产在线观看| 老熟妇乱子伦视频在线观看| 亚洲自拍偷在线| 国产精品日韩av在线免费观看 | 夜夜看夜夜爽夜夜摸| 一区福利在线观看| 国产高清有码在线观看视频 | 好男人电影高清在线观看| 欧美黑人欧美精品刺激| 叶爱在线成人免费视频播放| 国产精品美女特级片免费视频播放器 | 一区在线观看完整版| 日韩欧美国产在线观看| 国产精品免费视频内射| 国产不卡一卡二| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久久午夜电影| 久久久国产成人免费| 久久久久久久久免费视频了| 国产精品免费视频内射| 一区福利在线观看| 欧美成狂野欧美在线观看| 91老司机精品| 亚洲中文字幕一区二区三区有码在线看 | 天天一区二区日本电影三级 | 精品无人区乱码1区二区| 国内精品久久久久精免费| 亚洲成人免费电影在线观看| 久久天堂一区二区三区四区| 免费搜索国产男女视频| 精品欧美一区二区三区在线| 一本大道久久a久久精品| 神马国产精品三级电影在线观看 | 精品福利观看| 丁香欧美五月| 亚洲av电影在线进入| 国产亚洲av嫩草精品影院| 国产精品久久电影中文字幕| 亚洲自偷自拍图片 自拍| av中文乱码字幕在线| 女性生殖器流出的白浆| 99香蕉大伊视频| 日日爽夜夜爽网站| 久久久久久人人人人人| 亚洲成av片中文字幕在线观看| 欧美乱妇无乱码| 人人澡人人妻人| 免费在线观看影片大全网站| 亚洲男人天堂网一区| 一本久久中文字幕| 9色porny在线观看| 精品一区二区三区视频在线观看免费| 国产一卡二卡三卡精品| av超薄肉色丝袜交足视频| 亚洲avbb在线观看| 久久精品亚洲熟妇少妇任你| 日韩成人在线观看一区二区三区| 亚洲九九香蕉| 女人被狂操c到高潮| 无限看片的www在线观看| 成人三级黄色视频| 满18在线观看网站| 成熟少妇高潮喷水视频| 岛国在线观看网站| av在线播放免费不卡| 欧美日韩乱码在线| 国产97色在线日韩免费| 欧美绝顶高潮抽搐喷水| 在线视频色国产色| 高清黄色对白视频在线免费看| 狂野欧美激情性xxxx| 久久精品亚洲精品国产色婷小说| 亚洲av成人不卡在线观看播放网| 久久久水蜜桃国产精品网| 麻豆国产av国片精品| 啦啦啦韩国在线观看视频| 久久久久久人人人人人| 亚洲av日韩精品久久久久久密| 精品国产一区二区久久| 国产亚洲精品av在线| 村上凉子中文字幕在线| 制服丝袜大香蕉在线| 色av中文字幕| 国产精品98久久久久久宅男小说| 他把我摸到了高潮在线观看| 大香蕉久久成人网| 欧美最黄视频在线播放免费| ponron亚洲| 一个人免费在线观看的高清视频| 两人在一起打扑克的视频| 老司机深夜福利视频在线观看| 午夜福利18| 日韩欧美免费精品| 午夜福利视频1000在线观看 | 99热只有精品国产| 99精品久久久久人妻精品| 亚洲av成人一区二区三| 久久久国产欧美日韩av| 欧美日韩乱码在线| 亚洲国产精品久久男人天堂| 亚洲成人免费电影在线观看| www.999成人在线观看| av福利片在线| 精品久久久精品久久久| 中文字幕人成人乱码亚洲影| 免费看十八禁软件| 午夜免费鲁丝| 久久欧美精品欧美久久欧美| 亚洲七黄色美女视频| svipshipincom国产片| 亚洲成人免费电影在线观看| 女生性感内裤真人,穿戴方法视频| 性少妇av在线| 无限看片的www在线观看| avwww免费| 中国美女看黄片| 亚洲色图综合在线观看| 涩涩av久久男人的天堂| 一级片免费观看大全| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 亚洲七黄色美女视频| 久久热在线av| 亚洲精品在线观看二区| 欧美成人性av电影在线观看| 国产av一区在线观看免费| 99久久久亚洲精品蜜臀av| 亚洲性夜色夜夜综合| 午夜久久久在线观看| 欧美日韩黄片免| 国产精品av久久久久免费| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三 | 久久天堂一区二区三区四区| av福利片在线| 在线十欧美十亚洲十日本专区| 午夜免费观看网址| 国产麻豆成人av免费视频| 757午夜福利合集在线观看| 亚洲av美国av| 日本撒尿小便嘘嘘汇集6| 午夜激情av网站| av福利片在线| 欧美 亚洲 国产 日韩一| 在线永久观看黄色视频| 日韩有码中文字幕| 日韩国内少妇激情av| 久久婷婷人人爽人人干人人爱 | 色哟哟哟哟哟哟| av在线天堂中文字幕| 亚洲男人的天堂狠狠| 妹子高潮喷水视频| 国产精品爽爽va在线观看网站 | 99精品久久久久人妻精品| 国产亚洲精品一区二区www| 在线观看一区二区三区| 99在线视频只有这里精品首页| 亚洲中文日韩欧美视频| 亚洲第一av免费看| 桃红色精品国产亚洲av| 看片在线看免费视频| 国产亚洲精品久久久久久毛片| 国产精品日韩av在线免费观看 | av中文乱码字幕在线| a级毛片在线看网站| 久久国产亚洲av麻豆专区| 国产又色又爽无遮挡免费看| 制服诱惑二区| 搞女人的毛片| 亚洲男人天堂网一区| 操美女的视频在线观看| av免费在线观看网站| 成人免费观看视频高清| 亚洲avbb在线观看| 午夜福利高清视频| 免费看美女性在线毛片视频| 久久热在线av| 久久国产乱子伦精品免费另类| 在线观看免费日韩欧美大片| 亚洲专区字幕在线| 亚洲第一青青草原| 欧美色欧美亚洲另类二区 | 男人的好看免费观看在线视频 | 别揉我奶头~嗯~啊~动态视频| 天天一区二区日本电影三级 | 窝窝影院91人妻| 男女下面进入的视频免费午夜 | 中国美女看黄片| 色综合婷婷激情| 国产又爽黄色视频| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩高清在线视频| 久久国产精品男人的天堂亚洲| 99精品久久久久人妻精品| 老熟妇乱子伦视频在线观看| 午夜福利免费观看在线| 亚洲天堂国产精品一区在线| 久久久国产欧美日韩av| 99在线视频只有这里精品首页| 美女国产高潮福利片在线看| 琪琪午夜伦伦电影理论片6080| 国内久久婷婷六月综合欲色啪| 99国产极品粉嫩在线观看| 高清毛片免费观看视频网站| 搞女人的毛片| 十八禁网站免费在线| 亚洲精品国产一区二区精华液| www.自偷自拍.com| 嫁个100分男人电影在线观看| 无限看片的www在线观看| АⅤ资源中文在线天堂| 多毛熟女@视频| 亚洲精品一区av在线观看| 午夜福利视频1000在线观看 | 色播亚洲综合网| 亚洲午夜理论影院| 精品乱码久久久久久99久播| 精品欧美一区二区三区在线| ponron亚洲| 又大又爽又粗| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦 在线观看视频| 国内久久婷婷六月综合欲色啪| 久久人人精品亚洲av| 久久性视频一级片| 又黄又爽又免费观看的视频| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 丁香欧美五月| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| 狠狠狠狠99中文字幕| 午夜久久久在线观看| 欧美日韩黄片免| 亚洲精华国产精华精| 国产亚洲精品av在线| 亚洲av成人av| 久久久久久亚洲精品国产蜜桃av| 欧美乱色亚洲激情| 国产午夜精品久久久久久| 久久久国产成人精品二区| 岛国在线观看网站| 久久久精品欧美日韩精品| 色精品久久人妻99蜜桃| 午夜免费鲁丝| 日韩欧美一区二区三区在线观看| 女人精品久久久久毛片| 日本免费一区二区三区高清不卡 | 中文亚洲av片在线观看爽| 最近最新中文字幕大全免费视频| 国产1区2区3区精品| 男女下面进入的视频免费午夜 | 高清毛片免费观看视频网站| 亚洲国产精品合色在线| 99国产综合亚洲精品| 午夜日韩欧美国产| 国产黄a三级三级三级人| 亚洲欧美日韩高清在线视频| 深夜精品福利| 亚洲欧洲精品一区二区精品久久久| 欧美在线黄色| 亚洲免费av在线视频| 亚洲全国av大片| 真人一进一出gif抽搐免费| 一级a爱视频在线免费观看| 一夜夜www| 一级毛片高清免费大全| 日本精品一区二区三区蜜桃| 免费久久久久久久精品成人欧美视频| 久久久久亚洲av毛片大全| 中文字幕人妻熟女乱码| 妹子高潮喷水视频| 桃红色精品国产亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 狠狠狠狠99中文字幕| 美国免费a级毛片| 久久久精品欧美日韩精品| 丁香六月欧美| 国产精品二区激情视频| 久久久久精品国产欧美久久久| 亚洲成人国产一区在线观看| 美女扒开内裤让男人捅视频| 亚洲成人精品中文字幕电影| 极品人妻少妇av视频| 999久久久国产精品视频| 欧美乱妇无乱码| 国产亚洲精品久久久久久毛片| 久久久久久久久久久久大奶| 亚洲va日本ⅴa欧美va伊人久久| 天天添夜夜摸| 亚洲 欧美一区二区三区| 午夜福利,免费看| av天堂久久9| 国产蜜桃级精品一区二区三区| 校园春色视频在线观看| 搡老岳熟女国产| 桃色一区二区三区在线观看| 韩国精品一区二区三区| 日本一区二区免费在线视频| 亚洲五月色婷婷综合| 日本 欧美在线| 亚洲国产精品合色在线| 欧美成人性av电影在线观看| 日韩国内少妇激情av| 性色av乱码一区二区三区2| 黑人欧美特级aaaaaa片| 国产精品免费一区二区三区在线| 日本三级黄在线观看| 精品一品国产午夜福利视频| 成熟少妇高潮喷水视频| 村上凉子中文字幕在线| 99riav亚洲国产免费| 国产亚洲av高清不卡| 丝袜人妻中文字幕| 精品不卡国产一区二区三区| 国产精品 国内视频| 一级a爱视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 亚洲专区国产一区二区| 麻豆av在线久日| 精品不卡国产一区二区三区| 久久精品成人免费网站| 在线观看免费视频日本深夜| 又大又爽又粗| 成人特级黄色片久久久久久久| 久久久久九九精品影院| 精品国产亚洲在线| 在线观看免费日韩欧美大片| 亚洲三区欧美一区| 在线观看免费日韩欧美大片| 老汉色∧v一级毛片| 欧美日韩福利视频一区二区| 伊人久久大香线蕉亚洲五| 亚洲欧美激情综合另类| 久久国产乱子伦精品免费另类| 亚洲第一欧美日韩一区二区三区| 午夜福利欧美成人| 精品久久久久久成人av| 国产精品久久久久久精品电影 | 看片在线看免费视频| 亚洲人成77777在线视频| av电影中文网址| 丝袜美腿诱惑在线| 亚洲最大成人中文| 亚洲精华国产精华精| 亚洲熟女毛片儿| 久9热在线精品视频| 91字幕亚洲| 欧美丝袜亚洲另类 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品中文字幕一二三四区| 激情在线观看视频在线高清| 亚洲国产欧美一区二区综合| 757午夜福利合集在线观看| 日韩av在线大香蕉| 97人妻天天添夜夜摸| 欧美成人一区二区免费高清观看 | 欧美黑人精品巨大| www.熟女人妻精品国产| 亚洲天堂国产精品一区在线| 亚洲人成网站在线播放欧美日韩| 成人手机av| 日本免费一区二区三区高清不卡 | 97碰自拍视频| 国产亚洲欧美98| 亚洲国产精品sss在线观看| 国产精品久久电影中文字幕| 宅男免费午夜| 99精品在免费线老司机午夜| or卡值多少钱| 国产精品亚洲美女久久久| 亚洲一码二码三码区别大吗| 九色亚洲精品在线播放| 给我免费播放毛片高清在线观看| 天天躁夜夜躁狠狠躁躁| 性欧美人与动物交配| 国产主播在线观看一区二区| 高清在线国产一区| 长腿黑丝高跟| netflix在线观看网站| 十八禁网站免费在线| 亚洲avbb在线观看| 国产成+人综合+亚洲专区| 精品久久久久久久毛片微露脸| 久久久久久久久中文| 免费女性裸体啪啪无遮挡网站| 99国产精品一区二区三区| 一个人观看的视频www高清免费观看 | 久久国产精品男人的天堂亚洲| 亚洲精品国产一区二区精华液| 免费av毛片视频| 高潮久久久久久久久久久不卡| 19禁男女啪啪无遮挡网站| 精品卡一卡二卡四卡免费| 少妇裸体淫交视频免费看高清 | 露出奶头的视频| 免费在线观看视频国产中文字幕亚洲| 久久精品91无色码中文字幕| 悠悠久久av| 首页视频小说图片口味搜索| av欧美777| 久久久久久久久免费视频了| 91成年电影在线观看| 久久久久国产精品人妻aⅴ院| 国产成人影院久久av| 精品电影一区二区在线| 国产单亲对白刺激| 亚洲视频免费观看视频| 国产成人免费无遮挡视频| 一夜夜www| 亚洲欧美激情在线| 精品无人区乱码1区二区| 久久狼人影院| 国产99久久九九免费精品|