• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于活性炭||Na0.44MnO2 的低成本、高倍率和長壽命堿性鈉離子電池電容器

    2024-07-04 00:00:00薛晴李圣驛趙亞楠盛鵬徐麗李正曦張波李慧王博楊立濱曹余良陳重學(xué)
    物理化學(xué)學(xué)報 2024年2期
    關(guān)鍵詞:低成本

    摘要:水系鈉離子電池電容器具有成本低、功率大、安全性好等優(yōu)點,是下一代大規(guī)模儲能系統(tǒng)的理想選擇之一。本文采用Na0.44MnO2正極、活性炭(AC)負極、6 mol?L?1 NaOH電解液和廉價的不銹鋼集流體構(gòu)建了可充電堿性鈉離子電池電容器。由于Na0.44MnO2正極在堿性電解液中具有較高的過充耐受性,通過首次充電時的原位過充預(yù)活化過程可以解決半鈉化Na0.44MnO2正極和AC負極初始庫倫效率低的缺點。因此,AC||Na0.44MnO2可充電堿性鈉離子電池電容器具有優(yōu)異的電化學(xué)性能,在功率密度為85 W?kg?1時,能量密度達26.6 Wh?kg?1,循環(huán)10000次后容量保持率為89%。同時,在50 °C的高溫和?20 °C的低溫也具有良好的電化學(xué)性能。這些結(jié)果表明AC||Na0.44MnO2可充電堿性鈉離子電池電容器具備應(yīng)用于大規(guī)模儲能的潛力。

    關(guān)鍵詞:鈉離子電池電容;堿性電解液;過充自保護;低成本;寬工作溫程

    中圖分類號:O646

    Abstract: As the most advanced battery technology to date, lithiumionbattery has occupied the main battery markets for electric vehiclesand grid scale energy storage systems. However, the limited lithiumreserves as well as the high price raise concerns about the sustainabilityof lithium-ion battery. Although sodium-ion battery is proposed as a goodsupplement to lithium-ion battery, expensive and flammable electrolytecomponents, harsh assembly environments and potential safety hazardshave limited the rapid development to a certain extent. The organicelectrolyte was replaced with an aqueous solution to construct a newtype of aqueous sodium ion battery capacitor (ASIBC). It is of greatsignificance for next-generation energy storage system owing to its low cost, high power, and inherent safety. However,applicable ASIBC system is rarely reported so far. Here, a rechargeable alkaline sodium ion battery capacitors constructedby using Na0.44MnO2 cathode, activated carbon (AC) anode, 6 mol?L?1 NaOH electrolyte, and cheap stainless-steel currentcollector. Because of high overcharge tolerance of Na0.44MnO2 cathode in alkaline electrolyte, the shortcomings of the halfsodiumNa0.44MnO2 cathode and low initial Coulombic efficiency of AC anode can be resolved by in situ overcharging preactivationprocess during first charging. The available capacity of Na0.44MnO2 in half cell largely increased from ~40 mAh?g?1(neutral electrolyte) to 77.3 mAh?g?1 (alkaline electrolyte) due to broadened Na+ intercalation potential region. Thus, theAC||Na0.44MnO2 ASIBC delivers outstanding electrochemical properties with a high energy density of 26.6 Wh?kg?1 at apower density of 85 W?kg?1 and long cycling stability with a capacity retention of 89% after 10,000 cycles. The advantagesof the alkaline electrolyte for the AC||Na0.44MnO2 ASIBC can be concluded as follows: (1) through the in situ electrochemicalpre-activation process, the overcharging oxygen evolution reaction during first charging process can balance the adverseeffects of the half-sodium Na0.44MnO2 cathode and low initial Coulombic efficiency of AC anode on the energy density offull cell; (2) the overcharging self-protection function can promote the generated oxygen to be eliminated at anode duringovercharging, which improves the system safety; (3) the low-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, the AC||Na0.44MnO2 ASIBC also possesses wide operating temperaturerange, achieving satisfied electrochemical performance at a high temperature of 50 °C and a low temperature of ?20 °C.Considering the merits of low-cost, high safety, no toxicity and environment-friendly, we believe the AC||Na0.44MnO2rechargeable alkaline sodium-ion battery capacitors have the potential to be applied to large-scale energy storage.

    Key Words: Sodium-ion battery capacitor; Alkaline electrolyte; Overcharging self-protection; Low cost;Wide operating temperature range

    1 Introduction

    Recently, the influence of increasing consumption oftraditional fossil fuel and environmental pollution issue has ledthe worldwide researchers to develop advanced large-scaleenergy storage system. Among various types of current energystorage devices, electrochemical energy storage technology hasbecome the focus over the recent decade due to its advantages offlexibility, high energy conversion efficiency and simplemaintenance 1,2. The cathode and anode active substances of ionbatteries are compounds that can be reversiblyextraction/insertion. It has high energy density, but the powerdensity is insufficient and the cycle life is short, which restrictsthe development of the battery 3,4. Electrochemical capacitorswith high power density and long cycle life are known as animportant supplement to batteries in electrical energy storageapplications 5–7. However, the traditional electrochemicalcapacitors store charges via either ion adsorption-desorption orfast surface redox reactions, which requires a high weightpercent of electrolyte in full cells to support surface reaction oradsorption, consequently lowering the energy density 8,9. Tocombine the merits of both batteries and electrochemicalcapacitors, ion battery capacitor (IBC), which is composed of abattery-type electrode (intercalation/deintercalation mechanism)and a capacitor-type electrode (physical adsorption/desorptionmechanism), is thus proposed as a new type of energy storagedevice 10–12. Because the charge storage of the IBC is realizedthrough the transfer of only cations between cathode and anode,while the anions don't take part in, therefore only a small amountof electrolyte is needed in IBC just like in batteries.

    Although most of the representative lithium-ion batterycapacitors (LIBCs) have demonstrated high energy density byemploying nonaqueous electrolyte, several critical issues alsoaccompanied, including high cost, environmental pollution andsafe risks relating to hazardous flammable organic electrolyte.Compared to organic electrolyte, aqueous electrolyte with highionic conductivity, low cost, non-toxic, and superior thermalstability shows a better application potential in LIBCs. However,the limited lithium resource and rising cost make LIBCs unableto meet the requirements of rapidly expanding large scale energystorage systems. In this case, aqueous sodium ion batterycapacitor (ASIBC) emerges as a promising candidate due to lowcostand abundance of sodium source and similar operatingprinciples to aqueous lithium-ion battery capacitor.

    Constrained by the narrow operating voltage window andserious side reactions in aqueous battery, only a few cathodematerials are available for ASIBC. Among them, tunnel-type oxide, Na0.44MnO2 attracts the most attentions because of itshigh resource abundance, low cost, and environmentalcompatibility 13–15. Na0.44MnO2 possesses a unique 3D crystalstructure and abundant large S tunnels for sodium ions diffusion,showing exceptional cycling performance and remarkable ratecapability in both aqueous and nonaqueous electrolytes. Forexample, Whitacre et al. 16 fabricated a full cell using the activecarbon as the anode, Na0.44MnO2 as the cathode and 1 mol·L?1Na2SO4 as electrolyte, which demonstrates high-rate and longtermcycling performance. Although Na0.44MnO2 couldtheoretically insert/extract 0.44 Na+ with a capacity of 121mAh·g?1 during charge-discharge process, it can merely attain areversible capacity of 60 mAh·g?1 in full cells because only0.22Na+ could be extracted during the first charge, an even lowercapacity of ~40 mAh·g?1 is obtained in neutral solution (Na2SO4,NaNO3, NaCl) due to the limitation of the hydrogen ionsinsertion reaction 17. Therefore, much efforts have been made toimprove the utilization of Na0.44MnO2 in ASIBC 18,19.

    When the neutral electrolyte is replaced by alkalineelectrolyte, the reversible capacity of Na0.44MnO2 can beincreased to 80 mAh·g?1 because the potential of hydrogen ionsinsertion shifts negatively in the alkaline electrolyte. Not onlythat, the alkaline electrolyte has some other advantages. Forexample, neutral system must use expensive current collectormetals (Ti, Ag, Au, etc.) to withstand the corrosion caused bypH alteration upon hydrogen or oxygen evolution reaction 20,21.Instead, alkaline system can just use cheap current collectors(stainless steel, nickel), thus considerably reducing the cost ofASIBC. Most importantly, alkaline electrolytes can tolerateovercharging of the cell due to intrinsic oxygen-shuttleprotection mechanism, where oxygen evolution reaction mightbe used as an approach to improve the reversible capacity (~100mAh·g?1) in full cell 18,19,22. In this regard, it is feasible toconstruct ASIBC with higher energy density, lower cost andlonger-term lifetime based on Na0.44MnO2 cathode and alkalineelectrolyte.

    In this work, a novel ASIBC was constructed by usingNa0.44MnO2 as cathode, active carbon (AC) as anode, 6 mol·L?1NaOH as electrolyte, and stainless steel as current collector. Theelectrochemical performance of the ASIBC was studied,including the reversible capacity, rate capability, cycling life,energy density, and power density. Also, the reaction mechanismwas detailedly explored. Furthermore, the performance ofASIBC at ?20 and 50 °C was investigated. It is believed that thelow-cost and long-life AC||Na0.44MnO2 ASIBC is a promisingcapacitor candidate for future energy storage devices.

    2 Experimental

    2.1 Material preparation

    Rod-like Na0.44MnO2 was synthesized through a phenolformalin-assisted sol-gel method. A typical synthesis processwas as follows: CH3COONa (AR, ≥ 99.0%, Sinopharm) andMn(CH3COO)2 (AR, ≥ 99.0%, Sinopharm) with a stoichiometric ratio of 0.462 : 1 first dissolved in mixed solution of deionizedwater and ethyl alcohol (1 : 1 by vol.) with vigorous stirring at70 °C. After the solution stirred for 30 min, 0.3 g of phenol (AR,≥ 98.0%, Sinopharm) and 0.4 mL of formalin (AR, 37.0%–40.0%, Sinopharm) were added into the above solution insuccession, stirred for 6 h at 80 °C until vaporize both water andethyl alcohol to obtain pale pink gel precursor. After drying at100 °C for overnight in a vacuum oven, the precursor wasground into powder and then heated in a muffle furnace at 900 °Cfor 15 h with a heating rate of 2 °C to obtain the final products.

    2.2 Characterizations

    The crystallographic information was characterized by X-raydiffractometer (XRD, Bruker D8 ADVANCE, Germany) with aCu Kα X-ray source over a range of 2θ angles from 10° to 70° ata scan rate of 4 (°)·min?1. The morphology analysis wasconducted on scanning electron microscopy (SEM, ZEISSMerlin Compact, Germany) and transmission electronmicroscopy (TEM, JEM-2100FEF, Japan).

    2.3 Electrochemical tests

    The Na0.44MnO2 electrodes were prepared via mixing activematerial, Super P and polytetrafluoroethylene emulsion with amass ratio of 8 : 1 : 1. Firstly, the active material and conductivecarbon were well mixed by grounding. And then, binder andisopropanol were added and stirred to form a gum-like mixture.The mixture was pressed on stainless steel net and dried at100 °C for more than 10 h. And the average mass loading ofelectrode is about 5 mg·cm?2. The AC electrodes were fabricatedusing same method except that Ketjen Black was selected asconductive carbon and the mass ratio of active material,conductive carbon and binder is 7 : 2 : 1.

    The three-electrode system was assembled using Na0.44MnO2or AC as working electrode, zinc foil as reference electrode andcounter electrode, 6 mol·L?1 NaOH as electrolyte at roomtemperature in air. The electrochemical properties of sodium ionbattery capacitors were evaluated in 2032-coin cells withNa0.44MnO2 as cathode, AC as anode, non-woven fabric asseparator, and 6 mol·L?1 NaOH as electrolyte at same conditionswith three-electrode system. The mass ratio of cathode andanode is about 1 : 0.9. The galvanostatic charge/dischargemeasurements are carried out using a LANDCT2001A (LandElectronic Co., Ltd., Wuhan, China). Cyclic voltammetry (CV)measurements were conducted on the AutoLab PGSTAT 128 N(Eco Chemie, Netherlands).

    3 Results and discussion

    The XRD pattern of Na0.44MnO2 powders synthesized via solgelmethod showed that the sample was crystallized in theorthorhombic structure (Pbam space group, JCPDS No. 27-0750) of the tunnel-type material (Fig. S1, SupportingInformation), in agreement with previous results 23,24. Themorphology of Na0.44MnO2 sample was characterized by SEM,TEM and High Resolution Transmission Electron Microscope(HRTEM). As shown in Fig. 1a,b, the sample is composed ofshort rod-like particles with a length range of 4–8 μm and widthchanging from 1 to 3 μm. The smaller length/width ratio isbeneficial for fast diffusion of sodium ion in crystal structure,which have been demonstrated by our previous work 22 and otherrelated reports 17,25. The TEM image in Fig. 1c shows rod-likestructure, which is consistent with the SEM results. The latticefringe with a spacing of 0.25 nm in HRTEM images (Fig. 1d) isclearly seen, corresponding to the (360) plane in theorthorhombic structure.

    The electrochemical properties of Na0.44MnO2 electrode weretested in 6 mol·L?1 NaOH solution. And CV profiles,galvanostatic charge-discharge profiles, rate capability and longtermcycling stability of Na0.44MnO2 cathode in the potentialrange of 1.1–1.95 V (vs. Zn/Zn2+) are indicated in Fig. 2. Fourpairs strong redox peaks (1.22/1.15, 1.44/1.38, 1.75/1.70 and1.95/1.92 V) and two pairs weak peaks (1.28/1.23, 1.83/1.80 V)were observed in CV curve (Fig. 2a), representing the differentinsertion/extraction processes of sodium ions into/from tunnelstructure. Symmetrical oxidation and reduction peaks reveal thelow electrochemical polarization of Na0.44MnO2 in alkalinesolution. The shape and relative position of CV peaks are prettyconsistent with those measured in nonaqueous electrolytes,implying the similar reaction mechanism in both electrolytes. Inaddition, at the current rate of 0.5C, the Na0.44MnO2 electrodecould release a reversible discharge capacity of 78.4 mAh·g?1(Fig. 2b), corresponding to the intercalation of 0.285 Na+ in eachNaxMnO2 molecule (0.22 lt; x lt; 0.66) 26,27. And some complexand inconspicuous voltage platforms in good agreement with theCV profiles were obtained. The initial Coulombic efficiency was86.9%, which probably attributed to some inescapable sidereaction in aqueous electrolyte at a low current density, such asoxygen evolution reaction on the surface of electrode and currentcollector. The discharge capacities of Na0.44MnO2 electrode atvarious current rates were also investigated and shown inFig. 2c. When the current density was increased to 1C, 2C, 5C,10C, 20C and 50C, the capacity of Na0.44MnO2 electrode was 74,70.8, 67.4, 62.1, 53.9, 48.4 and 43.7 mAh·g?1, respectively, andstill capable of maintaining above 40 mAh·g?1, which is higherthan that in the neutral electrolyte. The impressive rate capabilitycould be attributed to the intrinsically fast sodium ion transferkinetics in tunnel-type oxide and high ionic conductivity (~400mS·cm?1) in 6 mol·L?1 NaOH solution. In Fig. 2d, at the rate of10C, Na0.44MnO2 electrode can gain an excellent capacityretention of 95.1% with Coulombic efficiency approaching100% over 100 cycles. These favorable electrochemicalperformances make Na0.44MnO2 as a potential cathode materialfor high-performance ASIBC.

    Among those anode materials matched with alkalineelectrolyte, activated carbon (AC) is considered as one of thebest choices due to its superior cycling stability and wide varietyof raw materials. The electrochemical properties of AC anode in6 mol·L?1 NaOH were also studied using three-electrodemethods with zinc plates as both reference electrode and counterelectrode. Fig. 3a shows the CV curve of the AC electrode,exhibiting typical capacitive behavior in 6 mol·L?1 NaOHelectrolyte 28. The oxidative cutoff potential is limited to 1.1 V(vs. Zn/Zn2+) in view of the reductive cutoff potential ofNa0.44MnO2 cathode. The charge-discharge curves of the ACelectrode at 1C are displayed in Fig. 3b. Within the voltagewindow of 0.3-1.1 V, the AC electrode can release specificcapacity of 71.6 mAh·g?1, corresponding to a high specificcapacitance of 322.2 F·g?1, which is largely higher than that inneural electrolyte 16. The reversible capacity of AC electrodeunder different current densities was also tested. As shown in Fig. 3c, AC electrode delivered desirable rate capability with thereversible capacity of 73.1, 66.6, 62.8, 60.1 and 56.9 mAh·g?1 at1C, 2C, 5C, 10C and 20C. Even at a very high rate of 50C, thereversible capacity of 53.3 mAh·g?1 was reserved. When the current rate goes back to 1C, the capacity of 71.6 mAh·g?1 canbe restored, showing excellent rate capability andelectrochemical reversibility. The high performance of the ACelectrode is mainly due to the high ionic conductivity provided by alkaline electrolyte and the energy storage mechanism ofelectrical double-layer capacitor for the AC electrode 29.Similarly, the long-term cycling performance at the rate of 10Cis shown in Fig. 3d. It can be manifested that the AC electrodepossessed superior cyclic stability with a capacity retention of90.7% after 2000 cycles (reversible capacities for the 1st and2000th cycle is 64.6 and 58.6 mAh·g?1, respectively). Theexcellent electrochemical performance of the AC electrodeprovides a strong guarantee for the construction of high-energydensity,high-power and long-term-lifetime AC||Na0.44MnO2ASIBC.

    Based on the above discussion, both Na0.44MnO2 cathode andAC anode exhibit preeminent electrochemical performance,which inspires us to assemble a novel sodium ion batterycapacitorwith Na0.44MnO2 and AC. The typical CV curves ofthe AC||Na0.44MnO2 ASIBC are presented in Fig. 4a, and thecharge/discharge voltage range of AC||Na0.44MnO2 ASIBC iscontrolled between 0 and 1.65 V according to the working rangof cathode and anode (1.1–1.95 and 0.3–1.65 V, respectively). Itis well known that Na0.44MnO2 can only release 0.22Na+ duringthe first charge process, which means that a capacity of merely50 mAh·g?1 can be utilized in full cells. For example, in 6mol·L?1 NaOH, the initial charge capacity of Na0.44MnO2electrode is 44.1 mAh·g?1, but the discharge capacity reaches78.2 mAh·g?1, nearly two times of charge capacity (Fig. S2). Inorder to improve the available reversible capacity, someadditional procedures are needful, such as pre-cycling or presodiumwhich would increase manufacturing cost of Na0.44MnO2. As for the AC anode, the irreversible absorptionoccurs on AC at the first cycle would consume extra sodium ionsfrom cathode (Fig. S3), thus leading to an extremely low initialCoulombic efficiency (ICE). Obviously, the low initial chargecapacity for Na0.44MnO2 cathode and low initial Coulombicefficiency for AC anode are major obstacles for theirapplications. Fortunately, these problems could be perfectlyresolved by overcharging AC||Na0.44MnO2 full cell upon initialcharge process in alkaline electrolyte. The first charge curves ofsodium ion battery capacitor are shown in Fig. 4b. The initialcharge process could be divided into two steps: open-circuitvoltage to 1.25 V, and 1.25 to 1.6 V. For the first stage, sodiumions deintercalate from tunnel structure of Na0.44MnO2 cathodeand sodium ions in the electrolyte are absorbed on the surface ofAC anode simultaneously (Fig. 4c). Through the calculation ofcharge capacity in this stage (51.4 mAh·g?1 for Na0.44MnO2),approximately 0.19Na+ extracted from the tunnel structure. Onbasis of the mass ratio of cathode and anode (1 : 0.9), thesolidated anode can be written as Na0.026C. Thus, theelectrochemical reactions of this charge step can be formulatedas follows:

    Positive: Na0.475MnO2 ? 0.19Na+ ? 0.19e? = Na0.285MnO2

    Negative: 7.34C + 0.19Na+ + 0.19e? = 7.34Na0.026C

    For the second stage, the drastic oxygen evolution reactionemerges around cathode, and AC anode continued absorbingsodium ions (Fig. 4c). Based on the charge capacity of 63.4mAh·g?1 for Na0.44MnO2 in this region, the electrochemicalreaction in second stage may be described as follows:

    Positive: 0.23OH? ? 0.23e? = 0.0575O2 + 0.115H2O

    Negative: 7.34Na0.026C + 0.23Na+ + 0.23e? = 7.34Na0.057C

    From the above description of the electrochemical mechanismof AC||Na0.44MnO2, it can be clearly seen that the in situelectrochemical pre-activation process can easily resolve thematching problem between Na0.44MnO2 cathode and AC anode.Interestingly, the overcharging oxygen evolution mechanism ofNa0.44MnO2 cathode can provide self-protection function in thealkaline electrolyte because the oxygen generated can beefficiently reduced at the negative side, which is similar to that demonstrated in Cd//Ni and MH/Ni batteries 30,31.

    Undoubtedly, oxygen evolution reaction disappeared afterinitial cycle because the Na+ ion amount of Na0.44MnO2electrode can be supplemented in the discharging process, whichcould be confirmed by incremental CE in subsequent chargingand discharging curves (Fig. 4d and the inset picture). Fig. 4eshows typical charge-discharge curves of AC||Na0.44MnO2ASIBC at 1C in the voltage range of 0–1.65 V. TheAC||Na0.44MnO2 ASIBC delivered a reversible capacity of 70.5mAh·g?1 (based on the mass of Na0.44MnO2). The rateperformance of full cell was also evaluated to explore itsfeasibility for high power applications (Fig. 4f). The reversiblecapacities can reach 71.8, 65.9, 61.3, 57.7, 53.8 and 49.4mAh·g?1 at 1C, 2C, 5C, 10C, 20C, and 50C, respectively. Mostimportantly, when the current rate went back to 1C, thereversible capacity swiftly returned to 71.6 mAh·g?1 (nearly100% capacity recovery), showing a strong tolerance for fastsodium ion storage. Moreover, the full cell also exhibitedtremendous cycling stability with a capacity retention of 89%after 10000 cycles at the current rate of 10C (Fig. 5a). Theaverage Coulombic efficiency maintained above 99% all along,indicative of a highly reversible Na-ion transfer between cathodeand anode. Ragone plots of AC||Na0.44MnO2 ASIBC are shownin Fig. 5b. The power density and energy density can becalculated according to Pm = Im × U-, and Wm = Cm × U- . U- isthe average discharge voltage, Im is the current density, andCm refers to the capacity calculated based on the total weight ofcathode and anode. At a power density of 85 W·kg?1, an energydensity of 26.6 Wh·kg?1 could be obtained. When the powerdensity reaches 4.2 kW·kg?1, it still remains an energy density of18.0 Wh·kg?1. Compared with other aqueous Mn-based systems,AC||Na0.44MnO2 ASIBC is fairly competitive in energy densityand cyclic stability (Table 1).

    In order to further meet the requirement of practicalapplications, we evaluated the electrochemical performance ofthe AC||Na0.44MnO2 ASIBC at ?20 and 50 °C. The ratecapability under ?20, 25 and 50 °C is illustrated in Fig. 6a. At?20 °C, the discharge capacity of the AC||Na0.44MnO2 ASIBC reached 30.7, 27.7, 22.2, 17.8, and 14.5 mAh·g?1 at 1C, 2C, 5C,10C, and 20C, respectively. At 50 °C, the AC||Na0.44MnO2ASIBC exhibited higher rate capacities (42.7, 41.7, 38.9, 36.2and 32.2 mAh·g?1 at 1C, 2C, 5C, 10C, and 20C, respectively)due to faster sodium dynamics in electrode material, electrolyte,and electrode-electrolyte interface. When current rate returnedto 1C, the origin discharge capacities for three AC||Na0.44MnO2ASIBCs can be recovered, indicating outstandingelectrochemical reversibility. Additionally, the AC||Na0.44MnO2ASIBCs at ?20, 25 and 50 °C also showed excellent cyclingperformance with no obvious capacity fading within 150 cycles(Fig. 6b). The wide operating temperature range may expand theapplication fields of AC||Na0.44MnO2 ASIBC.

    4 Conclusions

    In this work, we designed an alkaline sodium ion batterycapacitorwith Na0.44MnO2 cathode, AC anode, 6 mol·L?1 NaOHelectrolyte and investigated its electrochemical performance.The available capacity of Na0.44MnO2 in half cell largelyincreased from ~40 mAh·g?1 (neutral electrolyte) to 77.3mAh·g?1 (alkaline electrolyte) due to broadened Na+intercalation potential region. Thus, the fabricatedAC||Na0.44MnO2 ASIBC exhibited exceptional electrochemicalproperties with a high energy density of 26.6 Wh·kg?1 at a powerdensity of 85 W·kg?1, superior cycling stability of 89% capacityretention over 10,000 cycles and high-power capability, whichorigins from the use of alkaline electrolyte. Not only that, theadvantages of the alkaline electrolyte for the AC||Na0.44MnO2ASIBC are also reflected in the following aspects: (1) throughthe in situ electrochemical pre-activation process, theovercharging oxygen evolution reaction during first chargingprocess can balance the adverse effects of the half-sodiumNa0.44MnO2 cathode and low-ICE AC anode on the energydensity of full cell; (2) the overcharging self-protection functioncan promote the generated oxygen to be eliminated at anodeduring overcharging, which improves the system safety; (3) thelow-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, theAC||Na0.44MnO2 ASIBC also possesses wide operatingtemperature range, achieving satisfied electrochemicalperformance at a high temperature of 50 °C and a lowtemperature of ?20 °C. Considering the merits of low-cost, highsafety, no toxicity and environment-friendly, AC||Na0.44MnO2ASIBC has good application prospects in the field of large-scaleenergy storage.

    Author Contributions: Conceptualization, Z.C. and Y.C.;Methodology, Q.X., S.L. and Y.Z.; Validation, Q.X., P.S. andL.X.; Formal Analysis, Q.X., Z.L., B.Z. and H.L.; Investigation,Q.X., B.W. and L.Y.; Resources, Z.C. and Y.C.; Data Curation,Q.X. and Y.Z.; Writing-Original Draft Preparation, Q.X., Y.Z.and Z.C.; Writing-Review amp; Editing, Y.Z., Z.C. and Y.C.;Supervision, Z.C. and Y.C.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Cao, Y.; Li, M.; Lu, J.; Liu, J.; Amine, K. Nat. Nanotechnol. 2019, 14,200. doi: 10.1038/s41565-019-0371-8

    (2) Cao, W.; Zhang, J.; Li, H. Energy Stor. Mater. 2020, 26, 46.doi: 10.1016/j.ensm.2019.12.024

    (3) Niu, Y.; Zhao, Y.; Xu, M. Carbon Neutralization 2023, 2, 15.doi: 10.1002/cnl2.4

    (4) Li, J.; Hu, H.; Wang, J.; Xiao, X. Carbon Neutralization 2022, 1, 96.doi: 10.1002/cnl2.19

    (5) Simon, P.; Gogotsi, Y. Nat. Mater. 2020, 19, 1151.doi: 10.1038/s41563-020-0747-z

    (6) Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Angew.Chem. Int. Ed. 2021, 60, 21310. doi: 10.1002/anie.202104167

    (7) Rajalekshmi, A.; Divya, M.; Lee, Y.; Aravindan, V. Battery Energy2022, 1, 2021000. doi: 10.1002/BTE2.202100

    (8) Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457.doi: 10.1021/acs.chemrev.8b00116

    (9) Gu, C.; Liu, Z.; Gao, X.; Zhang, Q.; Zhang, Z.; Liu, Z.; Wang, C.Battery Energy 2022, 1, 20220031. doi: 10.1002/bte2.20220031

    (10) Guo, N.; Zhang, S.; Wang, L.; Jia, D. Acta Phys. -Chim. Sin. 2020,36, 1903055. [郭楠楠, 張?zhí)K, 王魯香, 賈殿贈. 物理化學(xué)學(xué)報,2020, 36, 1903055.] doi: 10.3866/PKU.WHXB201903055

    (11) Yang, Q.; Cui, S.; Ge, Y.; Tang, Z.; Liu, Z.; Li, H.; Li, N.; Zhang, H.;Liang, J.; Zhi, C. Nano Energy 2018, 50, 623.doi: 10.1016/j.nanoen.2018.06.017

    (12) Wu, Y.; Sun, Y.; Tong, Y.; Liu, X.; Zheng, J.; Han, D.; Li, H.; Niu, L.Energy Stor. Mater. 2021, 41, 108. doi: 10.1016/j.ensm.2021.05.045

    (13) Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.;Yang, Z.; Liu, J. Adv. Mater. 2011, 23, 3155.doi: 10.1002/adma.201100904

    (14) Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACSAppl. Mater. Interfaces 2018, 10, 11689.doi: 10.1021/acsami.8b00478

    (15) Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao,Y. Small 2019, 15, 1805427. doi: 10.1002/smll.201805427

    (16) Whitacre, J.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12,463. doi: 10.1016/j.elecom.2010.01.020

    (17) Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.;Hu, Y.-S.; Yang, W. Nat. Commun. 2015, 6, 6401.doi: 10.1038/ncomms7401

    (18) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2020, 36,1905027. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2020, 36, 1905027.]doi: 10.3866/PKU.WHXB201905027

    (19) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2021, 37,1907049. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2021, 37, 1907049.]doi: 10.3866/PKU.WHXB201907049

    (20) Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods2019, 3, 1800272. doi: 10.1002/smtd.201800272

    (21) Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L.; Wang, Y.; Wang, C.; Xia,Y. Adv. Energy Mater. 2018, 8, 1703008.doi: 10.1002/aenm.201703008

    (22) Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.;Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10,34108. doi: 10.1021/acsami.8b08297

    (23) Li, H.; Liu, S.; Wang, H.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Cao, Y.; Chen, Z. Acta Phys. -Chim. Sin. 2019, 35,1357. [李慧, 劉雙宇, 汪慧明, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 曹余良, 陳重學(xué). 物理化學(xué)學(xué)報, 2019, 35, 1357.]doi: 10.3866/PKU.WHXB201902021

    (24) Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv.Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598

    (25) He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan,M. C.; Liu, H.; Gallash, T. Nano Energy 2016, 27, 602.doi: 10.1016/j.nanoen.2016.07.021

    (26) Sauvage, F.; Laffont, L.; Tarascon, J.-M.; Baudrin, E. Inorg. Chem.2007, 46, 3289. doi: 10.1021/ic0700250

    (27) Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102.doi: 10.1016/j.jpowsour.2016.01.101

    (28) Boujibar, O.; Ghamouss, F.; Ghosh, A.; Achak, O.; Chafik, T.J. Power Sources 2019, 436, 226882.doi: 10.1016/j.jpowsour.2019.226882

    (29) Zhao, X.; Cai, W.; Yang, Y.; Song, X.; Neale, Z.; Wang, H.-E.; Sui, J.;Cao, G. Nano Energy 2018, 47, 224.doi: 10.1016/j.nanoen.2018.03.002

    (30) Cha, C.; Yu, J.; Zhang, J. J. Power Sources 2004, 129, 347.doi: 10.1016/j.jpowsour.2003.11.043

    (31) Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P.J. Power Sources 1999, 83, 93. doi: 10.1016/S0378-7753(99)00272-4

    (32) Qu, Q.; Shi, Y.; Tian, S.; Chen, Y.; Wu, Y.; Holze, R. J. PowerSources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068

    (33) Zhang, B.; Liu, Y.; Chang, Z.; Yang, Y.; Wen, Z.; Wu, Y.; Holze, R.J. Power Sources 2014, 253, 98.doi: 10.1016/j.jpowsour.2013.12.011

    (34) Lim, H.; Jung, J. H.; Park, Y. M.; Lee, H.-N.; Kim, H.-J. Appl. Surf.Sci. 2018, 446, 131. doi: 10.1016/j.apsusc.2018.02.021

    (35) Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J. F.J. Electrochem. Soc. 2015, 162, A803. doi: 10.1149/2.0121506jes

    國家電網(wǎng)公司科技計劃(5500-202158251A-0-0-00)資助項目

    猜你喜歡
    低成本
    大氣顆粒物源識別在線分析儀的開發(fā)及應(yīng)用
    城市電視臺要辦“特色綜藝”
    記者搖籃(2016年11期)2017-01-12 14:01:53
    初中物理低成本實驗資源的開發(fā)和利用
    未來英才(2016年3期)2016-12-26 10:03:57
    高效低成本的單晶N型太陽電池加工工藝的應(yīng)用
    實現(xiàn)園林管理低成本的對策和建議
    基于SOC的智能野外目標監(jiān)視和記錄系統(tǒng)設(shè)計與實現(xiàn)
    基于微波物理熱效應(yīng)的高壓電線除冰裝置方案設(shè)計
    科技視界(2016年2期)2016-03-30 13:05:46
    Y不銹鋼絲有限公司低成本SWOT分析
    商(2016年3期)2016-03-11 09:48:58
    低成本通用型液壓夾具的設(shè)計及推廣
    科學(xué)家(2015年9期)2015-10-29 15:37:18
    av免费在线看不卡| 日韩强制内射视频| 久久久欧美国产精品| 偷拍熟女少妇极品色| 麻豆国产av国片精品| 精品福利观看| а√天堂www在线а√下载| 欧美国产日韩亚洲一区| 99久久精品热视频| 晚上一个人看的免费电影| 国产在线男女| 免费大片18禁| 免费av不卡在线播放| 成人漫画全彩无遮挡| 亚洲电影在线观看av| 99热全是精品| 成年女人永久免费观看视频| 国产在线男女| 色播亚洲综合网| 亚洲精品一区av在线观看| 最新在线观看一区二区三区| 久久婷婷人人爽人人干人人爱| 天堂av国产一区二区熟女人妻| 亚洲熟妇熟女久久| 欧美+日韩+精品| 在线观看午夜福利视频| 神马国产精品三级电影在线观看| 又爽又黄无遮挡网站| 国产 一区精品| 婷婷亚洲欧美| 国产在视频线在精品| 综合色av麻豆| 真实男女啪啪啪动态图| 国产精品嫩草影院av在线观看| 有码 亚洲区| 中文字幕av成人在线电影| 91精品国产九色| 久久人人爽人人爽人人片va| 三级国产精品欧美在线观看| 国产精品一二三区在线看| 九九热线精品视视频播放| 国产精品久久电影中文字幕| 成人国产麻豆网| 国产精品一区二区三区四区免费观看 | 两性午夜刺激爽爽歪歪视频在线观看| 乱系列少妇在线播放| 亚洲精品日韩av片在线观看| 久久久欧美国产精品| 国产中年淑女户外野战色| 天堂动漫精品| 亚洲精品亚洲一区二区| 免费看光身美女| 国产av一区在线观看免费| 国产亚洲av嫩草精品影院| 丰满乱子伦码专区| 18禁黄网站禁片免费观看直播| 国内精品一区二区在线观看| 麻豆精品久久久久久蜜桃| 成年女人永久免费观看视频| 欧美三级亚洲精品| 国产精品永久免费网站| 好男人在线观看高清免费视频| 亚洲精品粉嫩美女一区| 神马国产精品三级电影在线观看| 亚洲国产精品合色在线| 别揉我奶头 嗯啊视频| 国产成人a∨麻豆精品| 久久中文看片网| 免费观看在线日韩| 欧美人与善性xxx| 久久精品国产亚洲av天美| 成人av在线播放网站| 成人国产麻豆网| 黄色配什么色好看| 亚洲第一电影网av| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久亚洲| 伊人久久精品亚洲午夜| 国产精品永久免费网站| 日韩av在线大香蕉| 国产午夜精品久久久久久一区二区三区 | 久久综合国产亚洲精品| 国产精品久久久久久亚洲av鲁大| 国产精品一区二区免费欧美| 性色avwww在线观看| 国产蜜桃级精品一区二区三区| 免费无遮挡裸体视频| 蜜桃亚洲精品一区二区三区| 国产黄色小视频在线观看| 黄片wwwwww| 老熟妇仑乱视频hdxx| 午夜精品一区二区三区免费看| 欧美色欧美亚洲另类二区| 一边摸一边抽搐一进一小说| 亚洲无线在线观看| 国产真实伦视频高清在线观看| 精品一区二区三区人妻视频| 少妇高潮的动态图| 亚洲人成网站在线观看播放| 天堂影院成人在线观看| 国内精品宾馆在线| 日本a在线网址| 色吧在线观看| 插逼视频在线观看| 国产精品亚洲美女久久久| 亚洲在线观看片| 免费在线观看成人毛片| 高清毛片免费观看视频网站| 欧美性猛交╳xxx乱大交人| 色综合亚洲欧美另类图片| 最新中文字幕久久久久| 日韩人妻高清精品专区| 在线天堂最新版资源| 久久久久久九九精品二区国产| 伊人久久精品亚洲午夜| 又爽又黄a免费视频| 久久久久性生活片| 在现免费观看毛片| 国模一区二区三区四区视频| 一个人观看的视频www高清免费观看| 中文字幕熟女人妻在线| 97超视频在线观看视频| 一级av片app| 午夜爱爱视频在线播放| 欧美色视频一区免费| 18禁裸乳无遮挡免费网站照片| av在线播放精品| 久久精品影院6| 亚洲av免费在线观看| 一区福利在线观看| 最好的美女福利视频网| 又粗又爽又猛毛片免费看| 亚洲中文字幕日韩| 日本黄大片高清| 亚洲电影在线观看av| 小说图片视频综合网站| 小说图片视频综合网站| 国内精品美女久久久久久| 在线天堂最新版资源| 亚洲人成网站在线播放欧美日韩| 天天一区二区日本电影三级| 国产毛片a区久久久久| 久久久久国产精品人妻aⅴ院| 欧美日韩国产亚洲二区| 国产亚洲精品综合一区在线观看| 91狼人影院| 国产成人一区二区在线| 天堂av国产一区二区熟女人妻| a级一级毛片免费在线观看| 高清毛片免费看| 天堂影院成人在线观看| 别揉我奶头 嗯啊视频| 午夜激情福利司机影院| 国产高清视频在线观看网站| 全区人妻精品视频| 久久久a久久爽久久v久久| 日韩 亚洲 欧美在线| 色在线成人网| 国产午夜福利久久久久久| 成人永久免费在线观看视频| 国产男人的电影天堂91| 国产成人freesex在线 | 国产伦一二天堂av在线观看| 亚洲国产精品久久男人天堂| 18禁裸乳无遮挡免费网站照片| 亚洲熟妇熟女久久| 久久精品国产自在天天线| 国产在视频线在精品| 国产av一区在线观看免费| 一级黄片播放器| 亚洲高清免费不卡视频| 亚洲国产欧美人成| 99久久精品热视频| 美女大奶头视频| 身体一侧抽搐| 特级一级黄色大片| 啦啦啦观看免费观看视频高清| 最近最新中文字幕大全电影3| 亚洲美女搞黄在线观看 | 国产精品野战在线观看| 少妇的逼水好多| 国产69精品久久久久777片| 99久国产av精品| 国产亚洲精品久久久com| 精品免费久久久久久久清纯| 国产欧美日韩精品亚洲av| 亚洲av免费在线观看| 在线观看一区二区三区| 日韩av不卡免费在线播放| 国产高清不卡午夜福利| 亚洲成av人片在线播放无| 亚洲精华国产精华液的使用体验 | 99在线人妻在线中文字幕| 波多野结衣高清无吗| 在线天堂最新版资源| 欧美日韩国产亚洲二区| 一个人看视频在线观看www免费| 亚洲欧美成人精品一区二区| 亚洲中文日韩欧美视频| 国产视频一区二区在线看| 国产午夜福利久久久久久| 99久久久亚洲精品蜜臀av| 亚洲成人久久性| 国产真实伦视频高清在线观看| 97碰自拍视频| 亚洲精品成人久久久久久| 大型黄色视频在线免费观看| h日本视频在线播放| 小蜜桃在线观看免费完整版高清| 久久久久久久久久黄片| 精品人妻视频免费看| 国产精品久久久久久亚洲av鲁大| 日本免费一区二区三区高清不卡| 中文字幕av在线有码专区| 国产色爽女视频免费观看| 日本在线视频免费播放| 成年女人永久免费观看视频| 一级黄片播放器| 18禁裸乳无遮挡免费网站照片| 乱人视频在线观看| 午夜a级毛片| 国产高潮美女av| 久久精品国产亚洲av涩爱 | 日本精品一区二区三区蜜桃| 亚洲国产精品sss在线观看| 国产乱人视频| 九九在线视频观看精品| 三级经典国产精品| 亚洲,欧美,日韩| 亚洲色图av天堂| 欧美激情国产日韩精品一区| av专区在线播放| 精品人妻熟女av久视频| 18禁裸乳无遮挡免费网站照片| 最近视频中文字幕2019在线8| 欧美bdsm另类| 亚洲美女黄片视频| 午夜福利在线观看免费完整高清在 | 91午夜精品亚洲一区二区三区| 国内精品美女久久久久久| 伦理电影大哥的女人| 亚洲国产精品合色在线| 国产色婷婷99| 日日摸夜夜添夜夜添小说| 国产久久久一区二区三区| 国产单亲对白刺激| 亚洲av免费高清在线观看| 狠狠狠狠99中文字幕| 久久久久久久久久黄片| 99久久精品热视频| 久久久久久久午夜电影| 偷拍熟女少妇极品色| 国产成年人精品一区二区| 午夜a级毛片| 99国产极品粉嫩在线观看| 精品人妻偷拍中文字幕| 一个人看视频在线观看www免费| 精品一区二区三区视频在线| 性色avwww在线观看| 日本黄色片子视频| 亚洲成a人片在线一区二区| 精品欧美国产一区二区三| 男人的好看免费观看在线视频| 亚洲四区av| 国内精品宾馆在线| 国产高清有码在线观看视频| 嫩草影院精品99| 黄色视频,在线免费观看| 欧美性感艳星| 日韩三级伦理在线观看| 黄片wwwwww| 国产一区二区激情短视频| 亚洲熟妇熟女久久| 级片在线观看| 18禁在线无遮挡免费观看视频 | 男女啪啪激烈高潮av片| 黄色一级大片看看| 欧美三级亚洲精品| 亚洲精品一区av在线观看| 人人妻,人人澡人人爽秒播| 国产男靠女视频免费网站| 久久精品国产亚洲av香蕉五月| 久久久久久久午夜电影| 亚洲av第一区精品v没综合| 欧美激情在线99| 国产美女午夜福利| 97超级碰碰碰精品色视频在线观看| 国产一区二区激情短视频| 日韩强制内射视频| 日本爱情动作片www.在线观看 | 美女cb高潮喷水在线观看| 少妇猛男粗大的猛烈进出视频 | 蜜臀久久99精品久久宅男| 不卡一级毛片| 在线天堂最新版资源| 亚洲精品日韩在线中文字幕 | 在线播放国产精品三级| 欧美另类亚洲清纯唯美| 99热这里只有精品一区| 免费看av在线观看网站| 久久99热6这里只有精品| 精品欧美国产一区二区三| 久久久色成人| 国产精品永久免费网站| 国产乱人偷精品视频| 日日摸夜夜添夜夜添小说| 小蜜桃在线观看免费完整版高清| 成人综合一区亚洲| 大又大粗又爽又黄少妇毛片口| 婷婷亚洲欧美| 精品熟女少妇av免费看| 寂寞人妻少妇视频99o| 亚洲第一区二区三区不卡| 免费黄网站久久成人精品| 亚洲精品日韩在线中文字幕 | 久久久色成人| 国产午夜精品久久久久久一区二区三区 | 少妇被粗大猛烈的视频| 欧美+亚洲+日韩+国产| 美女大奶头视频| 两个人的视频大全免费| 香蕉av资源在线| 国产精品日韩av在线免费观看| 激情 狠狠 欧美| 99九九线精品视频在线观看视频| 午夜亚洲福利在线播放| videossex国产| 如何舔出高潮| 精品久久久久久成人av| 一本精品99久久精品77| 日本一本二区三区精品| 亚洲在线自拍视频| 伦精品一区二区三区| 3wmmmm亚洲av在线观看| 亚洲av美国av| 久久天躁狠狠躁夜夜2o2o| 国产成人aa在线观看| 蜜桃亚洲精品一区二区三区| 级片在线观看| 波野结衣二区三区在线| 村上凉子中文字幕在线| av国产免费在线观看| or卡值多少钱| 麻豆成人午夜福利视频| 国产真实乱freesex| 亚洲国产欧洲综合997久久,| 欧美一区二区国产精品久久精品| 99九九线精品视频在线观看视频| 乱人视频在线观看| 天天躁日日操中文字幕| 午夜福利视频1000在线观看| 日日干狠狠操夜夜爽| 免费观看的影片在线观看| 舔av片在线| 黄色视频,在线免费观看| 99久久无色码亚洲精品果冻| 少妇的逼好多水| 午夜免费激情av| 亚洲欧美清纯卡通| 老司机影院成人| 亚洲精品456在线播放app| 在线国产一区二区在线| 亚洲av五月六月丁香网| 国产精品一区二区性色av| 美女免费视频网站| 日日撸夜夜添| 一进一出好大好爽视频| 亚洲婷婷狠狠爱综合网| 可以在线观看的亚洲视频| 国产v大片淫在线免费观看| 亚洲人成网站高清观看| 日韩欧美在线乱码| 国内精品美女久久久久久| 婷婷精品国产亚洲av在线| 久久精品久久久久久噜噜老黄 | 色播亚洲综合网| 熟女人妻精品中文字幕| 国产久久久一区二区三区| 午夜视频国产福利| 精品不卡国产一区二区三区| 美女免费视频网站| 亚洲最大成人av| 男人的好看免费观看在线视频| 男人狂女人下面高潮的视频| 天天一区二区日本电影三级| 不卡一级毛片| 国产一区二区三区av在线 | 日日摸夜夜添夜夜添小说| 国产伦在线观看视频一区| 国产午夜福利久久久久久| 国产精品,欧美在线| 国产一区二区三区在线臀色熟女| 亚洲高清免费不卡视频| 精品无人区乱码1区二区| 99久久成人亚洲精品观看| 亚洲人成网站在线播放欧美日韩| 久久久午夜欧美精品| 国产高清激情床上av| 日日干狠狠操夜夜爽| 亚洲av不卡在线观看| 亚洲国产日韩欧美精品在线观看| 你懂的网址亚洲精品在线观看 | 最新中文字幕久久久久| 天天躁日日操中文字幕| 美女高潮的动态| 国产在视频线在精品| 久久久久免费精品人妻一区二区| 亚洲国产日韩欧美精品在线观看| 欧美三级亚洲精品| 精华霜和精华液先用哪个| 99在线人妻在线中文字幕| 卡戴珊不雅视频在线播放| 性欧美人与动物交配| 午夜久久久久精精品| 亚洲,欧美,日韩| 22中文网久久字幕| 亚洲精品成人久久久久久| 听说在线观看完整版免费高清| 国产中年淑女户外野战色| 日本在线视频免费播放| 国产亚洲精品综合一区在线观看| 熟女电影av网| 亚洲精品在线观看二区| 精品免费久久久久久久清纯| 热99re8久久精品国产| 亚洲不卡免费看| 国产成人一区二区在线| 1000部很黄的大片| 中文字幕熟女人妻在线| 亚洲欧美中文字幕日韩二区| 国产大屁股一区二区在线视频| 18+在线观看网站| 2021天堂中文幕一二区在线观| 国产欧美日韩精品亚洲av| 亚洲五月天丁香| 国产精品伦人一区二区| 成人一区二区视频在线观看| 黄色日韩在线| 人人妻,人人澡人人爽秒播| 长腿黑丝高跟| 综合色丁香网| 亚洲不卡免费看| 国产在线男女| 一进一出抽搐gif免费好疼| 舔av片在线| 1024手机看黄色片| 精品久久久噜噜| 国产精品亚洲一级av第二区| 国产精品福利在线免费观看| 日韩欧美三级三区| 美女 人体艺术 gogo| 精品久久久久久久久久免费视频| 亚洲经典国产精华液单| 美女免费视频网站| 免费高清视频大片| 久久韩国三级中文字幕| 久久6这里有精品| 男人的好看免费观看在线视频| 极品教师在线视频| 搡老熟女国产l中国老女人| 国产 一区精品| 国产av不卡久久| 男人的好看免费观看在线视频| 极品教师在线视频| 精品一区二区三区av网在线观看| 成人欧美大片| 自拍偷自拍亚洲精品老妇| 男女边吃奶边做爰视频| 国产精华一区二区三区| 校园春色视频在线观看| 在线播放无遮挡| 色噜噜av男人的天堂激情| 国产91av在线免费观看| 精品久久久久久久久久久久久| 欧美激情久久久久久爽电影| av天堂在线播放| 久久天躁狠狠躁夜夜2o2o| 亚洲图色成人| 两性午夜刺激爽爽歪歪视频在线观看| 成人三级黄色视频| 偷拍熟女少妇极品色| 非洲黑人性xxxx精品又粗又长| 黄色欧美视频在线观看| 女同久久另类99精品国产91| 淫秽高清视频在线观看| 麻豆乱淫一区二区| 欧美+日韩+精品| 亚洲真实伦在线观看| 久久午夜福利片| 亚洲图色成人| .国产精品久久| 国产不卡一卡二| 乱系列少妇在线播放| 亚洲欧美日韩高清在线视频| 欧美最新免费一区二区三区| 欧美日韩精品成人综合77777| 男插女下体视频免费在线播放| 黄色欧美视频在线观看| 两个人的视频大全免费| 波多野结衣高清作品| 一级av片app| 亚洲精华国产精华液的使用体验 | 两个人视频免费观看高清| 精品国内亚洲2022精品成人| 亚洲国产高清在线一区二区三| 日本 av在线| 亚洲aⅴ乱码一区二区在线播放| 久久久精品大字幕| 国产爱豆传媒在线观看| 国产一区二区在线av高清观看| 麻豆乱淫一区二区| 午夜精品一区二区三区免费看| 成年女人看的毛片在线观看| 国产精品人妻久久久影院| 91精品国产九色| 国产老妇女一区| 亚洲熟妇中文字幕五十中出| 精品欧美国产一区二区三| 亚洲无线观看免费| 亚洲精品一区av在线观看| 超碰av人人做人人爽久久| 久久久久精品国产欧美久久久| 国产精品福利在线免费观看| 精品免费久久久久久久清纯| 成人鲁丝片一二三区免费| 国产成人一区二区在线| 久久精品影院6| 干丝袜人妻中文字幕| 亚洲色图av天堂| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 久久热精品热| 日本欧美国产在线视频| 欧美潮喷喷水| 搡老岳熟女国产| 18禁裸乳无遮挡免费网站照片| 中文在线观看免费www的网站| 免费观看在线日韩| 十八禁网站免费在线| 国产成人aa在线观看| 久久久久国产精品人妻aⅴ院| 欧美性猛交╳xxx乱大交人| 亚洲欧美精品综合久久99| 国产白丝娇喘喷水9色精品| or卡值多少钱| 成年av动漫网址| 99久久久亚洲精品蜜臀av| 一本久久中文字幕| 赤兔流量卡办理| 18禁黄网站禁片免费观看直播| 中文字幕精品亚洲无线码一区| 成年版毛片免费区| 亚洲av免费在线观看| 欧美xxxx性猛交bbbb| 麻豆久久精品国产亚洲av| 欧美一区二区亚洲| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久亚洲| 国产片特级美女逼逼视频| 国产精品亚洲一级av第二区| 丰满乱子伦码专区| 在线播放国产精品三级| 草草在线视频免费看| 久久午夜亚洲精品久久| 中文资源天堂在线| or卡值多少钱| 国产精品永久免费网站| 成年女人看的毛片在线观看| 在线观看午夜福利视频| 中国美白少妇内射xxxbb| avwww免费| 色av中文字幕| 亚洲激情五月婷婷啪啪| 一进一出抽搐动态| 亚洲av五月六月丁香网| 国产av不卡久久| 中文字幕久久专区| 日韩精品有码人妻一区| 色尼玛亚洲综合影院| 在线观看av片永久免费下载| 少妇裸体淫交视频免费看高清| 色视频www国产| 亚洲欧美日韩东京热| 精品乱码久久久久久99久播| 69av精品久久久久久| 欧美一区二区亚洲| 国产成人aa在线观看| av在线亚洲专区| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 天天一区二区日本电影三级| 免费大片18禁| 国产高清三级在线| 男女下面进入的视频免费午夜| 国产v大片淫在线免费观看| 国产高清视频在线播放一区| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 亚洲最大成人av| 午夜精品国产一区二区电影 | 少妇被粗大猛烈的视频| 99在线视频只有这里精品首页| 欧美一区二区精品小视频在线| 可以在线观看的亚洲视频| 蜜臀久久99精品久久宅男| 成人av在线播放网站| 午夜福利在线在线| 久久久久性生活片| 成人毛片a级毛片在线播放| 国产美女午夜福利| 两个人的视频大全免费| 久久精品夜色国产| 国产午夜福利久久久久久| 精品免费久久久久久久清纯| 国产精品不卡视频一区二区|