陳玉玉,李幫義,柏慶國,王 哲,王 玥,周 揚(yáng)
碳交易環(huán)境下政府循環(huán)率規(guī)制對(duì)生產(chǎn)者盡規(guī)模式的影響機(jī)理
陳玉玉1,李幫義1,柏慶國2,王 哲1,王 玥1,周 揚(yáng)1
(1. 南京航天航空大學(xué) 經(jīng)濟(jì)與管理學(xué)院,江蘇 南京 211106; 2.曲阜師范大學(xué) 管理學(xué)院、運(yùn)籌學(xué)研究院,山東 日照 276826)
綠色發(fā)展要求生產(chǎn)者承擔(dān)節(jié)能減排和回收、循環(huán)并再利用的責(zé)任。碳限額交易政策既約束生產(chǎn)者的行為又誘導(dǎo)生產(chǎn)者生產(chǎn)方式的轉(zhuǎn)變。循環(huán)率規(guī)制政策賦予生產(chǎn)者對(duì)廢舊電子電器設(shè)備(WEEE)循環(huán)利用的責(zé)任?;谔冀灰篆h(huán)境,文章首先研究循環(huán)率規(guī)制約束下生產(chǎn)者盡規(guī)模式的選擇,然后探究面對(duì)愈加嚴(yán)格的法律法規(guī),生產(chǎn)者實(shí)現(xiàn)盡規(guī)的方式,最后分析政府制定的循環(huán)率目標(biāo)對(duì)社會(huì)福利的影響。研究結(jié)果表明,生產(chǎn)者有三種盡規(guī)模式可選擇,并得到其閾值;面對(duì)不斷嚴(yán)格的規(guī)制要求,生產(chǎn)者可以通過增加再制造品的產(chǎn)量、減少減排投資和新產(chǎn)品產(chǎn)量的方式實(shí)現(xiàn)盡規(guī);研究還發(fā)現(xiàn)隨著政府規(guī)制要求的提高,生產(chǎn)者利潤(rùn)減少,但這并不意味著消費(fèi)者剩余一定減少,并且環(huán)境影響隨著循環(huán)率目標(biāo)的提高有可能反而增大,即并非循環(huán)率目標(biāo)越高對(duì)環(huán)境越有利。
再制造;循環(huán)率規(guī)制;碳限額交易政策;減排投資;盡規(guī)模式
減少碳排放量和實(shí)現(xiàn)資源循環(huán)利用已成為學(xué)者們關(guān)注的熱點(diǎn)話題。隨著科技水平的不斷提高,極大豐富了人類物質(zhì)生活水平,廢舊電子電器設(shè)備(Waste Electrical and Electronic Equipment, WEEE)的數(shù)量也急劇增加。據(jù)統(tǒng)計(jì),2014年全球WEEE總數(shù)高達(dá)4180萬噸,預(yù)計(jì)2018年可達(dá)5000萬噸[1]。WEEE產(chǎn)品內(nèi)含有大量的重金屬和化學(xué)有毒物質(zhì),如果得不到有效處置,將會(huì)對(duì)環(huán)境產(chǎn)生惡劣的影響。另一方面,WEEE的回收處理,可以節(jié)約制造成本和實(shí)現(xiàn)資源循環(huán)利用。在WEEE循環(huán)再利用的眾多方式中,再制造無論從環(huán)境還是從資源的角度,都是最佳的商業(yè)化方式。目前華為、IBM和蘋果等國際知名企業(yè)已經(jīng)參與到再制造中,并以此獲取經(jīng)濟(jì)利益和實(shí)現(xiàn)社會(huì)責(zé)任。
如何提高回收循環(huán)率,實(shí)現(xiàn)再制造目標(biāo),引起了政府和理論研究者的廣泛關(guān)注。許多國家和地區(qū)已經(jīng)通過頒布法律法規(guī)提高WEEE產(chǎn)品的回收和循環(huán)率,如歐盟WEEE指令、日本的特定家用電器回收法(SHARL)等[2],簡(jiǎn)稱循環(huán)率規(guī)制。2016年底,我國頒布的《生產(chǎn)者責(zé)任延伸制度推行方案》指出,到2020年包括電子電氣產(chǎn)品在內(nèi)的重點(diǎn)品種的廢舊產(chǎn)品的規(guī)范回收和循環(huán)使用率達(dá)到40%,2025年實(shí)現(xiàn)50%的目標(biāo)[3]。面對(duì)政府所制定的強(qiáng)制性法規(guī),生產(chǎn)者將如何進(jìn)行決策(即如何選擇盡規(guī)模式),不斷嚴(yán)格的法規(guī)將對(duì)生產(chǎn)者決策有何影響,這便是本文將要回答的問題。
另一方面,全球氣溫升高,減少碳排放量成為企業(yè)必須履行的社會(huì)責(zé)任之一。政府通過頒布限額政策、碳稅政策和碳限額交易政策等法律法規(guī)來減少碳排放量[4]。其中,碳限額交易政策是以市場(chǎng)為基礎(chǔ)較有效的減排機(jī)制之一,并已經(jīng)在許多國家實(shí)施[5]。截止到2015年4月1日,全球范圍內(nèi)相繼建成17個(gè)碳交易體系,碳交易成交總額高達(dá)340億美元,占全球GDP的40%。我國也已經(jīng)在7個(gè)城市設(shè)立碳交易試點(diǎn),并取得良好效果。
閉環(huán)供應(yīng)鏈?zhǔn)茄h(huán)與再商業(yè)化責(zé)任在生產(chǎn)運(yùn)作層面的實(shí)現(xiàn)方式。國內(nèi)外學(xué)者在再制造和閉環(huán)供應(yīng)鏈領(lǐng)域進(jìn)行了積極的探索,F(xiàn)errer等[6]假設(shè)新產(chǎn)品和再制造品無差異,分別研究了有無競(jìng)爭(zhēng)時(shí)新、再制造品的定價(jià)問題。Ferrer等[7]進(jìn)一步將研究推廣至新產(chǎn)品和再制造產(chǎn)品差異化定價(jià)的情形。徐峰等[8]基于消費(fèi)者對(duì)新產(chǎn)品和再制造品具有不同的支付意愿,對(duì)單一定價(jià)和差異化定價(jià)兩種策略進(jìn)行比較。
已有研究雖然在制造/再制造生產(chǎn)決策的研究方面取得了一定成果,但并沒有考慮碳排放及減排投資,也未考慮政府循環(huán)率規(guī)制在企業(yè)再制造生產(chǎn)決策的影響,而本文正是將其結(jié)合進(jìn)行研究。與本文相關(guān)的研究文獻(xiàn)主要包括兩個(gè)方面:碳限額交易政策、WEEE回收法規(guī)約束下企業(yè)回收再制造行為的優(yōu)化決策。
碳排放不僅可以作為一個(gè)評(píng)價(jià)環(huán)境的重要指標(biāo),而且將通過碳交易和改變消費(fèi)者需求的方式最終影響生產(chǎn)者的利潤(rùn),因此越來越多的學(xué)者對(duì)制造/再制造生產(chǎn)決策問題研究中考慮了碳排放。Yenipazarli[9]研究了碳稅政策下,同時(shí)參與新產(chǎn)品和再制造品制造的寡頭壟斷生產(chǎn)商的最優(yōu)生產(chǎn)和定價(jià)決策問題,并分別分析了碳稅與碳交易政策對(duì)戰(zhàn)略決策的影響。Liua等[10]研究了隨機(jī)環(huán)境下,碳限額、碳交易、碳稅三種碳政策對(duì)再制造生產(chǎn)決策的影響。Wang等[11]研究生產(chǎn)商的碳排放約束和資金約束下的制造/再制造決策問題。Chang等[12]研究了碳限額交易政策下寡頭壟斷生產(chǎn)商面對(duì)獨(dú)立需求市場(chǎng)和替代需求市場(chǎng)時(shí)新產(chǎn)品與再制造品的生產(chǎn)決策。聶佳佳等[13]研究了碳限額交易政策對(duì)零售商負(fù)責(zé)回收閉環(huán)供應(yīng)鏈的定價(jià)策略和回收策略的影響?;谔枷揞~交易政策,F(xiàn)ahimnia等[14]通過與標(biāo)準(zhǔn)正向供應(yīng)鏈進(jìn)行比較,分析碳定價(jià)對(duì)閉環(huán)供應(yīng)鏈的影響。Miao等[15]分別基于碳稅政策和碳限額交易政策,分析考慮以舊換新時(shí)制造商的最優(yōu)定價(jià)和制造/再制造決策。王文賓等[16]對(duì)碳排放約束下制造商競(jìng)爭(zhēng)的逆向供應(yīng)鏈政府獎(jiǎng)懲機(jī)制進(jìn)行研究。
關(guān)于WEEE回收法規(guī)的研究主要解決兩個(gè)問題:合規(guī)計(jì)劃的設(shè)計(jì)(政府層面)和盡規(guī)模式的選擇(生產(chǎn)者層面)。
政府層面,決定生產(chǎn)者的量化回收責(zé)任并設(shè)計(jì)成可執(zhí)行、可驗(yàn)證的規(guī)定制度。如,歐盟WEEE指令規(guī)定2016年生產(chǎn)者最低回收率為45%,日本特定家用電器回收法(SHARL)規(guī)定循環(huán)和再制造率在50%-60%之間[2]。合規(guī)計(jì)劃(Compliance Schemes)是指將EPR立法轉(zhuǎn)化成環(huán)境績(jī)效。
生產(chǎn)者層面,生產(chǎn)者面臨著復(fù)雜決策以實(shí)現(xiàn)政府的規(guī)制要求,如生產(chǎn)決策(通過碳交易市場(chǎng))、價(jià)值恢復(fù)決策(再制造)和回收決策。盡規(guī)(Due Diligence)指生產(chǎn)者盡最大的能力、配置必要的資源,以實(shí)現(xiàn)立法的要求。盡規(guī)模式就是回答生產(chǎn)者責(zé)任實(shí)現(xiàn)情況,即對(duì)政府規(guī)制的實(shí)現(xiàn)狀況和程度。
目前,對(duì)于生產(chǎn)者盡規(guī)模式選擇的研究正在興起,而本文也是對(duì)生產(chǎn)者盡規(guī)模式選擇進(jìn)行研究。Webster等[17]研究包含單個(gè)生產(chǎn)者和單個(gè)再制造商的兩周期決策模型,其中生產(chǎn)者不從事再制造,通過數(shù)值實(shí)驗(yàn)分析了回收法規(guī)對(duì)企業(yè)利潤(rùn)和再制造決策的影響。Esenduran等[18]考慮存在再制造商的競(jìng)爭(zhēng),生產(chǎn)者同時(shí)生產(chǎn)新產(chǎn)品和再制造,分析回收法規(guī)和雙方競(jìng)爭(zhēng)對(duì)再制造水平和環(huán)境的影響。而本文重點(diǎn)研究回收規(guī)制政策對(duì)壟斷生產(chǎn)者的再制造決策的影響,故不考慮競(jìng)爭(zhēng)情形。和本文研究背景類似,Karakayali等[19]探究了是否應(yīng)該將再利用目標(biāo)納入回收目標(biāo),Esenduran等[2]分析了回收法規(guī)對(duì)再制造和環(huán)境的影響。關(guān)于合規(guī)計(jì)劃設(shè)計(jì)的研究較多,相關(guān)文獻(xiàn)見Esenduran等[20, 21]、Atasu等[22-24]和Jacobs等[25]。
政府不僅需要對(duì)企業(yè)生產(chǎn)環(huán)節(jié)中的碳排放量進(jìn)行監(jiān)管,還需要對(duì)消費(fèi)環(huán)節(jié)WEEE的循環(huán)利用進(jìn)行引導(dǎo)?,F(xiàn)有文獻(xiàn)雖然已經(jīng)對(duì)生產(chǎn)環(huán)節(jié)的碳排放量和銷售環(huán)節(jié)的循環(huán)率規(guī)制分別進(jìn)行研究,但并沒有學(xué)者將生產(chǎn)和銷售兩個(gè)環(huán)節(jié)進(jìn)行結(jié)合。若政府即對(duì)生產(chǎn)者生產(chǎn)環(huán)節(jié)的碳排放量進(jìn)行引導(dǎo)又對(duì)銷售環(huán)節(jié)的循環(huán)行為進(jìn)行規(guī)制,生產(chǎn)者的生產(chǎn)決策將如何讓變化,生產(chǎn)者將如何選擇盡規(guī)模式。
基于上述分析,本文在企業(yè)制造/再制造生產(chǎn)決策中引入碳限額交易政策和循環(huán)率規(guī)制政策。基于碳交易環(huán)境,構(gòu)建生產(chǎn)者制造/再制造最優(yōu)生產(chǎn)決策模型,探究循環(huán)率規(guī)制政策下生產(chǎn)者盡規(guī)模式的選擇以及循環(huán)率目標(biāo)的不斷提高對(duì)生產(chǎn)者決策及其利潤(rùn)的影響。
圖1 模型基本思路圖
Figure 1 Basic idea of the model
模型的基本思路如圖1所示,單寡頭壟斷生產(chǎn)者同時(shí)生產(chǎn)新產(chǎn)品和回收WEEE進(jìn)行再制造。政府通過頒布循環(huán)率規(guī)制政策和碳限額交易政策分別對(duì)消費(fèi)環(huán)節(jié)的循環(huán)率以及生產(chǎn)環(huán)節(jié)的碳排放量進(jìn)行規(guī)制和引導(dǎo)。在政府雙重規(guī)制約束下,考慮消費(fèi)者偏好時(shí),生產(chǎn)者決定對(duì)新、再制造品的生產(chǎn)計(jì)劃以及碳減排的投資決策。
進(jìn)行減排投資不僅會(huì)產(chǎn)生環(huán)境成本,而且會(huì)影響市場(chǎng)需求,最終導(dǎo)致生產(chǎn)者利潤(rùn)的變化,因此本文基于碳交易環(huán)境和減排投資,考慮新產(chǎn)品和再制造品的異質(zhì)替代性,分別探究?jī)煞N情形:(1)不考慮循環(huán)率規(guī)制,記作模式NR (No Regulation);(2)考慮循環(huán)率規(guī)制,記作模式R (Regulation)。通過對(duì)兩種情形下生產(chǎn)者最優(yōu)決策進(jìn)行比較,分析循環(huán)率規(guī)制對(duì)生產(chǎn)者盡規(guī)模式的影響機(jī)理。然后探究隨著政府規(guī)制要求的提高,生產(chǎn)者實(shí)現(xiàn)盡規(guī)的方式是怎樣的,以及不斷嚴(yán)格的規(guī)制要求對(duì)社會(huì)福利(包括生產(chǎn)者利潤(rùn)、消費(fèi)者剩余和碳排放量)的影響。
文中符號(hào)說明如表1所示,其中上標(biāo)R (Regulation)和NR (No Regulation)分別表示有、無循環(huán)率規(guī)制政策。
表1 符號(hào)說明
圖2 消費(fèi)者行為導(dǎo)向的市場(chǎng)結(jié)構(gòu)
Figure 2 Consumer-oriented market structure
生產(chǎn)者基于效益驅(qū)動(dòng)的決策:
圖3 無循環(huán)率規(guī)制時(shí)的最優(yōu)方案
Figure 3 Optimal solution without recycling rate regulation
推論1表明只有當(dāng)再制造品具有一定的競(jìng)爭(zhēng)優(yōu)勢(shì)時(shí),生產(chǎn)者才會(huì)進(jìn)入再制造市場(chǎng)。
下面研究循環(huán)率規(guī)制約束下生產(chǎn)者盡規(guī)模式的選擇。
圖4 有循環(huán)率規(guī)制時(shí)的最優(yōu)方案
Figure 4 Optimal solution with recycling rate regulation
表2 生產(chǎn)者的最優(yōu)決策
世界各地的循環(huán)率規(guī)制的要求越來越嚴(yán)格,循環(huán)率目標(biāo)不斷提高。不斷嚴(yán)格的循環(huán)率規(guī)制又將產(chǎn)生何種影響?
循環(huán)率規(guī)制的目標(biāo)是將WEEE的處理責(zé)任由政府轉(zhuǎn)移給生產(chǎn)者,而生產(chǎn)者通常會(huì)對(duì)價(jià)格的調(diào)整又將責(zé)任轉(zhuǎn)移給消費(fèi)者,最終導(dǎo)致消費(fèi)者剩余的降低,然而研究表明并非總是如此。為充分理解這種影響,下面分析生產(chǎn)者利潤(rùn)和消費(fèi)者剩余隨循環(huán)率目標(biāo)的變化情況。消費(fèi)者剩余(Consumer Surplus, CS)為購買新產(chǎn)品的消費(fèi)者剩余與購買再制造產(chǎn)品的消費(fèi)者剩余之和:
下面分析循環(huán)率目標(biāo)的提高對(duì)環(huán)境(碳排放量)的影響,生產(chǎn)者生產(chǎn)過程中的碳排放總量:
圖5 最優(yōu)決策變量隨對(duì)最優(yōu)決策變量的影響
圖6 對(duì)最優(yōu)決策變量的影響
圖7 和對(duì)生產(chǎn)者利潤(rùn)的影響
一方面,隨著廢舊WEEE數(shù)量的急劇增加,政府賦予生產(chǎn)者對(duì)WEEE循環(huán)利用的責(zé)任,并頒布法律對(duì)生產(chǎn)者回收再利用行為進(jìn)行規(guī)制;另一方面,節(jié)能減排是當(dāng)今的重要話題,在碳限額交易政策的壓力下,企業(yè)將選擇進(jìn)行減排投資。本文在企業(yè)制造/再制造生產(chǎn)決策中引入循環(huán)率規(guī)制和碳限額交易政策?;诠杨^壟斷生產(chǎn)者利潤(rùn)最大化,構(gòu)建集成碳限額交易和循環(huán)率規(guī)制約束的生產(chǎn)者制造/再制造最優(yōu)決策模型,探討生產(chǎn)者盡規(guī)模式的選擇以及循環(huán)率目標(biāo)對(duì)生產(chǎn)者決策和社會(huì)福利的影響。
研究發(fā)現(xiàn):生產(chǎn)者有三種盡規(guī)模式可選擇,并得到其閾值;隨著循環(huán)率目標(biāo)提高,生產(chǎn)者將通過減少減排投資、減少新產(chǎn)品產(chǎn)量和擴(kuò)大再制造品生產(chǎn)規(guī)模的方式實(shí)現(xiàn)盡規(guī),最終將導(dǎo)致生產(chǎn)者利潤(rùn)減少,但是循環(huán)率目標(biāo)提高并不一定會(huì)導(dǎo)致消費(fèi)者剩余的減少和對(duì)環(huán)境影響的降低。
本文研究的是碳限額交易政策和循環(huán)率規(guī)制政策約束下完全壟斷生產(chǎn)者盡規(guī)模式的選擇,即僅考慮了生產(chǎn)者內(nèi)部競(jìng)爭(zhēng)的情形。自然地,可考慮外部競(jìng)爭(zhēng),競(jìng)爭(zhēng)環(huán)境下盡規(guī)模式影響機(jī)理將更復(fù)雜,筆者將對(duì)此做進(jìn)一步研究。
[1] Baldé K, Wang F, Kuehr R, et al. The Global E-waste Monitor[M]. UNU-IAS: Bonn, Germany. 2015.
[2] Esenduran G, Kemahl?o?lu Ziya E, Swaminathan J M. Take-Back Legislation: Consequences for Remanufacturing and Environment[J]. Decision Sciences. 2016, 47(2): 219-256.
[3] 國務(wù)院辦公廳關(guān)于印發(fā)生產(chǎn)者責(zé)任延伸制度推行方案的通知[J]. 再生資源與循環(huán)經(jīng)濟(jì),2017,10(01):1-3.
State Council on the Issuance of Extended Producer Responsibility System Implementation Plan[J]. Renewable resources and circular economy. 2017,10(01):1-3.
[4] Song J, Leng M. Analysis of the Single-Period Problem under Carbon Emissions Policies[M]. Springer New York, 2012: 297-313.
[5] 柏慶國,徐賢浩. 碳限額與交易政策下易變質(zhì)產(chǎn)品的最優(yōu)庫存策略[J]. 中國管理科學(xué). 2017, 25(07): 28-37.
Bai Q G, XU X H. OptimalInventoryPolicyforDeterioratingItemsUnderCap-and-trade Regulation[J]. Chinese Management Science, 2017, 25(07): 28-37.
[6] Ferrer G, Swaminathan J M. Managing New and Remanufactured Products[J]. Management Science. 2006, 52(1): 15-26.
[7] Ferrer G, Swaminathan J M. Managing new and differentiated remanufactured products[J]. European Journal of Operational Research. 2010, 203(2): 370-379.
[8] 徐峰,盛昭瀚,陳國華. 基于異質(zhì)性消費(fèi)群體的再制造產(chǎn)品的定價(jià)策略研究[J]. 中國管理科學(xué). 2008, 16(06): 130-136.
Xu F, Sheng Z H, Chen G H. The Remanufactured Products Pricing Strategy in a Heterogeneous Market[J]. Chinese Journal of Management Science, 2008,16(06): 130-136.
[9] Yenipazarli A. Managing new and remanufactured products to mitigate environmental damage under emissions regulation[J]. European Journal of Operational Research. 2016, 249(1): 117-130.
[10] Liu B, Holmbom M, Segerstedt A, et al. Effects of carbon emission regulations on remanufacturing decisions with limited information of demand distribution[J]. International Journal of Production Research. 2015, 53: 532-548.
[11] Wang Y, Chen W, Liu B. Manufacturing/remanufacturing decisions for a capital-constrained manufacturer considering carbon emission cap and trade[J]. Journal of Cleaner Production. 2017, 140: 1118-1128.
[12] Chang X, Xia H, Zhu H, et al. Production decisions in a hybrid manufacturing-remanufacturing system with carbon cap and trade mechanism[J]. International Journal of Production Economics. 2015, 162: 160-173.
[13] 聶佳佳,王拓,趙映雪,等. 碳排放約束下再制造閉環(huán)供應(yīng)鏈回收策略[J]. 管理工程學(xué)報(bào). 2015, 29(03): 249-256.
Nie J J, Wang T, Zhao Y X, et al. Collecting Strategies for the Closed-loop Supply Chain with Remanufacturing in the Constraint of Carbon Emission[J]. Journal of Industrial Engineering and Engineering Management, 2015, 29(03): 249-256.
[14] Fahimnia B, Sarkis J, Dehghanian F, et al. The impact of carbon pricing on a closed-loop supply chain: an Australian case study[J]. Journal of Cleaner Production. 2013, 59: 210-225.
[15] Miao Z, Mao H, Fu K, et al. Remanufacturing with trade-ins under carbon regulations[J]. Computers & Operations Research. 2018, 89: 253-268.
[16] 王文賓,鄧雯雯,白拓,等. 碳排放約束下制造商競(jìng)爭(zhēng)的逆向供應(yīng)鏈政府獎(jiǎng)懲機(jī)制研究[J]. 管理工程學(xué)報(bào). 2016, 30(02): 188-194.
Wang W B, Deng W W, Bai T, et al. Design the Reward-penalty Mechanism for Reverse Supply Chains Based on Manufacturers’Competition and Carbon Footprint Constraints[J]. Journal of Industrial Engineering and Engineering Management, 2016, 30(02): 188-194.
[17] Webster S, Mitra S. Competitive strategy in remanufacturing and the impact of take-back laws[J]. Journal of Operations Management. 2007, 25(6): 1123-1140.
[18] Esenduran G, Kemahl?o?lu-Ziya E, Swaminathan J M. Impact of Take-Back Regulation on the Remanufacturing Industry[J]. Production and Operations Management. 2017, 26(5): 924-944.
[19] Karakayali I, Boyac? T, Verter V, et al. On the Incorporation of Remanufacturing in Recovery Targets[J]. Desautels Faculty of Management, McGill University. 2011.
[20] Esenduran G, Atasu A, Van Wassenhove L N. Valuable E-Waste: Implications for Extended Producer Responsibility[J]. Social Science Electronic Publishing. 2015.
[21] Esenduran G, Kemahl?o?lu-Ziya E. A Comparison of Product Take-Back Compliance Schemes[J]. Production and Operations Management. 2015, 24(1): 71-88.
[22] Atalay A, Van W L N, Miklos S. Efficient Take-Back Legislation[J]. Production and Operations Management. 2009, 18(3): 243-258.
[23] Atasu A, ?zdemir ?, Van Wassenhove L N. Stakeholder Perspectives on E-Waste Take-Back Legislation[J]. Production and Operations Management. 2013, 22(2): 382-396.
[24] Atasu A, Subramanian R. Extended Producer Responsibility for E-Waste: Individual or Collective Producer Responsibility?[J]. Production and Operations Management. 2012, 21(6): 1042-1059.
[25] Jacobs B W, Subramanian R. Sharing Responsibility for Product Recovery Across the Supply Chain[J]. Production and Operations Management. 2012, 21(1): 85-100.
[26] Dong C, Shen B, Chow P, et al. Sustainability investment under cap-and-trade regulation[J]. Annals of Operations Research. 2016, 240(2): 509-531.
[27] Bai Q, Chen M, Xu L. Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items[J]. International Journal of Production Economics. 2017, 187: 85-101.
[28] Swami S, Shah J. Channel Coordination in Green Supply Chain Management[J]. Journal of the Operational Research Society. 2013, 64(3): 336-351.
[29] Xu J, Chen Y, Bai Q. A two-echelon sustainable supply chain coordination under cap-and-trade regulation[J]. Journal of Cleaner Production. 2016, 135: 42-56.
The impacts of recycling rate regulation on due diligence patterns of producer under carbon trading environment
CHEN Yuyu1, LI Bangyi1, BAI Qingguo2, WANG Zhe1, WANG Yue1, ZHOU Yang1
(1. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; 2. School of Management, Institute of Operations Research, Qufu Normal University, Rizhao 276826, China)
Green development requires producers to take responsibility for energy conservation, emission reduction, recycling, and reuse. The carbon cap-and-trade regulation not only constrains producers’ behavior, but also induces the transformation of producers’ production methods. The recycling rate regulation forces producers to take responsibility for the recycling and reuse of Waste Electrical and Electronic Equipment (WEEE).
Although the existing literature has separately studied carbon emission and WEEE recycling based on the carbon cap-and-trade regulation in the production process, no scholars have considered in tandem the two sides of production and sales. The government not only needs to regulate carbon emissions in the production process, but also needs to guide the recycling of WEEE at the end of its useful life.
This paper introduces carbon cap-and-trade and recycling rate regulation policies into manufacturing/remanufacturing production decisions, in consideration of sustainable and emissions-reducing investment. With the objective of maximizing the profit of monopolist producers, we construct the optimal production decision model of producers under carbon cap-and trade and recycling rate regulation, and explore the producers' choice of due diligence patterns as well as analyze the impact of the recycling rate target on the producer decision-making process and social welfare. Finally, the theoretical results are verified by a case study.
Part 2 explores the increasingly strict laws and regulations and the way they influence how producers achieve due diligence, and analyzes the impact of higher recycling rate targets on social welfare. The study finds that, in the face of increasingly stringent laws and regulations, producers can achieve due diligence by limiting sustainable and emissions-reducing investments, limiting production of new products, and expanding the scale of production of remanufactured products; it also finds that, as the recycling rate target increases, the profit of producers decreases. But this does not mean a reduction in consumer surplus and a reduction in environmental impact. Specifically, producers will shift responsibility to consumers by adjusting prices, which ultimately leads to a reduction in consumer surplus, although we find that this is not always the case. More importantly, when carbon emissions in the remanufacturing process are high, an increase in the recycling rate target may lead to an increase in environmental impact.
In summary, when producers make manufacturing/remanufacturing production decisions based on recycling rate regulations, it is important for them to consider carbon emissions, as doing so will help them generate more profit. In addition, the government should pay more attention to potential unintended consequences when raising the recycling rate target.
Remanufacturing; Recycling rate regulation; Cap-and-trade regulation; Sustainability investment; Due diligence patterns
2017-11-27
2018-06-02
The work was supported by National Natural Science Foundation of China (71771138, 71702087), the Fundamental Research Funds for the Central Universities (NP2016303, NS2017057) and the Funding of Jiangsu Innovation Program for Graduate Education (KYCX18_0236)
F253
A
1004-6062(2020)04-0154-007
10.13587/j.cnki.jieem.2020.04.017
2017-11-27
2018-06-02
國家自然科學(xué)基金資助項(xiàng)目(71771138、71702087);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(NP2016303、NS2017057);江蘇省普通高校研究生科研創(chuàng)新計(jì)劃項(xiàng)目(KYCX18_0236)
陳玉玉(1990—),女,山東濟(jì)寧人;南京航空航天大學(xué)經(jīng)濟(jì)與管理學(xué)院,博士生;研究方向:運(yùn)作管理,生產(chǎn)者責(zé)任延伸機(jī)制。
中文編輯:杜 健;英文編輯:Boping Yan