• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于活性炭||Na0.44MnO2 的低成本、高倍率和長壽命堿性鈉離子電池電容器

    2024-07-04 00:00:00薛晴李圣驛趙亞楠盛鵬徐麗李正曦張波李慧王博楊立濱曹余良陳重學(xué)
    物理化學(xué)學(xué)報 2024年2期
    關(guān)鍵詞:低成本

    摘要:水系鈉離子電池電容器具有成本低、功率大、安全性好等優(yōu)點,是下一代大規(guī)模儲能系統(tǒng)的理想選擇之一。本文采用Na0.44MnO2正極、活性炭(AC)負極、6 mol?L?1 NaOH電解液和廉價的不銹鋼集流體構(gòu)建了可充電堿性鈉離子電池電容器。由于Na0.44MnO2正極在堿性電解液中具有較高的過充耐受性,通過首次充電時的原位過充預(yù)活化過程可以解決半鈉化Na0.44MnO2正極和AC負極初始庫倫效率低的缺點。因此,AC||Na0.44MnO2可充電堿性鈉離子電池電容器具有優(yōu)異的電化學(xué)性能,在功率密度為85 W?kg?1時,能量密度達26.6 Wh?kg?1,循環(huán)10000次后容量保持率為89%。同時,在50 °C的高溫和?20 °C的低溫也具有良好的電化學(xué)性能。這些結(jié)果表明AC||Na0.44MnO2可充電堿性鈉離子電池電容器具備應(yīng)用于大規(guī)模儲能的潛力。

    關(guān)鍵詞:鈉離子電池電容;堿性電解液;過充自保護;低成本;寬工作溫程

    中圖分類號:O646

    Abstract: As the most advanced battery technology to date, lithiumionbattery has occupied the main battery markets for electric vehiclesand grid scale energy storage systems. However, the limited lithiumreserves as well as the high price raise concerns about the sustainabilityof lithium-ion battery. Although sodium-ion battery is proposed as a goodsupplement to lithium-ion battery, expensive and flammable electrolytecomponents, harsh assembly environments and potential safety hazardshave limited the rapid development to a certain extent. The organicelectrolyte was replaced with an aqueous solution to construct a newtype of aqueous sodium ion battery capacitor (ASIBC). It is of greatsignificance for next-generation energy storage system owing to its low cost, high power, and inherent safety. However,applicable ASIBC system is rarely reported so far. Here, a rechargeable alkaline sodium ion battery capacitors constructedby using Na0.44MnO2 cathode, activated carbon (AC) anode, 6 mol?L?1 NaOH electrolyte, and cheap stainless-steel currentcollector. Because of high overcharge tolerance of Na0.44MnO2 cathode in alkaline electrolyte, the shortcomings of the halfsodiumNa0.44MnO2 cathode and low initial Coulombic efficiency of AC anode can be resolved by in situ overcharging preactivationprocess during first charging. The available capacity of Na0.44MnO2 in half cell largely increased from ~40 mAh?g?1(neutral electrolyte) to 77.3 mAh?g?1 (alkaline electrolyte) due to broadened Na+ intercalation potential region. Thus, theAC||Na0.44MnO2 ASIBC delivers outstanding electrochemical properties with a high energy density of 26.6 Wh?kg?1 at apower density of 85 W?kg?1 and long cycling stability with a capacity retention of 89% after 10,000 cycles. The advantagesof the alkaline electrolyte for the AC||Na0.44MnO2 ASIBC can be concluded as follows: (1) through the in situ electrochemicalpre-activation process, the overcharging oxygen evolution reaction during first charging process can balance the adverseeffects of the half-sodium Na0.44MnO2 cathode and low initial Coulombic efficiency of AC anode on the energy density offull cell; (2) the overcharging self-protection function can promote the generated oxygen to be eliminated at anode duringovercharging, which improves the system safety; (3) the low-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, the AC||Na0.44MnO2 ASIBC also possesses wide operating temperaturerange, achieving satisfied electrochemical performance at a high temperature of 50 °C and a low temperature of ?20 °C.Considering the merits of low-cost, high safety, no toxicity and environment-friendly, we believe the AC||Na0.44MnO2rechargeable alkaline sodium-ion battery capacitors have the potential to be applied to large-scale energy storage.

    Key Words: Sodium-ion battery capacitor; Alkaline electrolyte; Overcharging self-protection; Low cost;Wide operating temperature range

    1 Introduction

    Recently, the influence of increasing consumption oftraditional fossil fuel and environmental pollution issue has ledthe worldwide researchers to develop advanced large-scaleenergy storage system. Among various types of current energystorage devices, electrochemical energy storage technology hasbecome the focus over the recent decade due to its advantages offlexibility, high energy conversion efficiency and simplemaintenance 1,2. The cathode and anode active substances of ionbatteries are compounds that can be reversiblyextraction/insertion. It has high energy density, but the powerdensity is insufficient and the cycle life is short, which restrictsthe development of the battery 3,4. Electrochemical capacitorswith high power density and long cycle life are known as animportant supplement to batteries in electrical energy storageapplications 5–7. However, the traditional electrochemicalcapacitors store charges via either ion adsorption-desorption orfast surface redox reactions, which requires a high weightpercent of electrolyte in full cells to support surface reaction oradsorption, consequently lowering the energy density 8,9. Tocombine the merits of both batteries and electrochemicalcapacitors, ion battery capacitor (IBC), which is composed of abattery-type electrode (intercalation/deintercalation mechanism)and a capacitor-type electrode (physical adsorption/desorptionmechanism), is thus proposed as a new type of energy storagedevice 10–12. Because the charge storage of the IBC is realizedthrough the transfer of only cations between cathode and anode,while the anions don't take part in, therefore only a small amountof electrolyte is needed in IBC just like in batteries.

    Although most of the representative lithium-ion batterycapacitors (LIBCs) have demonstrated high energy density byemploying nonaqueous electrolyte, several critical issues alsoaccompanied, including high cost, environmental pollution andsafe risks relating to hazardous flammable organic electrolyte.Compared to organic electrolyte, aqueous electrolyte with highionic conductivity, low cost, non-toxic, and superior thermalstability shows a better application potential in LIBCs. However,the limited lithium resource and rising cost make LIBCs unableto meet the requirements of rapidly expanding large scale energystorage systems. In this case, aqueous sodium ion batterycapacitor (ASIBC) emerges as a promising candidate due to lowcostand abundance of sodium source and similar operatingprinciples to aqueous lithium-ion battery capacitor.

    Constrained by the narrow operating voltage window andserious side reactions in aqueous battery, only a few cathodematerials are available for ASIBC. Among them, tunnel-type oxide, Na0.44MnO2 attracts the most attentions because of itshigh resource abundance, low cost, and environmentalcompatibility 13–15. Na0.44MnO2 possesses a unique 3D crystalstructure and abundant large S tunnels for sodium ions diffusion,showing exceptional cycling performance and remarkable ratecapability in both aqueous and nonaqueous electrolytes. Forexample, Whitacre et al. 16 fabricated a full cell using the activecarbon as the anode, Na0.44MnO2 as the cathode and 1 mol·L?1Na2SO4 as electrolyte, which demonstrates high-rate and longtermcycling performance. Although Na0.44MnO2 couldtheoretically insert/extract 0.44 Na+ with a capacity of 121mAh·g?1 during charge-discharge process, it can merely attain areversible capacity of 60 mAh·g?1 in full cells because only0.22Na+ could be extracted during the first charge, an even lowercapacity of ~40 mAh·g?1 is obtained in neutral solution (Na2SO4,NaNO3, NaCl) due to the limitation of the hydrogen ionsinsertion reaction 17. Therefore, much efforts have been made toimprove the utilization of Na0.44MnO2 in ASIBC 18,19.

    When the neutral electrolyte is replaced by alkalineelectrolyte, the reversible capacity of Na0.44MnO2 can beincreased to 80 mAh·g?1 because the potential of hydrogen ionsinsertion shifts negatively in the alkaline electrolyte. Not onlythat, the alkaline electrolyte has some other advantages. Forexample, neutral system must use expensive current collectormetals (Ti, Ag, Au, etc.) to withstand the corrosion caused bypH alteration upon hydrogen or oxygen evolution reaction 20,21.Instead, alkaline system can just use cheap current collectors(stainless steel, nickel), thus considerably reducing the cost ofASIBC. Most importantly, alkaline electrolytes can tolerateovercharging of the cell due to intrinsic oxygen-shuttleprotection mechanism, where oxygen evolution reaction mightbe used as an approach to improve the reversible capacity (~100mAh·g?1) in full cell 18,19,22. In this regard, it is feasible toconstruct ASIBC with higher energy density, lower cost andlonger-term lifetime based on Na0.44MnO2 cathode and alkalineelectrolyte.

    In this work, a novel ASIBC was constructed by usingNa0.44MnO2 as cathode, active carbon (AC) as anode, 6 mol·L?1NaOH as electrolyte, and stainless steel as current collector. Theelectrochemical performance of the ASIBC was studied,including the reversible capacity, rate capability, cycling life,energy density, and power density. Also, the reaction mechanismwas detailedly explored. Furthermore, the performance ofASIBC at ?20 and 50 °C was investigated. It is believed that thelow-cost and long-life AC||Na0.44MnO2 ASIBC is a promisingcapacitor candidate for future energy storage devices.

    2 Experimental

    2.1 Material preparation

    Rod-like Na0.44MnO2 was synthesized through a phenolformalin-assisted sol-gel method. A typical synthesis processwas as follows: CH3COONa (AR, ≥ 99.0%, Sinopharm) andMn(CH3COO)2 (AR, ≥ 99.0%, Sinopharm) with a stoichiometric ratio of 0.462 : 1 first dissolved in mixed solution of deionizedwater and ethyl alcohol (1 : 1 by vol.) with vigorous stirring at70 °C. After the solution stirred for 30 min, 0.3 g of phenol (AR,≥ 98.0%, Sinopharm) and 0.4 mL of formalin (AR, 37.0%–40.0%, Sinopharm) were added into the above solution insuccession, stirred for 6 h at 80 °C until vaporize both water andethyl alcohol to obtain pale pink gel precursor. After drying at100 °C for overnight in a vacuum oven, the precursor wasground into powder and then heated in a muffle furnace at 900 °Cfor 15 h with a heating rate of 2 °C to obtain the final products.

    2.2 Characterizations

    The crystallographic information was characterized by X-raydiffractometer (XRD, Bruker D8 ADVANCE, Germany) with aCu Kα X-ray source over a range of 2θ angles from 10° to 70° ata scan rate of 4 (°)·min?1. The morphology analysis wasconducted on scanning electron microscopy (SEM, ZEISSMerlin Compact, Germany) and transmission electronmicroscopy (TEM, JEM-2100FEF, Japan).

    2.3 Electrochemical tests

    The Na0.44MnO2 electrodes were prepared via mixing activematerial, Super P and polytetrafluoroethylene emulsion with amass ratio of 8 : 1 : 1. Firstly, the active material and conductivecarbon were well mixed by grounding. And then, binder andisopropanol were added and stirred to form a gum-like mixture.The mixture was pressed on stainless steel net and dried at100 °C for more than 10 h. And the average mass loading ofelectrode is about 5 mg·cm?2. The AC electrodes were fabricatedusing same method except that Ketjen Black was selected asconductive carbon and the mass ratio of active material,conductive carbon and binder is 7 : 2 : 1.

    The three-electrode system was assembled using Na0.44MnO2or AC as working electrode, zinc foil as reference electrode andcounter electrode, 6 mol·L?1 NaOH as electrolyte at roomtemperature in air. The electrochemical properties of sodium ionbattery capacitors were evaluated in 2032-coin cells withNa0.44MnO2 as cathode, AC as anode, non-woven fabric asseparator, and 6 mol·L?1 NaOH as electrolyte at same conditionswith three-electrode system. The mass ratio of cathode andanode is about 1 : 0.9. The galvanostatic charge/dischargemeasurements are carried out using a LANDCT2001A (LandElectronic Co., Ltd., Wuhan, China). Cyclic voltammetry (CV)measurements were conducted on the AutoLab PGSTAT 128 N(Eco Chemie, Netherlands).

    3 Results and discussion

    The XRD pattern of Na0.44MnO2 powders synthesized via solgelmethod showed that the sample was crystallized in theorthorhombic structure (Pbam space group, JCPDS No. 27-0750) of the tunnel-type material (Fig. S1, SupportingInformation), in agreement with previous results 23,24. Themorphology of Na0.44MnO2 sample was characterized by SEM,TEM and High Resolution Transmission Electron Microscope(HRTEM). As shown in Fig. 1a,b, the sample is composed ofshort rod-like particles with a length range of 4–8 μm and widthchanging from 1 to 3 μm. The smaller length/width ratio isbeneficial for fast diffusion of sodium ion in crystal structure,which have been demonstrated by our previous work 22 and otherrelated reports 17,25. The TEM image in Fig. 1c shows rod-likestructure, which is consistent with the SEM results. The latticefringe with a spacing of 0.25 nm in HRTEM images (Fig. 1d) isclearly seen, corresponding to the (360) plane in theorthorhombic structure.

    The electrochemical properties of Na0.44MnO2 electrode weretested in 6 mol·L?1 NaOH solution. And CV profiles,galvanostatic charge-discharge profiles, rate capability and longtermcycling stability of Na0.44MnO2 cathode in the potentialrange of 1.1–1.95 V (vs. Zn/Zn2+) are indicated in Fig. 2. Fourpairs strong redox peaks (1.22/1.15, 1.44/1.38, 1.75/1.70 and1.95/1.92 V) and two pairs weak peaks (1.28/1.23, 1.83/1.80 V)were observed in CV curve (Fig. 2a), representing the differentinsertion/extraction processes of sodium ions into/from tunnelstructure. Symmetrical oxidation and reduction peaks reveal thelow electrochemical polarization of Na0.44MnO2 in alkalinesolution. The shape and relative position of CV peaks are prettyconsistent with those measured in nonaqueous electrolytes,implying the similar reaction mechanism in both electrolytes. Inaddition, at the current rate of 0.5C, the Na0.44MnO2 electrodecould release a reversible discharge capacity of 78.4 mAh·g?1(Fig. 2b), corresponding to the intercalation of 0.285 Na+ in eachNaxMnO2 molecule (0.22 lt; x lt; 0.66) 26,27. And some complexand inconspicuous voltage platforms in good agreement with theCV profiles were obtained. The initial Coulombic efficiency was86.9%, which probably attributed to some inescapable sidereaction in aqueous electrolyte at a low current density, such asoxygen evolution reaction on the surface of electrode and currentcollector. The discharge capacities of Na0.44MnO2 electrode atvarious current rates were also investigated and shown inFig. 2c. When the current density was increased to 1C, 2C, 5C,10C, 20C and 50C, the capacity of Na0.44MnO2 electrode was 74,70.8, 67.4, 62.1, 53.9, 48.4 and 43.7 mAh·g?1, respectively, andstill capable of maintaining above 40 mAh·g?1, which is higherthan that in the neutral electrolyte. The impressive rate capabilitycould be attributed to the intrinsically fast sodium ion transferkinetics in tunnel-type oxide and high ionic conductivity (~400mS·cm?1) in 6 mol·L?1 NaOH solution. In Fig. 2d, at the rate of10C, Na0.44MnO2 electrode can gain an excellent capacityretention of 95.1% with Coulombic efficiency approaching100% over 100 cycles. These favorable electrochemicalperformances make Na0.44MnO2 as a potential cathode materialfor high-performance ASIBC.

    Among those anode materials matched with alkalineelectrolyte, activated carbon (AC) is considered as one of thebest choices due to its superior cycling stability and wide varietyof raw materials. The electrochemical properties of AC anode in6 mol·L?1 NaOH were also studied using three-electrodemethods with zinc plates as both reference electrode and counterelectrode. Fig. 3a shows the CV curve of the AC electrode,exhibiting typical capacitive behavior in 6 mol·L?1 NaOHelectrolyte 28. The oxidative cutoff potential is limited to 1.1 V(vs. Zn/Zn2+) in view of the reductive cutoff potential ofNa0.44MnO2 cathode. The charge-discharge curves of the ACelectrode at 1C are displayed in Fig. 3b. Within the voltagewindow of 0.3-1.1 V, the AC electrode can release specificcapacity of 71.6 mAh·g?1, corresponding to a high specificcapacitance of 322.2 F·g?1, which is largely higher than that inneural electrolyte 16. The reversible capacity of AC electrodeunder different current densities was also tested. As shown in Fig. 3c, AC electrode delivered desirable rate capability with thereversible capacity of 73.1, 66.6, 62.8, 60.1 and 56.9 mAh·g?1 at1C, 2C, 5C, 10C and 20C. Even at a very high rate of 50C, thereversible capacity of 53.3 mAh·g?1 was reserved. When the current rate goes back to 1C, the capacity of 71.6 mAh·g?1 canbe restored, showing excellent rate capability andelectrochemical reversibility. The high performance of the ACelectrode is mainly due to the high ionic conductivity provided by alkaline electrolyte and the energy storage mechanism ofelectrical double-layer capacitor for the AC electrode 29.Similarly, the long-term cycling performance at the rate of 10Cis shown in Fig. 3d. It can be manifested that the AC electrodepossessed superior cyclic stability with a capacity retention of90.7% after 2000 cycles (reversible capacities for the 1st and2000th cycle is 64.6 and 58.6 mAh·g?1, respectively). Theexcellent electrochemical performance of the AC electrodeprovides a strong guarantee for the construction of high-energydensity,high-power and long-term-lifetime AC||Na0.44MnO2ASIBC.

    Based on the above discussion, both Na0.44MnO2 cathode andAC anode exhibit preeminent electrochemical performance,which inspires us to assemble a novel sodium ion batterycapacitorwith Na0.44MnO2 and AC. The typical CV curves ofthe AC||Na0.44MnO2 ASIBC are presented in Fig. 4a, and thecharge/discharge voltage range of AC||Na0.44MnO2 ASIBC iscontrolled between 0 and 1.65 V according to the working rangof cathode and anode (1.1–1.95 and 0.3–1.65 V, respectively). Itis well known that Na0.44MnO2 can only release 0.22Na+ duringthe first charge process, which means that a capacity of merely50 mAh·g?1 can be utilized in full cells. For example, in 6mol·L?1 NaOH, the initial charge capacity of Na0.44MnO2electrode is 44.1 mAh·g?1, but the discharge capacity reaches78.2 mAh·g?1, nearly two times of charge capacity (Fig. S2). Inorder to improve the available reversible capacity, someadditional procedures are needful, such as pre-cycling or presodiumwhich would increase manufacturing cost of Na0.44MnO2. As for the AC anode, the irreversible absorptionoccurs on AC at the first cycle would consume extra sodium ionsfrom cathode (Fig. S3), thus leading to an extremely low initialCoulombic efficiency (ICE). Obviously, the low initial chargecapacity for Na0.44MnO2 cathode and low initial Coulombicefficiency for AC anode are major obstacles for theirapplications. Fortunately, these problems could be perfectlyresolved by overcharging AC||Na0.44MnO2 full cell upon initialcharge process in alkaline electrolyte. The first charge curves ofsodium ion battery capacitor are shown in Fig. 4b. The initialcharge process could be divided into two steps: open-circuitvoltage to 1.25 V, and 1.25 to 1.6 V. For the first stage, sodiumions deintercalate from tunnel structure of Na0.44MnO2 cathodeand sodium ions in the electrolyte are absorbed on the surface ofAC anode simultaneously (Fig. 4c). Through the calculation ofcharge capacity in this stage (51.4 mAh·g?1 for Na0.44MnO2),approximately 0.19Na+ extracted from the tunnel structure. Onbasis of the mass ratio of cathode and anode (1 : 0.9), thesolidated anode can be written as Na0.026C. Thus, theelectrochemical reactions of this charge step can be formulatedas follows:

    Positive: Na0.475MnO2 ? 0.19Na+ ? 0.19e? = Na0.285MnO2

    Negative: 7.34C + 0.19Na+ + 0.19e? = 7.34Na0.026C

    For the second stage, the drastic oxygen evolution reactionemerges around cathode, and AC anode continued absorbingsodium ions (Fig. 4c). Based on the charge capacity of 63.4mAh·g?1 for Na0.44MnO2 in this region, the electrochemicalreaction in second stage may be described as follows:

    Positive: 0.23OH? ? 0.23e? = 0.0575O2 + 0.115H2O

    Negative: 7.34Na0.026C + 0.23Na+ + 0.23e? = 7.34Na0.057C

    From the above description of the electrochemical mechanismof AC||Na0.44MnO2, it can be clearly seen that the in situelectrochemical pre-activation process can easily resolve thematching problem between Na0.44MnO2 cathode and AC anode.Interestingly, the overcharging oxygen evolution mechanism ofNa0.44MnO2 cathode can provide self-protection function in thealkaline electrolyte because the oxygen generated can beefficiently reduced at the negative side, which is similar to that demonstrated in Cd//Ni and MH/Ni batteries 30,31.

    Undoubtedly, oxygen evolution reaction disappeared afterinitial cycle because the Na+ ion amount of Na0.44MnO2electrode can be supplemented in the discharging process, whichcould be confirmed by incremental CE in subsequent chargingand discharging curves (Fig. 4d and the inset picture). Fig. 4eshows typical charge-discharge curves of AC||Na0.44MnO2ASIBC at 1C in the voltage range of 0–1.65 V. TheAC||Na0.44MnO2 ASIBC delivered a reversible capacity of 70.5mAh·g?1 (based on the mass of Na0.44MnO2). The rateperformance of full cell was also evaluated to explore itsfeasibility for high power applications (Fig. 4f). The reversiblecapacities can reach 71.8, 65.9, 61.3, 57.7, 53.8 and 49.4mAh·g?1 at 1C, 2C, 5C, 10C, 20C, and 50C, respectively. Mostimportantly, when the current rate went back to 1C, thereversible capacity swiftly returned to 71.6 mAh·g?1 (nearly100% capacity recovery), showing a strong tolerance for fastsodium ion storage. Moreover, the full cell also exhibitedtremendous cycling stability with a capacity retention of 89%after 10000 cycles at the current rate of 10C (Fig. 5a). Theaverage Coulombic efficiency maintained above 99% all along,indicative of a highly reversible Na-ion transfer between cathodeand anode. Ragone plots of AC||Na0.44MnO2 ASIBC are shownin Fig. 5b. The power density and energy density can becalculated according to Pm = Im × U-, and Wm = Cm × U- . U- isthe average discharge voltage, Im is the current density, andCm refers to the capacity calculated based on the total weight ofcathode and anode. At a power density of 85 W·kg?1, an energydensity of 26.6 Wh·kg?1 could be obtained. When the powerdensity reaches 4.2 kW·kg?1, it still remains an energy density of18.0 Wh·kg?1. Compared with other aqueous Mn-based systems,AC||Na0.44MnO2 ASIBC is fairly competitive in energy densityand cyclic stability (Table 1).

    In order to further meet the requirement of practicalapplications, we evaluated the electrochemical performance ofthe AC||Na0.44MnO2 ASIBC at ?20 and 50 °C. The ratecapability under ?20, 25 and 50 °C is illustrated in Fig. 6a. At?20 °C, the discharge capacity of the AC||Na0.44MnO2 ASIBC reached 30.7, 27.7, 22.2, 17.8, and 14.5 mAh·g?1 at 1C, 2C, 5C,10C, and 20C, respectively. At 50 °C, the AC||Na0.44MnO2ASIBC exhibited higher rate capacities (42.7, 41.7, 38.9, 36.2and 32.2 mAh·g?1 at 1C, 2C, 5C, 10C, and 20C, respectively)due to faster sodium dynamics in electrode material, electrolyte,and electrode-electrolyte interface. When current rate returnedto 1C, the origin discharge capacities for three AC||Na0.44MnO2ASIBCs can be recovered, indicating outstandingelectrochemical reversibility. Additionally, the AC||Na0.44MnO2ASIBCs at ?20, 25 and 50 °C also showed excellent cyclingperformance with no obvious capacity fading within 150 cycles(Fig. 6b). The wide operating temperature range may expand theapplication fields of AC||Na0.44MnO2 ASIBC.

    4 Conclusions

    In this work, we designed an alkaline sodium ion batterycapacitorwith Na0.44MnO2 cathode, AC anode, 6 mol·L?1 NaOHelectrolyte and investigated its electrochemical performance.The available capacity of Na0.44MnO2 in half cell largelyincreased from ~40 mAh·g?1 (neutral electrolyte) to 77.3mAh·g?1 (alkaline electrolyte) due to broadened Na+intercalation potential region. Thus, the fabricatedAC||Na0.44MnO2 ASIBC exhibited exceptional electrochemicalproperties with a high energy density of 26.6 Wh·kg?1 at a powerdensity of 85 W·kg?1, superior cycling stability of 89% capacityretention over 10,000 cycles and high-power capability, whichorigins from the use of alkaline electrolyte. Not only that, theadvantages of the alkaline electrolyte for the AC||Na0.44MnO2ASIBC are also reflected in the following aspects: (1) throughthe in situ electrochemical pre-activation process, theovercharging oxygen evolution reaction during first chargingprocess can balance the adverse effects of the half-sodiumNa0.44MnO2 cathode and low-ICE AC anode on the energydensity of full cell; (2) the overcharging self-protection functioncan promote the generated oxygen to be eliminated at anodeduring overcharging, which improves the system safety; (3) thelow-cost materials in alkaline environment can be scaled up toconstruct AC||Na0.44MnO2 ASIBC. In addition, theAC||Na0.44MnO2 ASIBC also possesses wide operatingtemperature range, achieving satisfied electrochemicalperformance at a high temperature of 50 °C and a lowtemperature of ?20 °C. Considering the merits of low-cost, highsafety, no toxicity and environment-friendly, AC||Na0.44MnO2ASIBC has good application prospects in the field of large-scaleenergy storage.

    Author Contributions: Conceptualization, Z.C. and Y.C.;Methodology, Q.X., S.L. and Y.Z.; Validation, Q.X., P.S. andL.X.; Formal Analysis, Q.X., Z.L., B.Z. and H.L.; Investigation,Q.X., B.W. and L.Y.; Resources, Z.C. and Y.C.; Data Curation,Q.X. and Y.Z.; Writing-Original Draft Preparation, Q.X., Y.Z.and Z.C.; Writing-Review amp; Editing, Y.Z., Z.C. and Y.C.;Supervision, Z.C. and Y.C.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Cao, Y.; Li, M.; Lu, J.; Liu, J.; Amine, K. Nat. Nanotechnol. 2019, 14,200. doi: 10.1038/s41565-019-0371-8

    (2) Cao, W.; Zhang, J.; Li, H. Energy Stor. Mater. 2020, 26, 46.doi: 10.1016/j.ensm.2019.12.024

    (3) Niu, Y.; Zhao, Y.; Xu, M. Carbon Neutralization 2023, 2, 15.doi: 10.1002/cnl2.4

    (4) Li, J.; Hu, H.; Wang, J.; Xiao, X. Carbon Neutralization 2022, 1, 96.doi: 10.1002/cnl2.19

    (5) Simon, P.; Gogotsi, Y. Nat. Mater. 2020, 19, 1151.doi: 10.1038/s41563-020-0747-z

    (6) Pu, X.; Zhao, D.; Fu, C.; Chen, Z.; Cao, S.; Wang, C.; Cao, Y. Angew.Chem. Int. Ed. 2021, 60, 21310. doi: 10.1002/anie.202104167

    (7) Rajalekshmi, A.; Divya, M.; Lee, Y.; Aravindan, V. Battery Energy2022, 1, 2021000. doi: 10.1002/BTE2.202100

    (8) Ding, J.; Hu, W.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457.doi: 10.1021/acs.chemrev.8b00116

    (9) Gu, C.; Liu, Z.; Gao, X.; Zhang, Q.; Zhang, Z.; Liu, Z.; Wang, C.Battery Energy 2022, 1, 20220031. doi: 10.1002/bte2.20220031

    (10) Guo, N.; Zhang, S.; Wang, L.; Jia, D. Acta Phys. -Chim. Sin. 2020,36, 1903055. [郭楠楠, 張?zhí)K, 王魯香, 賈殿贈. 物理化學(xué)學(xué)報,2020, 36, 1903055.] doi: 10.3866/PKU.WHXB201903055

    (11) Yang, Q.; Cui, S.; Ge, Y.; Tang, Z.; Liu, Z.; Li, H.; Li, N.; Zhang, H.;Liang, J.; Zhi, C. Nano Energy 2018, 50, 623.doi: 10.1016/j.nanoen.2018.06.017

    (12) Wu, Y.; Sun, Y.; Tong, Y.; Liu, X.; Zheng, J.; Han, D.; Li, H.; Niu, L.Energy Stor. Mater. 2021, 41, 108. doi: 10.1016/j.ensm.2021.05.045

    (13) Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.;Yang, Z.; Liu, J. Adv. Mater. 2011, 23, 3155.doi: 10.1002/adma.201100904

    (14) Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACSAppl. Mater. Interfaces 2018, 10, 11689.doi: 10.1021/acsami.8b00478

    (15) Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao,Y. Small 2019, 15, 1805427. doi: 10.1002/smll.201805427

    (16) Whitacre, J.; Tevar, A.; Sharma, S. Electrochem. Commun. 2010, 12,463. doi: 10.1016/j.elecom.2010.01.020

    (17) Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.;Hu, Y.-S.; Yang, W. Nat. Commun. 2015, 6, 6401.doi: 10.1038/ncomms7401

    (18) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2020, 36,1905027. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2020, 36, 1905027.]doi: 10.3866/PKU.WHXB201905027

    (19) Li, H.; Liu, S.; Yuan, T.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Chen, Z.; et al. Acta Phys. -Chim. Sin. 2021, 37,1907049. [李慧, 劉雙宇, 袁天賜, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 陳重學(xué), 等. 物理化學(xué)學(xué)報, 2021, 37, 1907049.]doi: 10.3866/PKU.WHXB201907049

    (20) Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Small Methods2019, 3, 1800272. doi: 10.1002/smtd.201800272

    (21) Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L.; Wang, Y.; Wang, C.; Xia,Y. Adv. Energy Mater. 2018, 8, 1703008.doi: 10.1002/aenm.201703008

    (22) Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.;Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10,34108. doi: 10.1021/acsami.8b08297

    (23) Li, H.; Liu, S.; Wang, H.; Wang, B.; Sheng, P.; Xu, L.; Zhao, G.; Bai,H.; Chen, X.; Cao, Y.; Chen, Z. Acta Phys. -Chim. Sin. 2019, 35,1357. [李慧, 劉雙宇, 汪慧明, 王博, 盛鵬, 徐麗, 趙廣耀, 白會濤, 陳新, 曹余良, 陳重學(xué). 物理化學(xué)學(xué)報, 2019, 35, 1357.]doi: 10.3866/PKU.WHXB201902021

    (24) Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Adv.Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598

    (25) He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan,M. C.; Liu, H.; Gallash, T. Nano Energy 2016, 27, 602.doi: 10.1016/j.nanoen.2016.07.021

    (26) Sauvage, F.; Laffont, L.; Tarascon, J.-M.; Baudrin, E. Inorg. Chem.2007, 46, 3289. doi: 10.1021/ic0700250

    (27) Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102.doi: 10.1016/j.jpowsour.2016.01.101

    (28) Boujibar, O.; Ghamouss, F.; Ghosh, A.; Achak, O.; Chafik, T.J. Power Sources 2019, 436, 226882.doi: 10.1016/j.jpowsour.2019.226882

    (29) Zhao, X.; Cai, W.; Yang, Y.; Song, X.; Neale, Z.; Wang, H.-E.; Sui, J.;Cao, G. Nano Energy 2018, 47, 224.doi: 10.1016/j.nanoen.2018.03.002

    (30) Cha, C.; Yu, J.; Zhang, J. J. Power Sources 2004, 129, 347.doi: 10.1016/j.jpowsour.2003.11.043

    (31) Martinet, S.; Durand, R.; Ozil, P.; Leblanc, P.; Blanchard, P.J. Power Sources 1999, 83, 93. doi: 10.1016/S0378-7753(99)00272-4

    (32) Qu, Q.; Shi, Y.; Tian, S.; Chen, Y.; Wu, Y.; Holze, R. J. PowerSources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068

    (33) Zhang, B.; Liu, Y.; Chang, Z.; Yang, Y.; Wen, Z.; Wu, Y.; Holze, R.J. Power Sources 2014, 253, 98.doi: 10.1016/j.jpowsour.2013.12.011

    (34) Lim, H.; Jung, J. H.; Park, Y. M.; Lee, H.-N.; Kim, H.-J. Appl. Surf.Sci. 2018, 446, 131. doi: 10.1016/j.apsusc.2018.02.021

    (35) Wu, W.; Shabhag, S.; Chang, J.; Rutt, A.; Whitacre, J. F.J. Electrochem. Soc. 2015, 162, A803. doi: 10.1149/2.0121506jes

    國家電網(wǎng)公司科技計劃(5500-202158251A-0-0-00)資助項目

    猜你喜歡
    低成本
    大氣顆粒物源識別在線分析儀的開發(fā)及應(yīng)用
    城市電視臺要辦“特色綜藝”
    記者搖籃(2016年11期)2017-01-12 14:01:53
    初中物理低成本實驗資源的開發(fā)和利用
    未來英才(2016年3期)2016-12-26 10:03:57
    高效低成本的單晶N型太陽電池加工工藝的應(yīng)用
    實現(xiàn)園林管理低成本的對策和建議
    基于SOC的智能野外目標監(jiān)視和記錄系統(tǒng)設(shè)計與實現(xiàn)
    基于微波物理熱效應(yīng)的高壓電線除冰裝置方案設(shè)計
    科技視界(2016年2期)2016-03-30 13:05:46
    Y不銹鋼絲有限公司低成本SWOT分析
    商(2016年3期)2016-03-11 09:48:58
    低成本通用型液壓夾具的設(shè)計及推廣
    科學(xué)家(2015年9期)2015-10-29 15:37:18
    亚洲国产毛片av蜜桃av| 久久国产亚洲av麻豆专区| 久久 成人 亚洲| 狠狠婷婷综合久久久久久88av| 久久久久网色| 91精品国产国语对白视频| 99久久综合免费| 97精品久久久久久久久久精品| 国产亚洲av片在线观看秒播厂| 日本黄色日本黄色录像| 91国产中文字幕| 一级片'在线观看视频| 国产视频首页在线观看| e午夜精品久久久久久久| 欧美日韩成人在线一区二区| 天天添夜夜摸| 日韩一卡2卡3卡4卡2021年| av.在线天堂| 中文欧美无线码| 亚洲国产中文字幕在线视频| 国产精品熟女久久久久浪| av线在线观看网站| 亚洲久久久国产精品| 日韩人妻精品一区2区三区| 色吧在线观看| av电影中文网址| 亚洲精品在线美女| 亚洲在久久综合| 色精品久久人妻99蜜桃| 美女扒开内裤让男人捅视频| 亚洲一区中文字幕在线| 国产精品香港三级国产av潘金莲 | av在线观看视频网站免费| 午夜激情久久久久久久| 不卡av一区二区三区| 老汉色∧v一级毛片| 亚洲精品一二三| 亚洲av日韩在线播放| 桃花免费在线播放| 亚洲自偷自拍图片 自拍| 亚洲精品国产av蜜桃| 久久av网站| 天天操日日干夜夜撸| 色吧在线观看| 亚洲精品日本国产第一区| 国产亚洲精品第一综合不卡| 老司机影院毛片| 欧美日韩一级在线毛片| 久久韩国三级中文字幕| 亚洲av在线观看美女高潮| 看免费成人av毛片| 日韩精品有码人妻一区| 好男人视频免费观看在线| 久久久久久久国产电影| 国产欧美亚洲国产| 人人妻人人澡人人看| 日本av手机在线免费观看| 建设人人有责人人尽责人人享有的| 欧美黑人精品巨大| 亚洲精品日韩在线中文字幕| 国产一区二区 视频在线| 亚洲精品第二区| 在线观看免费视频网站a站| 成年美女黄网站色视频大全免费| 色吧在线观看| 一边摸一边抽搐一进一出视频| 国产精品麻豆人妻色哟哟久久| 免费高清在线观看日韩| 日韩大片免费观看网站| 美女国产高潮福利片在线看| 在线亚洲精品国产二区图片欧美| 日韩精品免费视频一区二区三区| av线在线观看网站| 国产野战对白在线观看| 九色亚洲精品在线播放| 丝袜在线中文字幕| 午夜精品国产一区二区电影| 日韩 欧美 亚洲 中文字幕| 成年美女黄网站色视频大全免费| 午夜久久久在线观看| 国产老妇伦熟女老妇高清| 国产精品久久久av美女十八| 久久久久久久久久久久大奶| 亚洲国产精品一区三区| 亚洲专区中文字幕在线 | 天天躁日日躁夜夜躁夜夜| www.自偷自拍.com| 国产有黄有色有爽视频| 亚洲欧洲国产日韩| 在线观看国产h片| 国产精品欧美亚洲77777| 自拍欧美九色日韩亚洲蝌蚪91| 欧美少妇被猛烈插入视频| 欧美日韩视频高清一区二区三区二| 男女高潮啪啪啪动态图| 久久精品久久精品一区二区三区| 咕卡用的链子| 国产乱来视频区| 精品国产一区二区三区四区第35| 婷婷色麻豆天堂久久| 成人影院久久| 女的被弄到高潮叫床怎么办| 成人亚洲欧美一区二区av| 少妇人妻久久综合中文| 在线 av 中文字幕| 国产不卡av网站在线观看| 十八禁人妻一区二区| 中国国产av一级| 亚洲成人一二三区av| 亚洲成av片中文字幕在线观看| 街头女战士在线观看网站| 91老司机精品| 晚上一个人看的免费电影| 久久鲁丝午夜福利片| 中文字幕人妻熟女乱码| 亚洲成人手机| 精品一区二区三卡| 91aial.com中文字幕在线观看| 日本av手机在线免费观看| 飞空精品影院首页| 女人久久www免费人成看片| 日本wwww免费看| 99九九在线精品视频| 新久久久久国产一级毛片| 99国产综合亚洲精品| 一本—道久久a久久精品蜜桃钙片| 高清欧美精品videossex| 国产成人系列免费观看| 大香蕉久久成人网| 久久久久久久精品精品| av在线老鸭窝| 超色免费av| 黄色怎么调成土黄色| 中文字幕制服av| 国产高清不卡午夜福利| 午夜久久久在线观看| 国产黄色视频一区二区在线观看| 在线观看人妻少妇| 国产一区二区激情短视频 | 亚洲精品国产色婷婷电影| 99九九在线精品视频| 少妇被粗大猛烈的视频| 最新在线观看一区二区三区 | 色吧在线观看| 日韩中文字幕欧美一区二区 | 国产一区二区三区av在线| 国产成人免费无遮挡视频| 九九爱精品视频在线观看| 丝袜美腿诱惑在线| 搡老乐熟女国产| 婷婷色av中文字幕| 久久久国产精品麻豆| 色吧在线观看| 亚洲欧美一区二区三区国产| 久久久国产精品麻豆| 亚洲美女视频黄频| 国产精品女同一区二区软件| 在现免费观看毛片| 亚洲av综合色区一区| 欧美在线黄色| 免费高清在线观看日韩| 香蕉国产在线看| 夫妻午夜视频| 日韩一区二区三区影片| 老司机影院毛片| 午夜激情久久久久久久| 亚洲三区欧美一区| 精品国产一区二区三区久久久樱花| 亚洲国产欧美在线一区| 免费看av在线观看网站| 免费女性裸体啪啪无遮挡网站| xxx大片免费视频| 国语对白做爰xxxⅹ性视频网站| 国产精品免费视频内射| 18禁裸乳无遮挡动漫免费视频| 最近中文字幕高清免费大全6| 亚洲一区中文字幕在线| 亚洲av成人不卡在线观看播放网 | 亚洲国产av影院在线观看| 我的亚洲天堂| 亚洲精品第二区| 久久婷婷青草| 精品国产乱码久久久久久小说| 夜夜骑夜夜射夜夜干| 午夜免费观看性视频| 街头女战士在线观看网站| 99久久99久久久精品蜜桃| 亚洲国产看品久久| 99热国产这里只有精品6| 国产精品久久久久成人av| 国产一卡二卡三卡精品 | 麻豆乱淫一区二区| 精品国产乱码久久久久久男人| 丰满乱子伦码专区| 国产成人欧美| 人成视频在线观看免费观看| 在线观看免费高清a一片| 天天影视国产精品| 观看av在线不卡| 婷婷色综合www| 国产精品国产av在线观看| avwww免费| av.在线天堂| √禁漫天堂资源中文www| 999精品在线视频| 99国产综合亚洲精品| 久久久精品94久久精品| 男女午夜视频在线观看| 国产精品无大码| 美国免费a级毛片| 亚洲视频免费观看视频| 爱豆传媒免费全集在线观看| 亚洲欧美激情在线| 天堂中文最新版在线下载| 黑人欧美特级aaaaaa片| 日本欧美视频一区| 亚洲欧美成人综合另类久久久| 国产老妇伦熟女老妇高清| 丝袜喷水一区| 高清黄色对白视频在线免费看| 国产精品成人在线| 爱豆传媒免费全集在线观看| 国产成人免费无遮挡视频| 18禁动态无遮挡网站| 精品少妇黑人巨大在线播放| 欧美亚洲 丝袜 人妻 在线| 国产激情久久老熟女| 中文乱码字字幕精品一区二区三区| 深夜精品福利| 如日韩欧美国产精品一区二区三区| 伦理电影免费视频| a 毛片基地| 日本91视频免费播放| 国产av精品麻豆| 久久久精品国产亚洲av高清涩受| 亚洲 欧美一区二区三区| 亚洲av综合色区一区| 国产成人一区二区在线| 日韩人妻精品一区2区三区| 久久ye,这里只有精品| 久久精品久久久久久久性| 中文字幕人妻丝袜制服| 黄色毛片三级朝国网站| 亚洲成人国产一区在线观看 | 亚洲精品久久午夜乱码| av国产久精品久网站免费入址| 99久久综合免费| 亚洲欧美日韩另类电影网站| 欧美97在线视频| 另类亚洲欧美激情| 亚洲av日韩在线播放| 亚洲美女黄色视频免费看| 熟女少妇亚洲综合色aaa.| 狂野欧美激情性bbbbbb| 欧美最新免费一区二区三区| 久久99热这里只频精品6学生| 一级爰片在线观看| 国产精品一国产av| 在线 av 中文字幕| 国产成人一区二区在线| 欧美日韩一级在线毛片| 日日爽夜夜爽网站| 18禁动态无遮挡网站| 日本黄色日本黄色录像| 日本午夜av视频| 国产av国产精品国产| 如何舔出高潮| 欧美激情极品国产一区二区三区| 亚洲美女视频黄频| 大片免费播放器 马上看| 亚洲少妇的诱惑av| 午夜福利,免费看| 最近手机中文字幕大全| 中文字幕制服av| 国产一区二区激情短视频 | 99久国产av精品国产电影| 在线观看一区二区三区激情| 精品国产露脸久久av麻豆| 中国三级夫妇交换| 亚洲国产精品成人久久小说| 中文字幕另类日韩欧美亚洲嫩草| 久久韩国三级中文字幕| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 国产一级毛片在线| 汤姆久久久久久久影院中文字幕| 大片免费播放器 马上看| av在线app专区| 91国产中文字幕| a级毛片黄视频| 波野结衣二区三区在线| av国产精品久久久久影院| 精品一品国产午夜福利视频| 一本色道久久久久久精品综合| 晚上一个人看的免费电影| 一级片免费观看大全| 人妻人人澡人人爽人人| 欧美最新免费一区二区三区| 国产1区2区3区精品| 久久毛片免费看一区二区三区| 七月丁香在线播放| 晚上一个人看的免费电影| 亚洲精品日韩在线中文字幕| 亚洲自偷自拍图片 自拍| 久久鲁丝午夜福利片| 欧美精品av麻豆av| 日韩一区二区视频免费看| 日本vs欧美在线观看视频| 999精品在线视频| 亚洲激情五月婷婷啪啪| 国产 精品1| 国产av码专区亚洲av| 国精品久久久久久国模美| 亚洲精华国产精华液的使用体验| 免费av中文字幕在线| 一级爰片在线观看| 亚洲成国产人片在线观看| 伊人久久大香线蕉亚洲五| 国产黄频视频在线观看| 国产乱来视频区| 欧美精品一区二区大全| 国产精品久久久久成人av| 色94色欧美一区二区| 综合色丁香网| 中文字幕人妻丝袜一区二区 | 人人妻人人爽人人添夜夜欢视频| 国产人伦9x9x在线观看| 国产精品国产av在线观看| 午夜激情久久久久久久| 美女午夜性视频免费| 一级毛片 在线播放| 18禁动态无遮挡网站| 91国产中文字幕| 亚洲五月色婷婷综合| 国产女主播在线喷水免费视频网站| 精品久久久精品久久久| 亚洲av电影在线进入| 亚洲,一卡二卡三卡| 人人妻人人爽人人添夜夜欢视频| 激情五月婷婷亚洲| 人妻 亚洲 视频| 中文精品一卡2卡3卡4更新| 新久久久久国产一级毛片| 又大又黄又爽视频免费| 久久人人97超碰香蕉20202| 制服诱惑二区| 国产无遮挡羞羞视频在线观看| 天天躁夜夜躁狠狠久久av| 在现免费观看毛片| 男女下面插进去视频免费观看| 精品卡一卡二卡四卡免费| 国产一区二区激情短视频 | 午夜久久久在线观看| 国产日韩欧美在线精品| 国产男人的电影天堂91| 美女中出高潮动态图| 国产97色在线日韩免费| 十八禁高潮呻吟视频| 亚洲欧美成人综合另类久久久| 国产精品蜜桃在线观看| 99热国产这里只有精品6| 国产成人欧美| 精品国产乱码久久久久久小说| 999精品在线视频| 中文欧美无线码| 青春草国产在线视频| 久久久亚洲精品成人影院| www日本在线高清视频| 国产av码专区亚洲av| netflix在线观看网站| 大香蕉久久网| 男男h啪啪无遮挡| 五月开心婷婷网| 看免费av毛片| 国产精品.久久久| 久久97久久精品| 日韩,欧美,国产一区二区三区| 国产一区二区 视频在线| 18禁国产床啪视频网站| 91老司机精品| 九草在线视频观看| 大片免费播放器 马上看| 看十八女毛片水多多多| 嫩草影院入口| 国产熟女欧美一区二区| 免费日韩欧美在线观看| 成人毛片60女人毛片免费| av不卡在线播放| 你懂的网址亚洲精品在线观看| 国产在视频线精品| 制服丝袜香蕉在线| www日本在线高清视频| 国产免费福利视频在线观看| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 老司机亚洲免费影院| 亚洲人成77777在线视频| 国产精品欧美亚洲77777| 免费少妇av软件| av网站在线播放免费| 男女无遮挡免费网站观看| 99热网站在线观看| 一边摸一边做爽爽视频免费| 一级毛片黄色毛片免费观看视频| 亚洲美女视频黄频| 精品一区在线观看国产| 97在线人人人人妻| 十八禁人妻一区二区| 婷婷色综合www| 亚洲久久久国产精品| 搡老乐熟女国产| 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片| 纯流量卡能插随身wifi吗| 久久99一区二区三区| 99久久99久久久精品蜜桃| 免费在线观看完整版高清| 免费久久久久久久精品成人欧美视频| 亚洲国产精品国产精品| 别揉我奶头~嗯~啊~动态视频 | 日本一区二区免费在线视频| 建设人人有责人人尽责人人享有的| 国产精品 国内视频| 午夜激情av网站| 国产成人精品久久二区二区91 | 久久久久久久大尺度免费视频| 国产成人精品无人区| 日日摸夜夜添夜夜爱| 80岁老熟妇乱子伦牲交| 国产97色在线日韩免费| 日韩一区二区三区影片| 国产精品嫩草影院av在线观看| 波多野结衣av一区二区av| 亚洲精品aⅴ在线观看| 日本av手机在线免费观看| 热re99久久国产66热| 少妇被粗大的猛进出69影院| 一本—道久久a久久精品蜜桃钙片| 18禁观看日本| 日韩大片免费观看网站| 午夜免费观看性视频| 久久影院123| 国产在线视频一区二区| 日韩欧美精品免费久久| 欧美在线一区亚洲| 在线观看www视频免费| 99香蕉大伊视频| 精品亚洲乱码少妇综合久久| 大码成人一级视频| 在线观看免费视频网站a站| 在线观看国产h片| 捣出白浆h1v1| 美国免费a级毛片| 国产成人精品无人区| 亚洲欧美日韩另类电影网站| 最黄视频免费看| 涩涩av久久男人的天堂| 日韩av免费高清视频| 亚洲精品一二三| 国产在线一区二区三区精| 大话2 男鬼变身卡| 精品久久久精品久久久| 成人免费观看视频高清| 国精品久久久久久国模美| 亚洲精品美女久久久久99蜜臀 | 国语对白做爰xxxⅹ性视频网站| 满18在线观看网站| 国产乱来视频区| 少妇被粗大猛烈的视频| 国产精品久久久av美女十八| 搡老乐熟女国产| www.av在线官网国产| av电影中文网址| 伊人亚洲综合成人网| 热re99久久精品国产66热6| 亚洲欧洲国产日韩| 天天影视国产精品| 久久影院123| 国产精品.久久久| 免费在线观看视频国产中文字幕亚洲 | av国产精品久久久久影院| 国产男女超爽视频在线观看| 国产片特级美女逼逼视频| 国产精品国产三级专区第一集| 纯流量卡能插随身wifi吗| 国产精品亚洲av一区麻豆 | 日本爱情动作片www.在线观看| 夫妻性生交免费视频一级片| 男人爽女人下面视频在线观看| 日韩大码丰满熟妇| 亚洲av成人不卡在线观看播放网 | 国产欧美日韩综合在线一区二区| 欧美av亚洲av综合av国产av | 五月开心婷婷网| 免费在线观看视频国产中文字幕亚洲 | 日本欧美视频一区| 黑人欧美特级aaaaaa片| 色网站视频免费| 欧美精品亚洲一区二区| 在线观看免费午夜福利视频| 国产深夜福利视频在线观看| 亚洲欧美成人综合另类久久久| 777久久人妻少妇嫩草av网站| 黑人巨大精品欧美一区二区蜜桃| 久久性视频一级片| 国产无遮挡羞羞视频在线观看| 久久久亚洲精品成人影院| 国产片特级美女逼逼视频| 亚洲精品aⅴ在线观看| 欧美日韩av久久| 亚洲一区二区三区欧美精品| 国产亚洲av高清不卡| 最新的欧美精品一区二区| 日韩一区二区三区影片| 电影成人av| 亚洲精品第二区| 这个男人来自地球电影免费观看 | 五月开心婷婷网| 嫩草影院入口| 99国产综合亚洲精品| 亚洲精品国产av成人精品| 天天添夜夜摸| 国产在视频线精品| 免费女性裸体啪啪无遮挡网站| 亚洲四区av| 久久久久久久久久久久大奶| 99久国产av精品国产电影| a级毛片在线看网站| 建设人人有责人人尽责人人享有的| 国产精品一国产av| 自线自在国产av| 亚洲成国产人片在线观看| 日韩精品免费视频一区二区三区| 伦理电影免费视频| 精品人妻熟女毛片av久久网站| 我的亚洲天堂| 90打野战视频偷拍视频| 国产免费一区二区三区四区乱码| 色网站视频免费| 最近手机中文字幕大全| av网站免费在线观看视频| 亚洲三区欧美一区| 男人操女人黄网站| 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片| avwww免费| 黑人欧美特级aaaaaa片| 国产欧美亚洲国产| 亚洲欧美一区二区三区久久| 久久人妻熟女aⅴ| 亚洲欧美清纯卡通| 亚洲一码二码三码区别大吗| 少妇人妻精品综合一区二区| 麻豆av在线久日| 妹子高潮喷水视频| 国产精品无大码| 成年av动漫网址| 爱豆传媒免费全集在线观看| 在线观看免费视频网站a站| 欧美另类一区| 免费在线观看完整版高清| 色视频在线一区二区三区| 欧美日本中文国产一区发布| 嫩草影院入口| 中文字幕人妻丝袜制服| a级毛片黄视频| 麻豆av在线久日| 国产精品一二三区在线看| 久久精品亚洲av国产电影网| 国产乱来视频区| 亚洲熟女精品中文字幕| 狠狠精品人妻久久久久久综合| 亚洲伊人久久精品综合| 亚洲av成人不卡在线观看播放网 | 精品视频人人做人人爽| 精品一区在线观看国产| 人妻一区二区av| 国精品久久久久久国模美| 亚洲av电影在线进入| 亚洲自偷自拍图片 自拍| 国产福利在线免费观看视频| 国产片特级美女逼逼视频| 1024视频免费在线观看| 国产亚洲一区二区精品| 少妇被粗大猛烈的视频| 精品亚洲成a人片在线观看| av又黄又爽大尺度在线免费看| 日韩欧美一区视频在线观看| 一二三四中文在线观看免费高清| 久久天躁狠狠躁夜夜2o2o | 色网站视频免费| 另类精品久久| 国产男女内射视频| 亚洲av日韩精品久久久久久密 | 欧美日韩亚洲高清精品| svipshipincom国产片| 天天添夜夜摸| 婷婷成人精品国产| 国产男女内射视频| 国产高清不卡午夜福利| 超碰97精品在线观看| 美女扒开内裤让男人捅视频| 午夜福利在线免费观看网站| 国产精品一二三区在线看| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久久久久免费av| 一区二区三区激情视频| xxx大片免费视频| 黄色视频不卡| 超碰成人久久| 欧美日韩成人在线一区二区| 久久久久久久大尺度免费视频| 啦啦啦 在线观看视频| 操出白浆在线播放| 韩国精品一区二区三区|