• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一個三維系統(tǒng)的音叉分岔

    2020-09-23 00:53:22楊檸瑋
    關(guān)鍵詞:音叉四川大學(xué)成都

    楊檸瑋

    (四川大學(xué)數(shù)學(xué)學(xué)院,成都 610064)

    1 Introduction

    Three-dimensional differential systems are investigated widely because of their plentiful dynamical phenomenon. In 1963 Lorenz[1]found the first chaotic attractor in a three dimensional system. From then on,various three-dimensional systems,such as R?ssler system,Chen system,Lü system,Liu system,Bao system,Pehlivan system,Jafari system and Sampath system[2-9]etc,have been proposed.

    In Ref.[10],Qietal. considered a three-dimensional nonlinear system,in which each equation contains a single quadratic cross-product term,which is described as

    (1)

    In this paper,we continue to study the pitchfork bifurcations in System (1) and consider thatcchanges near 1 and no mattera>1 ora≤1. Our main method is to use the parameter partition determined by the number of equilibria,which is essentially different from the center manifold method used in Ref.[11].

    2 The pitchfork bifurcations

    Let

    Lemma 2.1(i) System (1) has five equilibriaE0,E1,E2,E3,E4if and only if (a,b,c)∈Λ1;

    (ii) System (1) has three equilibriaE0,E1,E2,if and only if (a,b,c)∈Λ2∪Λ4;

    (iii) System (1) has a unique equilibriumE0if and only if (a,b,c)∈Λ3∪Λ5∪Λ6,

    hereE0,E1,...,E4lie at (0,0,0),(x1,y1,z1),(-x1,-y1,z1),(x2,y2,z2),(-x2,-y2,z2) respectively,and

    (2)

    ProofBy solving

    we get that

    y=bcx/(x2+b),z=cx2/(x2+b)

    (3)

    andxsatisfies

    ax5+(2ab-abc-bc2)x3+(ab2-ab2c)x=0

    (4)

    Obviously,x=0 is one root of (4) and all nonzero roots satisfy

    ax4+(2ab-abc-bc2)x2+ab2-ab2c=0

    (5)

    In the following,all possible cases are considered.

    (i) Ife>0,d-e>0,i.e.,(a,b,c)∈Λ1,then (5) has four distinct nonzero real rootsx1,x2,-x1,-x2,given in (2). Correspondingly,we gety1,y2,-y1,-y2,z1,z2by (3). Therefore,there are five equilibriaE0,E1,E2,E3,E4.

    (ii) Ife>0,d-e≤0,d+e>0,i.e.,(a,b,c)∈Λ2,then (5) has two distinct nonzero real rootsx1,-x1given in (2). Correspondingly,we gety1,-y1,z1by (3). Therefore,there are three equilibriaE0,E1,E2.

    (iii) Ife>0,d-e≤0,d+e≤0,i.e.,(a,b,c)∈Λ3,then (5) has no nonzero real roots. Thus,there is a unique equilibriumE0.

    (iv) Ife=0,c>a,i.e.,(a,b,c)∈Λ4,then (5) has two distinct nonzero real rootsx1,-x1,given in (2). Correspondingly,we gety1,-y1,z1by (3). Therefore,there are three equilibriaE0,E1,E2.

    (v) Ife=0,c≤a,i.e.,(a,b,c)∈Λ5,then (5) has no nonzero real roots. Thus,there is a unique equilibriumE0.

    (vi) Ifeis not real,i.e.,(a,b,c)∈Λ6,then (5) has no nonzero real roots. Thus,there is a unique equilibriumE0.

    Now we study the bifurcations of equilibria when parametercchanges near 1.

    Theorem 2.2Let 0<ε?1.(i) Assume thata≥1. The pitchfork bifurcation happens whencchanges from 1 to 1+ε,and the number of equilibria of System (1) changes from 1 to 3.

    (ii) Assume thata<1. The pitchfork bifurcation happens whencchanges from 1 to 1-ε,and the number of equilibria of System (1) changes from 3 to 5.

    ProofWhena>1 andc=1 in (2) we haved+e=0,d-e<0,i.e.,(a,b,c)∈Λ3. Whena=1 andc=1 in (2) we havee=0,a=c,i.e.,(a,b,c)∈Λ5. Thus whena≥1 andc=1,System (1) has a unique equilibriumE0by Lemma 2.1. Whena≥1 andc=1+ε,from (2) we gete>0 and

    Thus (a,b,c)∈Λ2,i.e.,System (1) has three equilibriaE0,E1,E2fallows from Lemma 2.1.(i) is proved.

    Whena<1 andc=1,we haved+e>0,d-e=0. Thus (a,b,c)∈Λ2,i.e.,System (1) has three equilibriaE0,E1,E2follows from Lemma 2.1. Whena<1 andc=1-ε,we gete>0 and

    d-e=2a2bε/(1-a)+O(ε2)>0.

    Thus (a,b,c)∈Λ1,i.e.,System (1) has five equilibriaE0,E1,E2,E3,E4follows from Lemma 2.1. From thex-coordinates ofE3,E4,we find thatE3,E4appear by the pitchfork bifurcation ofE0. (ii) is proved.

    3 The stability of equilibria

    In Theorem 2.2,the pitchfork bifurcation ofE0happens whencchanges near 1. In this section,we study the stability of those equilibria bifurcated fromE0.

    Theorem 3.1EquilibriaE1andE2,appearing by the pitchfork bifurcation ofE0whena≥1 andcchanges from 1 to 1+ε,are locally asymptotically stable.

    ProofSince System (1) is symmetric about thez-axis andE1is the corresponding symmetric equilibrium ofE2,we only need to considerE1.

    Whena>1 andc=1+ε,we get

    and

    by (2).The Jacobian matrix atE1is given by

    Thus the characteristic equation atE1is

    whose coefficients satisfy

    Then,all eigenvalues have negative real parts follows from the Routh-Hurwitz Theorem[15]. ThusE1is locally asymptotically stable,so doesE2.

    Whena=1 andc=1+ε,we get

    and

    by (2).The Jacobian matrix atE1is

    Thus the characteristic equation atE1is

    λ3+(b+2)λ2+(2b+O(ε))λ+4bε+

    whose coefficients satisfy

    Then,all eigenvalues have negative real parts follows from the Routh-Hurwitz Theorem[15]. ThusE1is locally asymptotically stable,so doesE2.

    Theorem 3.2EquilibriaE3andE4,appearing by the pitchfork bifurcation ofE0whena<1 andcchanges from 1 to 1-ε,are unstable.

    ProofSince System (1) is symmetric about thez-axis andE3is the corresponding symmetric equilibrium ofE4,we only need to considerE3.

    Whena<1 andc=1-ε,we get

    and

    by (2). The characteristic equation atE3is

    (6)

    whose coefficients satisfy

    Then,some eigenvalues have positive or zero real parts follows from the Routh-Hurwitz theorem[15]. Obviously,there is no zero root by the expression of (6). If (6) has a pair of pure imaginary roots ±iω(ω≠0),substitutingλ=iωinto (6) we get

    i.e.,

    (7)

    Clearly,(7) has no solution forω. Thus (6) has eigenvalues with positive real parts. Therefore,E3is unstable,neither doesE4.

    猜你喜歡
    音叉四川大學(xué)成都
    音叉共鳴現(xiàn)象的教學(xué)探析
    四川大學(xué)西航港實驗小學(xué)
    一次有趣的科學(xué)實驗
    穿過成都去看你
    青年歌聲(2019年2期)2019-02-21 01:17:20
    數(shù)看成都
    先鋒(2018年2期)2018-05-14 01:16:16
    百年精誠 譽從信來——走進(jìn)四川大學(xué)華西眼視光之一
    成都
    汽車與安全(2016年5期)2016-12-01 05:21:56
    四川大學(xué)華西醫(yī)院
    自制音叉的對稱性與非對稱性破壞性實驗研究
    四川大學(xué)信息顯示研究所
    液晶與顯示(2014年2期)2014-02-28 21:12:58
    长岛县| 兴仁县| 攀枝花市| 微山县| 靖安县| 无为县| 武安市| 巩义市| 常熟市| 辛集市| 铜陵市| 尤溪县| 乐都县| 时尚| 花垣县| 织金县| 温州市| 达日县| 黄山市| 迁西县| 邹城市| 英山县| 泰安市| 新建县| 普陀区| 长葛市| 宜兴市| 孝感市| 宁南县| 定襄县| 东莞市| 珠海市| 延安市| 桃源县| 大厂| 湖南省| 文水县| 河北区| 互助| 西林县| 阳春市|