• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于活性炭||Na0.44MnO2 的低成本、高倍率和長壽命堿性鈉離子電池電容器

    2024-07-04 00:00:00薛晴李圣驛趙亞楠盛鵬徐麗李正曦張波李慧王博楊立濱曹余良陳重學(xué)
    物理化學(xué)學(xué)報 2024年2期
    關(guān)鍵詞:低成本

    摘要:水系鈉離子電池電容器具有成本低、功率大、安全性好等優(yōu)點,是下一代大規(guī)模儲能系統(tǒng)的理想選擇之一。本文采用Na0.44MnO2正極、活性炭(AC)負極、6 mol?L?1 NaOH電解液和廉價的不銹鋼集流體構(gòu)建了可充電堿性鈉離子電池電容器。由于Na0.44MnO2正極在堿性電解液中具有較高的過充耐受性,通過首次充電時的原位過充預(yù)活化過程可以解決半鈉化Na0.44MnO2正極和AC負極初始庫倫效率低的缺點。因此,AC||Na0.44MnO2可充電堿性鈉離子電池電容器具有優(yōu)異的電化學(xué)性能,在功率密度為85 W?kg?1時,能量密度達26.6 Wh?kg?1,循環(huán)10000次后容量保持率為89%。同時,在50 °C的高溫和?20 °C的低溫也具有良好的電化學(xué)性能。這些結(jié)果表明AC||Na0.44MnO2可充電堿性鈉離子電池電容器具備應(yīng)用于大規(guī)模儲能的潛力。

    關(guān)鍵詞:鈉離子電池電容;堿性電解液;過充自保護;低成本;寬工作溫程

    中圖分類號:O646

    Abstract: As the most advanced battery technology to date, lithiumionbattery has occupied the main battery markets for electric vehiclesand grid scale energy storage systems. However, the limited lithiumreserves as well as the high price raise concerns about the sustainabilityof lithium-ion battery. Although sodium-ion battery is proposed as a goodsupplement to lithium-ion battery, expensive and flammable electrolytecomponents, harsh assembly environments and potential safety hazardshave limited the rapid development to a certain extent. The organicelectrolyte was replaced with an aqueous solution to construct a newtype of aqueous sodium ion battery capacitor (ASIBC). It is of greatsignificance for next-generation energy storage system owing to its low cost, high power, and inherent safety. However,applicable ASIBC system is rarely reported so far. Here, a rechargeable alkaline sodium ion battery capacitors constructedby using Na0.44MnO2 cathode, activated carbon (AC) anode, 6 mol?L?1 NaOH electrolyte, and cheap stainless-steel currentcollector. Because of high overcharge tolerance of Na0.44MnO2 cathode in alkaline electrolyte, the shortcomings of the halfsodiumNa0.44MnO2 cathode and low initial Coulombic efficiency of AC anode can be resolved by in situ overcharging preactivationprocess during first charging. The available capacity of Na0.44MnO2 in half cell largely increased from ~40 mAh?g?1(neutral electrolyte) to 77.3 mAh?g?1 (alkaline electrolyte) due to broadened Na+ intercalation potential region. Thus, theAC||Na0.44MnO2 ASIBC delivers outstanding electrochemical properties with a high energy density of 26.6 Wh?kg?1 at apower density of 85 W?kg?1 and long cycling stability with a capacity retention of 89% after 10,000 cycles. The advantagesof the alkaline electrolyte for the AC||Na0.44MnO2 ASIBC can be concluded as follows: (1) through the in situ electrochemicalpre-activation process, the overcharging oxygen evolution reaction during first charging process can balance the adverseeffects of the half-sodium Na0.44MnO2 cathode and low initial Coulombic efficiency of AC anode on the energy density offull cell; (2) the overcharging self-protection function can promote the generated oxygen to be eliminated at anode duringovercharging, which improves the system safety; (3) the low-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, the AC||Na0.44MnO2 ASIBC also possesses wide operating temperaturerange, achieving satisfied electrochemical performance at a high temperature of 50 °C and a low temperature of ?20 °C.Considering the merits of low-cost, high safety, no toxicity and environment-friendly, we believe the AC||Na0.44MnO2rechargeable alkaline sodium-ion battery capacitors have the potential to be applied to large-scale energy storage.

    Key Words: Sodium-ion battery capacitor; Alkaline electrolyte; Overcharging self-protection; Low cost;Wide operating temperature range

    1 Introduction

    Recently, the influence of increasing consumption oftraditional fossil fuel and environmental pollution issue has ledthe worldwide researchers to develop advanced large-scaleenergy storage system. Among various types of current energystorage devices, electrochemical energy storage technology hasbecome the focus over the recent decade due to its advantages offlexibility, high energy conversion efficiency and simplemaintenance 1,2. The cathode and anode active substances of ionbatteries are compounds that can be reversiblyextraction/insertion. It has high energy density, but the powerdensity is insufficient and the cycle life is short, which restrictsthe development of the battery 3,4. Electrochemical capacitorswith high power density and long cycle life are known as animportant supplement to batteries in electrical energy storageapplications 5–7. However, the traditional electrochemicalcapacitors store charges via either ion adsorption-desorption orfast surface redox reactions, which requires a high weightpercent of electrolyte in full cells to support surface reaction oradsorption, consequently lowering the energy density 8,9. Tocombine the merits of both batteries and electrochemicalcapacitors, ion battery capacitor (IBC), which is composed of abattery-type electrode (intercalation/deintercalation mechanism)and a capacitor-type electrode (physical adsorption/desorptionmechanism), is thus proposed as a new type of energy storagedevice 10–12. Because the charge storage of the IBC is realizedthrough the transfer of only cations between cathode and anode,while the anions don't take part in, therefore only a small amountof electrolyte is needed in IBC just like in batteries.

    Although most of the representative lithium-ion batterycapacitors (LIBCs) have demonstrated high energy density byemploying nonaqueous electrolyte, several critical issues alsoaccompanied, including high cost, environmental pollution andsafe risks relating to hazardous flammable organic electrolyte.Compared to organic electrolyte, aqueous electrolyte with highionic conductivity, low cost, non-toxic, and superior thermalstability shows a better application potential in LIBCs. However,the limited lithium resource and rising cost make LIBCs unableto meet the requirements of rapidly expanding large scale energystorage systems. In this case, aqueous sodium ion batterycapacitor (ASIBC) emerges as a promising candidate due to lowcostand abundance of sodium source and similar operatingprinciples to aqueous lithium-ion battery capacitor.

    Constrained by the narrow operating voltage window andserious side reactions in aqueous battery, only a few cathodematerials are available for ASIBC. Among them, tunnel-type oxide, Na0.44MnO2 attracts the most attentions because of itshigh resource abundance, low cost, and environmentalcompatibility 13–15. Na0.44MnO2 possesses a unique 3D crystalstructure and abundant large S tunnels for sodium ions diffusion,showing exceptional cycling performance and remarkable ratecapability in both aqueous and nonaqueous electrolytes. Forexample, Whitacre et al. 16 fabricated a full cell using the activecarbon as the anode, Na0.44MnO2 as the cathode and 1 mol·L?1Na2SO4 as electrolyte, which demonstrates high-rate and longtermcycling performance. Although Na0.44MnO2 couldtheoretically insert/extract 0.44 Na+ with a capacity of 121mAh·g?1 during charge-discharge process, it can merely attain areversible capacity of 60 mAh·g?1 in full cells because only0.22Na+ could be extracted during the first charge, an even lowercapacity of ~40 mAh·g?1 is obtained in neutral solution (Na2SO4,NaNO3, NaCl) due to the limitation of the hydrogen ionsinsertion reaction 17. Therefore, much efforts have been made toimprove the utilization of Na0.44MnO2 in ASIBC 18,19.

    When the neutral electrolyte is replaced by alkalineelectrolyte, the reversible capacity of Na0.44MnO2 can beincreased to 80 mAh·g?1 because the potential of hydrogen ionsinsertion shifts negatively in the alkaline electrolyte. Not onlythat, the alkaline electrolyte has some other advantages. Forexample, neutral system must use expensive current collectormetals (Ti, Ag, Au, etc.) to withstand the corrosion caused bypH alteration upon hydrogen or oxygen evolution reaction 20,21.Instead, alkaline system can just use cheap current collectors(stainless steel, nickel), thus considerably reducing the cost ofASIBC. Most importantly, alkaline electrolytes can tolerateovercharging of the cell due to intrinsic oxygen-shuttleprotection mechanism, where oxygen evolution reaction mightbe used as an approach to improve the reversible capacity (~100mAh·g?1) in full cell 18,19,22. In this regard, it is feasible toconstruct ASIBC with higher energy density, lower cost andlonger-term lifetime based on Na0.44MnO2 cathode and alkalineelectrolyte.

    In this work, a novel ASIBC was constructed by usingNa0.44MnO2 as cathode, active carbon (AC) as anode, 6 mol·L?1NaOH as electrolyte, and stainless steel as current collector. Theelectrochemical performance of the ASIBC was studied,including the reversible capacity, rate capability, cycling life,energy density, and power density. Also, the reaction mechanismwas detailedly explored. Furthermore, the performance ofASIBC at ?20 and 50 °C was investigated. It is believed that thelow-cost and long-life AC||Na0.44MnO2 ASIBC is a promisingcapacitor candidate for future energy storage devices.

    2 Experimental

    2.1 Material preparation

    Rod-like Na0.44MnO2 was synthesized through a phenolformalin-assisted sol-gel method. A typical synthesis processwas as follows: CH3COONa (AR, ≥ 99.0%, Sinopharm) andMn(CH3COO)2 (AR, ≥ 99.0%, Sinopharm) with a stoichiometric ratio of 0.462 : 1 first dissolved in mixed solution of deionizedwater and ethyl alcohol (1 : 1 by vol.) with vigorous stirring at70 °C. After the solution stirred for 30 min, 0.3 g of phenol (AR,≥ 98.0%, Sinopharm) and 0.4 mL of formalin (AR, 37.0%–40.0%, Sinopharm) were added into the above solution insuccession, stirred for 6 h at 80 °C until vaporize both water andethyl alcohol to obtain pale pink gel precursor. After drying at100 °C for overnight in a vacuum oven, the precursor wasground into powder and then heated in a muffle furnace at 900 °Cfor 15 h with a heating rate of 2 °C to obtain the final products.

    2.2 Characterizations

    The crystallographic information was characterized by X-raydiffractometer (XRD, Bruker D8 ADVANCE, Germany) with aCu Kα X-ray source over a range of 2θ angles from 10° to 70° ata scan rate of 4 (°)·min?1. The morphology analysis wasconducted on scanning electron microscopy (SEM, ZEISSMerlin Compact, Germany) and transmission electronmicroscopy (TEM, JEM-2100FEF, Japan).

    2.3 Electrochemical tests

    The Na0.44MnO2 electrodes were prepared via mixing activematerial, Super P and polytetrafluoroethylene emulsion with amass ratio of 8 : 1 : 1. Firstly, the active material and conductivecarbon were well mixed by grounding. And then, binder andisopropanol were added and stirred to form a gum-like mixture.The mixture was pressed on stainless steel net and dried at100 °C for more than 10 h. And the average mass loading ofelectrode is about 5 mg·cm?2. The AC electrodes were fabricatedusing same method except that Ketjen Black was selected asconductive carbon and the mass ratio of active material,conductive carbon and binder is 7 : 2 : 1.

    The three-electrode system was assembled using Na0.44MnO2or AC as working electrode, zinc foil as reference electrode andcounter electrode, 6 mol·L?1 NaOH as electrolyte at roomtemperature in air. The electrochemical properties of sodium ionbattery capacitors were evaluated in 2032-coin cells withNa0.44MnO2 as cathode, AC as anode, non-woven fabric asseparator, and 6 mol·L?1 NaOH as electrolyte at same conditionswith three-electrode system. The mass ratio of cathode andanode is about 1 : 0.9. The galvanostatic charge/dischargemeasurements are carried out using a LANDCT2001A (LandElectronic Co., Ltd., Wuhan, China). Cyclic voltammetry (CV)measurements were conducted on the AutoLab PGSTAT 128 N(Eco Chemie, Netherlands).

    3 Results and discussion

    The XRD pattern of Na0.44MnO2 powders synthesized via solgelmethod showed that the sample was crystallized in theorthorhombic structure (Pbam space group, JCPDS No. 27-0750) of the tunnel-type material (Fig. S1, SupportingInformation), in agreement with previous results 23,24. Themorphology of Na0.44MnO2 sample was characterized by SEM,TEM and High Resolution Transmission Electron Microscope(HRTEM). As shown in Fig. 1a,b, the sample is composed ofshort rod-like particles with a length range of 4–8 μm and widthchanging from 1 to 3 μm. The smaller length/width ratio isbeneficial for fast diffusion of sodium ion in crystal structure,which have been demonstrated by our previous work 22 and otherrelated reports 17,25. The TEM image in Fig. 1c shows rod-likestructure, which is consistent with the SEM results. The latticefringe with a spacing of 0.25 nm in HRTEM images (Fig. 1d) isclearly seen, corresponding to the (360) plane in theorthorhombic structure.

    The electrochemical properties of Na0.44MnO2 electrode weretested in 6 mol·L?1 NaOH solution. And CV profiles,galvanostatic charge-discharge profiles, rate capability and longtermcycling stability of Na0.44MnO2 cathode in the potentialrange of 1.1–1.95 V (vs. Zn/Zn2+) are indicated in Fig. 2. Fourpairs strong redox peaks (1.22/1.15, 1.44/1.38, 1.75/1.70 and1.95/1.92 V) and two pairs weak peaks (1.28/1.23, 1.83/1.80 V)were observed in CV curve (Fig. 2a), representing the differentinsertion/extraction processes of sodium ions into/from tunnelstructure. Symmetrical oxidation and reduction peaks reveal thelow electrochemical polarization of Na0.44MnO2 in alkalinesolution. The shape and relative position of CV peaks are prettyconsistent with those measured in nonaqueous electrolytes,implying the similar reaction mechanism in both electrolytes. Inaddition, at the current rate of 0.5C, the Na0.44MnO2 electrodecould release a reversible discharge capacity of 78.4 mAh·g?1(Fig. 2b), corresponding to the intercalation of 0.285 Na+ in eachNaxMnO2 molecule (0.22 lt; x lt; 0.66) 26,27. And some complexand inconspicuous voltage platforms in good agreement with theCV profiles were obtained. The initial Coulombic efficiency was86.9%, which probably attributed to some inescapable sidereaction in aqueous electrolyte at a low current density, such asoxygen evolution reaction on the surface of electrode and currentcollector. The discharge capacities of Na0.44MnO2 electrode atvarious current rates were also investigated and shown inFig. 2c. When the current density was increased to 1C, 2C, 5C,10C, 20C and 50C, the capacity of Na0.44MnO2 electrode was 74,70.8, 67.4, 62.1, 53.9, 48.4 and 43.7 mAh·g?1, respectively, andstill capable of maintaining above 40 mAh·g?1, which is higherthan that in the neutral electrolyte. The impressive rate capabilitycould be attributed to the intrinsically fast sodium ion transferkinetics in tunnel-type oxide and high ionic conductivity (~400mS·cm?1) in 6 mol·L?1 NaOH solution. In Fig. 2d, at the rate of10C, Na0.44MnO2 electrode can gain an excellent capacityretention of 95.1% with Coulombic efficiency approaching100% over 100 cycles. These favorable electrochemicalperformances make Na0.44MnO2 as a potential cathode materialfor high-performance ASIBC.

    Among those anode materials matched with alkalineelectrolyte, activated carbon (AC) is considered as one of thebest choices due to its superior cycling stability and wide varietyof raw materials. The electrochemical properties of AC anode in6 mol·L?1 NaOH were also studied using three-electrodemethods with zinc plates as both reference electrode and counterelectrode. Fig. 3a shows the CV curve of the AC electrode,exhibiting typical capacitive behavior in 6 mol·L?1 NaOHelectrolyte 28. The oxidative cutoff potential is limited to 1.1 V(vs. Zn/Zn2+) in view of the reductive cutoff potential ofNa0.44MnO2 cathode. The charge-discharge curves of the ACelectrode at 1C are displayed in Fig. 3b. Within the voltagewindow of 0.3-1.1 V, the AC electrode can release specificcapacity of 71.6 mAh·g?1, corresponding to a high specificcapacitance of 322.2 F·g?1, which is largely higher than that inneural electrolyte 16. The reversible capacity of AC electrodeunder different current densities was also tested. As shown in Fig. 3c, AC electrode delivered desirable rate capability with thereversible capacity of 73.1, 66.6, 62.8, 60.1 and 56.9 mAh·g?1 at1C, 2C, 5C, 10C and 20C. Even at a very high rate of 50C, thereversible capacity of 53.3 mAh·g?1 was reserved. When the current rate goes back to 1C, the capacity of 71.6 mAh·g?1 canbe restored, showing excellent rate capability andelectrochemical reversibility. The high performance of the ACelectrode is mainly due to the high ionic conductivity provided by alkaline electrolyte and the energy storage mechanism ofelectrical double-layer capacitor for the AC electrode 29.Similarly, the long-term cycling performance at the rate of 10Cis shown in Fig. 3d. It can be manifested that the AC electrodepossessed superior cyclic stability with a capacity retention of90.7% after 2000 cycles (reversible capacities for the 1st and2000th cycle is 64.6 and 58.6 mAh·g?1, respectively). Theexcellent electrochemical performance of the AC electrodeprovides a strong guarantee for the construction of high-energydensity,high-power and long-term-lifetime AC||Na0.44MnO2ASIBC.

    Based on the above discussion, both Na0.44MnO2 cathode andAC anode exhibit preeminent electrochemical performance,which inspires us to assemble a novel sodium ion batterycapacitorwith Na0.44MnO2 and AC. The typical CV curves ofthe AC||Na0.44MnO2 ASIBC are presented in Fig. 4a, and thecharge/discharge voltage range of AC||Na0.44MnO2 ASIBC iscontrolled between 0 and 1.65 V according to the working rangof cathode and anode (1.1–1.95 and 0.3–1.65 V, respectively). Itis well known that Na0.44MnO2 can only release 0.22Na+ duringthe first charge process, which means that a capacity of merely50 mAh·g?1 can be utilized in full cells. For example, in 6mol·L?1 NaOH, the initial charge capacity of Na0.44MnO2electrode is 44.1 mAh·g?1, but the discharge capacity reaches78.2 mAh·g?1, nearly two times of charge capacity (Fig. S2). Inorder to improve the available reversible capacity, someadditional procedures are needful, such as pre-cycling or presodiumwhich would increase manufacturing cost of Na0.44MnO2. As for the AC anode, the irreversible absorptionoccurs on AC at the first cycle would consume extra sodium ionsfrom cathode (Fig. S3), thus leading to an extremely low initialCoulombic efficiency (ICE). Obviously, the low initial chargecapacity for Na0.44MnO2 cathode and low initial Coulombicefficiency for AC anode are major obstacles for theirapplications. Fortunately, these problems could be perfectlyresolved by overcharging AC||Na0.44MnO2 full cell upon initialcharge process in alkaline electrolyte. The first charge curves ofsodium ion battery capacitor are shown in Fig. 4b. The initialcharge process could be divided into two steps: open-circuitvoltage to 1.25 V, and 1.25 to 1.6 V. For the first stage, sodiumions deintercalate from tunnel structure of Na0.44MnO2 cathodeand sodium ions in the electrolyte are absorbed on the surface ofAC anode simultaneously (Fig. 4c). Through the calculation ofcharge capacity in this stage (51.4 mAh·g?1 for Na0.44MnO2),approximately 0.19Na+ extracted from the tunnel structure. Onbasis of the mass ratio of cathode and anode (1 : 0.9), thesolidated anode can be written as Na0.026C. Thus, theelectrochemical reactions of this charge step can be formulatedas follows:

    Positive: Na0.475MnO2 ? 0.19Na+ ? 0.19e? = Na0.285MnO2

    Negative: 7.34C + 0.19Na+ + 0.19e? = 7.34Na0.026C

    For the second stage, the drastic oxygen evolution reactionemerges around cathode, and AC anode continued absorbingsodium ions (Fig. 4c). Based on the charge capacity of 63.4mAh·g?1 for Na0.44MnO2 in this region, the electrochemicalreaction in second stage may be described as follows:

    Positive: 0.23OH? ? 0.23e? = 0.0575O2 + 0.115H2O

    Negative: 7.34Na0.026C + 0.23Na+ + 0.23e? = 7.34Na0.057C

    From the above description of the electrochemical mechanismof AC||Na0.44MnO2, it can be clearly seen that the in situelectrochemical pre-activation process can easily resolve thematching problem between Na0.44MnO2 cathode and AC anode.Interestingly, the overcharging oxygen evolution mechanism ofNa0.44MnO2 cathode can provide self-protection function in thealkaline electrolyte because the oxygen generated can beefficiently reduced at the negative side, which is similar to that demonstrated in Cd//Ni and MH/Ni batteries 30,31.

    Undoubtedly, oxygen evolution reaction disappeared afterinitial cycle because the Na+ ion amount of Na0.44MnO2electrode can be supplemented in the discharging process, whichcould be confirmed by incremental CE in subsequent chargingand discharging curves (Fig. 4d and the inset picture). Fig. 4eshows typical charge-discharge curves of AC||Na0.44MnO2ASIBC at 1C in the voltage range of 0–1.65 V. TheAC||Na0.44MnO2 ASIBC delivered a reversible capacity of 70.5mAh·g?1 (based on the mass of Na0.44MnO2). The rateperformance of full cell was also evaluated to explore itsfeasibility for high power applications (Fig. 4f). The reversiblecapacities can reach 71.8, 65.9, 61.3, 57.7, 53.8 and 49.4mAh·g?1 at 1C, 2C, 5C, 10C, 20C, and 50C, respectively. Mostimportantly, when the current rate went back to 1C, thereversible capacity swiftly returned to 71.6 mAh·g?1 (nearly100% capacity recovery), showing a strong tolerance for fastsodium ion storage. Moreover, the full cell also exhibitedtremendous cycling stability with a capacity retention of 89%after 10000 cycles at the current rate of 10C (Fig. 5a). Theaverage Coulombic efficiency maintained above 99% all along,indicative of a highly reversible Na-ion transfer between cathodeand anode. Ragone plots of AC||Na0.44MnO2 ASIBC are shownin Fig. 5b. The power density and energy density can becalculated according to Pm = Im × U-, and Wm = Cm × U- . U- isthe average discharge voltage, Im is the current density, andCm refers to the capacity calculated based on the total weight ofcathode and anode. At a power density of 85 W·kg?1, an energydensity of 26.6 Wh·kg?1 could be obtained. When the powerdensity reaches 4.2 kW·kg?1, it still remains an energy density of18.0 Wh·kg?1. Compared with other aqueous Mn-based systems,AC||Na0.44MnO2 ASIBC is fairly competitive in energy densityand cyclic stability (Table 1).

    In order to further meet the requirement of practicalapplications, we evaluated the electrochemical performance ofthe AC||Na0.44MnO2 ASIBC at ?20 and 50 °C. The ratecapability under ?20, 25 and 50 °C is illustrated in Fig. 6a. At?20 °C, the discharge capacity of the AC||Na0.44MnO2 ASIBC reached 30.7, 27.7, 22.2, 17.8, and 14.5 mAh·g?1 at 1C, 2C, 5C,10C, and 20C, respectively. At 50 °C, the AC||Na0.44MnO2ASIBC exhibited higher rate capacities (42.7, 41.7, 38.9, 36.2and 32.2 mAh·g?1 at 1C, 2C, 5C, 10C, and 20C, respectively)due to faster sodium dynamics in electrode material, electrolyte,and electrode-electrolyte interface. When current rate returnedto 1C, the origin discharge capacities for three AC||Na0.44MnO2ASIBCs can be recovered, indicating outstandingelectrochemical reversibility. Additionally, the AC||Na0.44MnO2ASIBCs at ?20, 25 and 50 °C also showed excellent cyclingperformance with no obvious capacity fading within 150 cycles(Fig. 6b). The wide operating temperature range may expand theapplication fields of AC||Na0.44MnO2 ASIBC.

    4 Conclusions

    In this work, we designed an alkaline sodium ion batterycapacitorwith Na0.44MnO2 cathode, AC anode, 6 mol·L?1 NaOHelectrolyte and investigated its electrochemical performance.The available capacity of Na0.44MnO2 in half cell largelyincreased from ~40 mAh·g?1 (neutral electrolyte) to 77.3mAh·g?1 (alkaline electrolyte) due to broadened Na+intercalation potential region. Thus, the fabricatedAC||Na0.44MnO2 ASIBC exhibited exceptional electrochemicalproperties with a high energy density of 26.6 Wh·kg?1 at a powerdensity of 85 W·kg?1, superior cycling stability of 89% capacityretention over 10,000 cycles and high-power capability, whichorigins from the use of alkaline electrolyte. Not only that, theadvantages of the alkaline electrolyte for the AC||Na0.44MnO2ASIBC are also reflected in the following aspects: (1) throughthe in situ electrochemical pre-activation process, theovercharging oxygen evolution reaction during first chargingprocess can balance the adverse effects of the half-sodiumNa0.44MnO2 cathode and low-ICE AC anode on the energydensity of full cell; (2) the overcharging self-protection functioncan promote the generated oxygen to be eliminated at anodeduring overcharging, which improves the system safety; (3) thelow-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, theAC||Na0.44MnO2 ASIBC also possesses wide operatingtemperature range, achieving satisfied electrochemicalperformance at a high temperature of 50 °C and a lowtemperature of ?20 °C. Considering the merits of low-cost, highsafety, no toxicity and environment-friendly, AC||Na0.44MnO2ASIBC has good application prospects in the field of large-scaleenergy storage.

    Author Contributions: Conceptualization, Z.C. and Y.C.;Methodology, Q.X., S.L. and Y.Z.; Validation, Q.X., P.S. andL.X.; Formal Analysis, Q.X., Z.L., B.Z. and H.L.; Investigation,Q.X., B.W. and L.Y.; Resources, Z.C. and Y.C.; Data Curation,Q.X. and Y.Z.; Writing-Original Draft Preparation, Q.X., Y.Z.and Z.C.; Writing-Review amp; Editing, Y.Z., Z.C. and Y.C.;Supervision, Z.C. and Y.C.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Cao, Y.; Li, M.; Lu, J.; Liu, J.; Amine, K. Nat. Nanotechnol. 2019, 14,200. doi: 10.1038/s41565-019-0371-8

    (2) Cao, W.; Zhang, J.; Li, H. Energy Stor. Mater. 2020, 26, 46.doi: 10.1016/j.ensm.2019.12.024

    (3) Niu, Y.; Zhao, Y.; Xu, M. Carbon Neutralization 2023, 2, 15.doi: 10.1002/cnl2.4

    (4) Li, J.; Hu, H.; Wang, J.; Xiao, X. Carbon Neutralization 2022, 1, 96.doi: 10.1002/cnl2.19

    (5) Simon, P.; Gogotsi, Y. Nat. Mater. 2020, 19, 1151.doi: 10.1038/s41563-020-0747-z

    (6) Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Angew.Chem. Int. Ed. 2021, 60, 21310. doi: 10.1002/anie.202104167

    (7) Rajalekshmi, A.; Divya, M.; Lee, Y.; Aravindan, V. Battery Energy2022, 1, 2021000. doi: 10.1002/BTE2.202100

    (8) Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457.doi: 10.1021/acs.chemrev.8b00116

    (9) Gu, C.; Liu, Z.; Gao, X.; Zhang, Q.; Zhang, Z.; Liu, Z.; Wang, C.Battery Energy 2022, 1, 20220031. doi: 10.1002/bte2.20220031

    (10) Guo, N.; Zhang, S.; Wang, L.; Jia, D. Acta Phys. -Chim. Sin. 2020,36, 1903055. [郭楠楠, 張?zhí)K, 王魯香, 賈殿贈. 物理化學(xué)學(xué)報,2020, 36, 1903055.] doi: 10.3866/PKU.WHXB201903055

    (11) Yang, Q.; Cui, S.; Ge, Y.; Tang, Z.; Liu, Z.; Li, H.; Li, N.; Zhang, H.;Liang, J.; Zhi, C. Nano Energy 2018, 50, 623.doi: 10.1016/j.nanoen.2018.06.017

    (12) Wu, Y.; Sun, Y.; Tong, Y.; Liu, X.; Zheng, J.; Han, D.; Li, H.; Niu, L.Energy Stor. Mater. 2021, 41, 108. doi: 10.1016/j.ensm.2021.05.045

    (13) Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.;Yang, Z.; Liu, J. Adv. Mater. 2011, 23, 3155.doi: 10.1002/adma.201100904

    (14) Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACSAppl. Mater. Interfaces 2018, 10, 11689.doi: 10.1021/acsami.8b00478

    (15) Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao,Y. Small 2019, 15, 1805427. doi: 10.1002/smll.201805427

    (16) Whitacre, J.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12,463. doi: 10.1016/j.elecom.2010.01.020

    (17) Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.;Hu, Y.-S.; Yang, W. Nat. Commun. 2015, 6, 6401.doi: 10.1038/ncomms7401

    (18) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2020, 36,1905027. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2020, 36, 1905027.]doi: 10.3866/PKU.WHXB201905027

    (19) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2021, 37,1907049. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2021, 37, 1907049.]doi: 10.3866/PKU.WHXB201907049

    (20) Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods2019, 3, 1800272. doi: 10.1002/smtd.201800272

    (21) Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L.; Wang, Y.; Wang, C.; Xia,Y. Adv. Energy Mater. 2018, 8, 1703008.doi: 10.1002/aenm.201703008

    (22) Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.;Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10,34108. doi: 10.1021/acsami.8b08297

    (23) Li, H.; Liu, S.; Wang, H.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Cao, Y.; Chen, Z. Acta Phys. -Chim. Sin. 2019, 35,1357. [李慧, 劉雙宇, 汪慧明, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 曹余良, 陳重學(xué). 物理化學(xué)學(xué)報, 2019, 35, 1357.]doi: 10.3866/PKU.WHXB201902021

    (24) Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv.Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598

    (25) He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan,M. C.; Liu, H.; Gallash, T. Nano Energy 2016, 27, 602.doi: 10.1016/j.nanoen.2016.07.021

    (26) Sauvage, F.; Laffont, L.; Tarascon, J.-M.; Baudrin, E. Inorg. Chem.2007, 46, 3289. doi: 10.1021/ic0700250

    (27) Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102.doi: 10.1016/j.jpowsour.2016.01.101

    (28) Boujibar, O.; Ghamouss, F.; Ghosh, A.; Achak, O.; Chafik, T.J. Power Sources 2019, 436, 226882.doi: 10.1016/j.jpowsour.2019.226882

    (29) Zhao, X.; Cai, W.; Yang, Y.; Song, X.; Neale, Z.; Wang, H.-E.; Sui, J.;Cao, G. Nano Energy 2018, 47, 224.doi: 10.1016/j.nanoen.2018.03.002

    (30) Cha, C.; Yu, J.; Zhang, J. J. Power Sources 2004, 129, 347.doi: 10.1016/j.jpowsour.2003.11.043

    (31) Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P.J. Power Sources 1999, 83, 93. doi: 10.1016/S0378-7753(99)00272-4

    (32) Qu, Q.; Shi, Y.; Tian, S.; Chen, Y.; Wu, Y.; Holze, R. J. PowerSources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068

    (33) Zhang, B.; Liu, Y.; Chang, Z.; Yang, Y.; Wen, Z.; Wu, Y.; Holze, R.J. Power Sources 2014, 253, 98.doi: 10.1016/j.jpowsour.2013.12.011

    (34) Lim, H.; Jung, J. H.; Park, Y. M.; Lee, H.-N.; Kim, H.-J. Appl. Surf.Sci. 2018, 446, 131. doi: 10.1016/j.apsusc.2018.02.021

    (35) Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J. F.J. Electrochem. Soc. 2015, 162, A803. doi: 10.1149/2.0121506jes

    國家電網(wǎng)公司科技計劃(5500-202158251A-0-0-00)資助項目

    猜你喜歡
    低成本
    大氣顆粒物源識別在線分析儀的開發(fā)及應(yīng)用
    城市電視臺要辦“特色綜藝”
    記者搖籃(2016年11期)2017-01-12 14:01:53
    初中物理低成本實驗資源的開發(fā)和利用
    未來英才(2016年3期)2016-12-26 10:03:57
    高效低成本的單晶N型太陽電池加工工藝的應(yīng)用
    實現(xiàn)園林管理低成本的對策和建議
    基于SOC的智能野外目標監(jiān)視和記錄系統(tǒng)設(shè)計與實現(xiàn)
    基于微波物理熱效應(yīng)的高壓電線除冰裝置方案設(shè)計
    科技視界(2016年2期)2016-03-30 13:05:46
    Y不銹鋼絲有限公司低成本SWOT分析
    商(2016年3期)2016-03-11 09:48:58
    低成本通用型液壓夾具的設(shè)計及推廣
    科學(xué)家(2015年9期)2015-10-29 15:37:18
    午夜福利视频在线观看免费| 街头女战士在线观看网站| 欧美精品一区二区免费开放| 我的亚洲天堂| 一二三四在线观看免费中文在| 丁香六月天网| 99精国产麻豆久久婷婷| 亚洲av男天堂| 一本大道久久a久久精品| 日韩制服丝袜自拍偷拍| 成年人免费黄色播放视频| 欧美精品人与动牲交sv欧美| 高清av免费在线| 午夜福利影视在线免费观看| 涩涩av久久男人的天堂| 天堂中文最新版在线下载| 又大又黄又爽视频免费| 一区二区三区四区激情视频| 久久久久久人妻| 欧美黄色片欧美黄色片| 黄片无遮挡物在线观看| 久久久久久久精品精品| 18禁动态无遮挡网站| 亚洲,欧美精品.| 麻豆av在线久日| 欧美日韩亚洲国产一区二区在线观看 | 久久精品熟女亚洲av麻豆精品| 成人亚洲欧美一区二区av| av在线观看视频网站免费| 丰满乱子伦码专区| 亚洲熟女毛片儿| 精品视频人人做人人爽| 人成视频在线观看免费观看| 啦啦啦在线观看免费高清www| 国产免费一区二区三区四区乱码| 嫩草影视91久久| 女人久久www免费人成看片| 哪个播放器可以免费观看大片| 男女边吃奶边做爰视频| 丁香六月欧美| 无限看片的www在线观看| 丰满乱子伦码专区| 高清在线视频一区二区三区| 中文字幕制服av| 久久久久国产精品人妻一区二区| 热99国产精品久久久久久7| 亚洲四区av| 老司机影院成人| 一边摸一边抽搐一进一出视频| 中文精品一卡2卡3卡4更新| 免费观看性生交大片5| 一二三四在线观看免费中文在| 中文字幕亚洲精品专区| 日韩欧美一区视频在线观看| 国产探花极品一区二区| 天天添夜夜摸| 久久天躁狠狠躁夜夜2o2o | 操出白浆在线播放| www.熟女人妻精品国产| 午夜福利影视在线免费观看| 国产亚洲一区二区精品| 日韩欧美一区视频在线观看| 亚洲成人av在线免费| 成人黄色视频免费在线看| 日本午夜av视频| 国产精品三级大全| 黑人欧美特级aaaaaa片| 人妻人人澡人人爽人人| 一级黄片播放器| 老熟女久久久| 亚洲av成人不卡在线观看播放网 | 国产一区二区激情短视频 | 制服人妻中文乱码| 欧美少妇被猛烈插入视频| 天美传媒精品一区二区| av国产久精品久网站免费入址| 国产片特级美女逼逼视频| 建设人人有责人人尽责人人享有的| 性色av一级| 国产日韩欧美亚洲二区| 久久天堂一区二区三区四区| 免费观看人在逋| 狂野欧美激情性xxxx| 久久精品亚洲熟妇少妇任你| 国产一卡二卡三卡精品 | 丝袜脚勾引网站| 久久精品aⅴ一区二区三区四区| 日韩av不卡免费在线播放| 国产高清国产精品国产三级| 国产爽快片一区二区三区| 午夜福利在线免费观看网站| 亚洲精品国产一区二区精华液| a级毛片黄视频| 国产av一区二区精品久久| 香蕉丝袜av| 在线观看人妻少妇| 午夜激情久久久久久久| 爱豆传媒免费全集在线观看| 国产亚洲最大av| 国产精品 欧美亚洲| 精品一区二区三区四区五区乱码 | 老司机深夜福利视频在线观看 | 国产 一区精品| 午夜老司机福利片| 一级片'在线观看视频| 亚洲国产精品一区三区| 丁香六月欧美| 热99国产精品久久久久久7| 国产黄色视频一区二区在线观看| www日本在线高清视频| 老汉色∧v一级毛片| 亚洲精品美女久久久久99蜜臀 | 亚洲 欧美一区二区三区| 伊人久久大香线蕉亚洲五| 国产男女超爽视频在线观看| 免费av中文字幕在线| 日韩中文字幕欧美一区二区 | 国产国语露脸激情在线看| 欧美乱码精品一区二区三区| 少妇被粗大的猛进出69影院| 成人黄色视频免费在线看| 久久97久久精品| 亚洲av在线观看美女高潮| 免费女性裸体啪啪无遮挡网站| 亚洲av福利一区| 97精品久久久久久久久久精品| 午夜福利,免费看| 欧美人与性动交α欧美精品济南到| 我的亚洲天堂| 亚洲熟女毛片儿| 十八禁网站网址无遮挡| 男人操女人黄网站| 久久久久人妻精品一区果冻| 日日啪夜夜爽| 麻豆av在线久日| 日本爱情动作片www.在线观看| 国产在线一区二区三区精| 狠狠婷婷综合久久久久久88av| 大码成人一级视频| 亚洲精品成人av观看孕妇| 捣出白浆h1v1| 亚洲成国产人片在线观看| 老司机在亚洲福利影院| 亚洲中文av在线| 亚洲一级一片aⅴ在线观看| 亚洲国产精品国产精品| 国产伦理片在线播放av一区| 99热网站在线观看| 久久久久国产精品人妻一区二区| 一本一本久久a久久精品综合妖精| 男女下面插进去视频免费观看| 国产无遮挡羞羞视频在线观看| 一二三四在线观看免费中文在| 最近的中文字幕免费完整| 久久久久久久国产电影| 日韩一区二区三区影片| 亚洲图色成人| 久久毛片免费看一区二区三区| 在线天堂中文资源库| 午夜日本视频在线| 国产成人啪精品午夜网站| 久久ye,这里只有精品| 亚洲国产精品一区二区三区在线| 大香蕉久久成人网| 国产精品 欧美亚洲| 91精品伊人久久大香线蕉| 9191精品国产免费久久| 最近的中文字幕免费完整| 国产亚洲av片在线观看秒播厂| 国产在线视频一区二区| 欧美在线一区亚洲| 日本vs欧美在线观看视频| 亚洲情色 制服丝袜| 99久国产av精品国产电影| 丰满饥渴人妻一区二区三| 日日啪夜夜爽| 不卡视频在线观看欧美| 成人毛片60女人毛片免费| 日韩大片免费观看网站| 欧美成人精品欧美一级黄| 丁香六月天网| 尾随美女入室| 九草在线视频观看| 90打野战视频偷拍视频| 99精品久久久久人妻精品| 啦啦啦在线免费观看视频4| 欧美av亚洲av综合av国产av | 女性被躁到高潮视频| 亚洲,欧美精品.| e午夜精品久久久久久久| 免费日韩欧美在线观看| 国产精品.久久久| 2018国产大陆天天弄谢| 日韩制服丝袜自拍偷拍| 亚洲精品,欧美精品| 欧美乱码精品一区二区三区| 欧美日本中文国产一区发布| 国产精品 欧美亚洲| 成年av动漫网址| 天天操日日干夜夜撸| 青青草视频在线视频观看| 啦啦啦在线免费观看视频4| 999久久久国产精品视频| 亚洲第一区二区三区不卡| 久久人人爽av亚洲精品天堂| 欧美黑人精品巨大| 成人国语在线视频| 18禁观看日本| 一级,二级,三级黄色视频| 啦啦啦视频在线资源免费观看| 美女午夜性视频免费| 男人操女人黄网站| 亚洲精品日本国产第一区| 亚洲男人天堂网一区| 午夜老司机福利片| 嫩草影院入口| 亚洲精品aⅴ在线观看| 亚洲av电影在线进入| 亚洲天堂av无毛| 国产片内射在线| 老司机影院成人| 亚洲精品一区蜜桃| 蜜桃在线观看..| 欧美日韩综合久久久久久| 免费在线观看黄色视频的| 久久 成人 亚洲| 亚洲国产成人一精品久久久| 欧美日本中文国产一区发布| 欧美日韩福利视频一区二区| 久久青草综合色| 精品国产超薄肉色丝袜足j| 亚洲久久久国产精品| 如日韩欧美国产精品一区二区三区| 成人漫画全彩无遮挡| 国产亚洲一区二区精品| 蜜桃在线观看..| 波多野结衣一区麻豆| 天堂8中文在线网| 天天影视国产精品| 操出白浆在线播放| 亚洲精品国产区一区二| 国产免费现黄频在线看| 91老司机精品| 青春草视频在线免费观看| 一区在线观看完整版| 日日摸夜夜添夜夜爱| 亚洲三区欧美一区| 国产精品欧美亚洲77777| 国产成人a∨麻豆精品| 免费看av在线观看网站| 国产日韩欧美在线精品| 最新的欧美精品一区二区| 欧美在线黄色| 欧美变态另类bdsm刘玥| 国产熟女欧美一区二区| 日韩不卡一区二区三区视频在线| xxxhd国产人妻xxx| 午夜91福利影院| 丰满饥渴人妻一区二区三| 黄片小视频在线播放| 国产一区二区三区av在线| xxxhd国产人妻xxx| 自线自在国产av| 欧美最新免费一区二区三区| 国产成人免费观看mmmm| 午夜福利影视在线免费观看| 日本欧美视频一区| 亚洲精品久久久久久婷婷小说| 欧美日韩视频高清一区二区三区二| 女的被弄到高潮叫床怎么办| 在线天堂中文资源库| 99热国产这里只有精品6| 9191精品国产免费久久| 免费看不卡的av| 国产成人欧美在线观看 | 亚洲精品中文字幕在线视频| 高清视频免费观看一区二区| 中文字幕人妻丝袜制服| 亚洲国产欧美一区二区综合| 人人妻人人添人人爽欧美一区卜| 男女午夜视频在线观看| 婷婷色麻豆天堂久久| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 欧美黑人欧美精品刺激| 别揉我奶头~嗯~啊~动态视频 | av在线老鸭窝| av.在线天堂| 国产男人的电影天堂91| 精品久久久精品久久久| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| 久久久久视频综合| 国产老妇伦熟女老妇高清| 欧美黑人精品巨大| av在线观看视频网站免费| 夜夜骑夜夜射夜夜干| 成年人免费黄色播放视频| 伦理电影免费视频| av视频免费观看在线观看| 可以免费在线观看a视频的电影网站 | 51午夜福利影视在线观看| 热re99久久国产66热| 日本黄色日本黄色录像| 亚洲精品av麻豆狂野| 人妻一区二区av| 一边亲一边摸免费视频| 美女中出高潮动态图| av片东京热男人的天堂| 国产日韩欧美亚洲二区| 国产国语露脸激情在线看| 免费看av在线观看网站| 亚洲熟女精品中文字幕| 韩国高清视频一区二区三区| 亚洲精品视频女| 9热在线视频观看99| 国产熟女欧美一区二区| 国产在视频线精品| av.在线天堂| 精品国产国语对白av| 性高湖久久久久久久久免费观看| 国产精品女同一区二区软件| 亚洲欧美成人精品一区二区| 久久ye,这里只有精品| 久久婷婷青草| 午夜久久久在线观看| videos熟女内射| 日韩精品有码人妻一区| 亚洲美女搞黄在线观看| 极品人妻少妇av视频| 亚洲国产成人一精品久久久| 日韩精品有码人妻一区| 丝瓜视频免费看黄片| 99热国产这里只有精品6| 婷婷成人精品国产| 如日韩欧美国产精品一区二区三区| 麻豆乱淫一区二区| a级毛片在线看网站| 中文字幕精品免费在线观看视频| 人妻 亚洲 视频| 国产精品 国内视频| 中文欧美无线码| 日韩人妻精品一区2区三区| 亚洲成人手机| 午夜免费男女啪啪视频观看| 一级,二级,三级黄色视频| av在线播放精品| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 中文字幕最新亚洲高清| 十八禁高潮呻吟视频| 老鸭窝网址在线观看| 亚洲精品国产av成人精品| 黄色一级大片看看| 久久韩国三级中文字幕| 在线天堂中文资源库| 日本av手机在线免费观看| 欧美黑人欧美精品刺激| 日本爱情动作片www.在线观看| 亚洲,欧美,日韩| 国产片内射在线| 精品人妻在线不人妻| 亚洲熟女精品中文字幕| 久久 成人 亚洲| 久久人人爽av亚洲精品天堂| 妹子高潮喷水视频| 天天操日日干夜夜撸| 丰满少妇做爰视频| 亚洲在久久综合| 亚洲精品乱久久久久久| 国产精品免费视频内射| 亚洲av电影在线进入| 国产一区二区 视频在线| 99久久人妻综合| 免费女性裸体啪啪无遮挡网站| 男女边吃奶边做爰视频| 伊人久久大香线蕉亚洲五| 母亲3免费完整高清在线观看| 久久99热这里只频精品6学生| 亚洲国产毛片av蜜桃av| 午夜av观看不卡| 女性被躁到高潮视频| 大香蕉久久网| 国产色婷婷99| 五月开心婷婷网| 国产国语露脸激情在线看| 亚洲精品日本国产第一区| 十八禁网站网址无遮挡| 亚洲国产av新网站| 亚洲精品日本国产第一区| 亚洲精品一二三| 久久久久精品国产欧美久久久 | 日本av手机在线免费观看| 人妻一区二区av| 日本av手机在线免费观看| 在线天堂中文资源库| 日日摸夜夜添夜夜爱| 久久精品人人爽人人爽视色| 日韩免费高清中文字幕av| 欧美日韩一区二区视频在线观看视频在线| 一级毛片我不卡| 中文字幕人妻丝袜制服| 国产精品一区二区精品视频观看| 久久99精品国语久久久| 久久久久久人人人人人| 一区二区av电影网| 国产精品麻豆人妻色哟哟久久| 久久久久视频综合| 两个人免费观看高清视频| 男女高潮啪啪啪动态图| 99国产精品免费福利视频| 亚洲色图综合在线观看| 午夜福利在线免费观看网站| 欧美人与性动交α欧美软件| 久久免费观看电影| 久久精品久久久久久久性| 别揉我奶头~嗯~啊~动态视频 | 老汉色∧v一级毛片| 日韩伦理黄色片| 亚洲伊人色综图| 日韩中文字幕视频在线看片| 80岁老熟妇乱子伦牲交| xxxhd国产人妻xxx| 黑丝袜美女国产一区| 9191精品国产免费久久| 最近最新中文字幕大全免费视频 | 亚洲视频免费观看视频| 色视频在线一区二区三区| 国产在线免费精品| 我要看黄色一级片免费的| 亚洲精品aⅴ在线观看| 秋霞在线观看毛片| 日本午夜av视频| 亚洲国产精品国产精品| av网站在线播放免费| 亚洲人成网站在线观看播放| 精品少妇久久久久久888优播| 欧美激情极品国产一区二区三区| 日韩免费高清中文字幕av| 亚洲一码二码三码区别大吗| 一区二区三区激情视频| 亚洲欧美成人综合另类久久久| 精品亚洲成a人片在线观看| 啦啦啦在线观看免费高清www| 成人国语在线视频| 青春草视频在线免费观看| 国产人伦9x9x在线观看| 黄色一级大片看看| 国产免费视频播放在线视频| 免费在线观看完整版高清| 国产熟女午夜一区二区三区| 日韩大片免费观看网站| 女人被躁到高潮嗷嗷叫费观| 亚洲av国产av综合av卡| 中文乱码字字幕精品一区二区三区| 色网站视频免费| av一本久久久久| tube8黄色片| 国产精品人妻久久久影院| 女人高潮潮喷娇喘18禁视频| 国产极品粉嫩免费观看在线| 亚洲欧美激情在线| 中文天堂在线官网| 国产精品免费大片| 精品亚洲乱码少妇综合久久| 91aial.com中文字幕在线观看| 欧美日韩国产mv在线观看视频| 亚洲久久久国产精品| 久久午夜综合久久蜜桃| 亚洲第一av免费看| 大码成人一级视频| 国产成人系列免费观看| 亚洲欧美成人综合另类久久久| 日本欧美国产在线视频| 久久女婷五月综合色啪小说| 国产成人免费无遮挡视频| av有码第一页| 99久国产av精品国产电影| 这个男人来自地球电影免费观看 | 如日韩欧美国产精品一区二区三区| 成年av动漫网址| 中文精品一卡2卡3卡4更新| 蜜桃在线观看..| 最近中文字幕高清免费大全6| 国产xxxxx性猛交| 亚洲成国产人片在线观看| 涩涩av久久男人的天堂| 国产 一区精品| 国产乱来视频区| 国产精品国产三级专区第一集| 中文字幕高清在线视频| 亚洲成人国产一区在线观看 | 久久久国产一区二区| 亚洲国产欧美日韩在线播放| 电影成人av| 亚洲精品日本国产第一区| 国产熟女欧美一区二区| 亚洲综合精品二区| 只有这里有精品99| 国产日韩欧美亚洲二区| 久久午夜综合久久蜜桃| 波野结衣二区三区在线| 九色亚洲精品在线播放| 波多野结衣一区麻豆| 波多野结衣av一区二区av| 青春草亚洲视频在线观看| 国产一区二区三区综合在线观看| 2021少妇久久久久久久久久久| 欧美亚洲 丝袜 人妻 在线| 亚洲av成人不卡在线观看播放网 | 亚洲美女视频黄频| 青春草视频在线免费观看| 人人澡人人妻人| 大陆偷拍与自拍| 狂野欧美激情性bbbbbb| 国产精品秋霞免费鲁丝片| 日韩一区二区视频免费看| 国产av国产精品国产| 成人毛片60女人毛片免费| 999精品在线视频| 成年女人毛片免费观看观看9 | 欧美最新免费一区二区三区| 最近2019中文字幕mv第一页| 人人妻人人澡人人看| 亚洲精品久久成人aⅴ小说| 中文字幕av电影在线播放| 亚洲第一区二区三区不卡| 一区二区三区激情视频| 亚洲成国产人片在线观看| 亚洲,欧美精品.| 亚洲欧美清纯卡通| 黄片无遮挡物在线观看| 天天影视国产精品| 久久精品久久精品一区二区三区| 亚洲国产精品一区二区三区在线| 美女视频免费永久观看网站| 亚洲综合色网址| 久久鲁丝午夜福利片| 在现免费观看毛片| 亚洲熟女精品中文字幕| 青春草视频在线免费观看| 精品第一国产精品| 亚洲国产精品999| 午夜福利免费观看在线| 国产欧美日韩综合在线一区二区| 久久久久久久久免费视频了| 国产免费现黄频在线看| 一本久久精品| 亚洲第一区二区三区不卡| 一级a爱视频在线免费观看| 色精品久久人妻99蜜桃| a级毛片黄视频| 中文字幕人妻丝袜制服| 亚洲自偷自拍图片 自拍| 欧美日韩亚洲综合一区二区三区_| 男男h啪啪无遮挡| 国产一区二区三区综合在线观看| 9色porny在线观看| 精品一品国产午夜福利视频| 国产精品人妻久久久影院| 乱人伦中国视频| 国产欧美日韩综合在线一区二区| 十八禁高潮呻吟视频| 99热国产这里只有精品6| 国产一区有黄有色的免费视频| 亚洲国产欧美在线一区| 一区二区日韩欧美中文字幕| 黄片播放在线免费| 女性生殖器流出的白浆| 99九九在线精品视频| 天天操日日干夜夜撸| 亚洲欧美一区二区三区国产| 街头女战士在线观看网站| 老司机靠b影院| av片东京热男人的天堂| 久久精品熟女亚洲av麻豆精品| 亚洲av电影在线观看一区二区三区| 一区福利在线观看| svipshipincom国产片| 欧美老熟妇乱子伦牲交| 我的亚洲天堂| 中文字幕人妻丝袜一区二区 | 久久久久久久大尺度免费视频| 午夜av观看不卡| 国产欧美日韩一区二区三区在线| 99香蕉大伊视频| 老司机靠b影院| 一区二区av电影网| 搡老岳熟女国产| 国产精品三级大全| 1024香蕉在线观看| 精品一区二区三区av网在线观看 | www日本在线高清视频| 午夜福利免费观看在线| 美女福利国产在线| 国产免费福利视频在线观看| a级毛片黄视频| 国产一区二区三区av在线| 高清在线视频一区二区三区| 欧美中文综合在线视频| 亚洲男人天堂网一区| 亚洲成人手机| 伊人亚洲综合成人网| 蜜桃国产av成人99| 中国三级夫妇交换| 国产成人午夜福利电影在线观看| 一区二区三区四区激情视频| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻精品综合一区二区| 亚洲熟女精品中文字幕| 人人妻,人人澡人人爽秒播 | 制服诱惑二区| 三上悠亚av全集在线观看| 久久久久国产一级毛片高清牌| 国产不卡av网站在线观看|