• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants

    2020-09-04 09:33:04MuhammadTahirulQamarSafarAlqahtaniMubarakAlamriLingLingChen
    Journal of Pharmaceutical Analysis 2020年4期

    Muhammad Tahir ul Qamar,Safar M.Alqahtani,Mubarak A.Alamri,Ling-Ling Chen,*

    aCollege of Life Science and Technology,Guangxi University,Nanning,530004,PR China

    bHubei Key Laboratory of Agricultural Bioinformatics,College of Informatics,Huazhong Agricultural University,Wuhan,430070,PR China

    cDepartment of Pharmaceutical Chemistry,College of Pharmacy,Prince Sattam Bin Abdulaziz University,11323,Alkarj,Saudi Arabia

    Keywords:

    Coronavirus

    SARS-CoV-2

    COVID-19

    Natural products

    Protein homology modelling

    Molecular docking

    Molecular dynamics simulation

    ABSTRACT

    The recent pandemic of coronavirus disease 2019(COVID-19)caused by SARS-CoV-2 has raised global health concerns.The viral 3-chymotrypsin-like cysteine protease(3CLpro)enzyme controls coronavirus replication and is essential for its life cycle.3CLprois a proven drug discovery target in the case of severe acute respiratory syndrome coronavirus(SARS-CoV)and Middle East respiratory syndrome coronavirus(MERS-CoV).Recent studies revealed that the genome sequence of SARS-CoV-2 is very similar to that of SARS-CoV.Therefore,herein,we analysed the 3CLprosequence,constructed its 3D homology model,and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/traditional Chinese medicinal compounds.Our analyses revealed that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules for further optimisation and drug development process to combat COVID-19.

    1.Introduction

    A novel coronavirus strain linked with fatal respiratory illness was reported in late 2019[1].Swift actions were taken by the Centre for Disease Control and Prevention(CDC),Chinese health authorities,and researchers.The World Health Organization(WHO)temporarily named this pathogen 2019 novel coronavirus(2019-nCoV)[2].On January 10,2020,the first whole-genome sequence of 2019-nCoV was released,which helped researchers to quickly identify the virus in patients using reverse-transcription polymerase chain reaction(RT-PCR)methods[3].On January 21,the first article relatedto2019-nCoV waspublished,which revealed that 2019-nCoV belongs to the beta-coronavirus group,sharing ancestry with batcoronavirus HKU9-1,similar to SARS-coronaviruses,and that despite sequence diversity its spike protein interacts strongly with the human ACE2 receptor[1].On January 30,the WHO announced a Public Health Emergency of International Concern(PHEIC)for the 2019-nCoV outbreak.Later,the human-to-human transmission was confirmed.As of January 31,51 whole-genome sequences of 2019-nCoV from different laboratories and regions had been submitted to GISAID database[4].On February 12,the WHO permanently named the 2019-nCoV pathogen as SARS-CoV-2 and the causing disease as coronavirus disease 2019(COVID-2019).The Chinese government's swift actions helped them to control COVID-19 in China.However,SARSCoV-2 affected several countries world-wide.On March 11,the WHO formally recognized the COVID-19 as a pandemic.By March 19,2020,the global death toll reached 9,913,with 2,42,650 laboratory-confirmed cases.The case fatality rate among infected people varies in different countries.However,global case fatality rate is presently around 3.92% (calculated as deaths/[deaths+laboratory confirmed cases]).

    Fig.1.(A)Phylogenetic tree inferred from closest homologs of SARS-CoV-2 3CLpro.The maximum likelihood method was used to construct this tree.(B)Multiple sequence alignment of closest homologs of SARS-CoV-2 3CLprosharing≥70% sequence identity.(C)Cartoon representation of the SARS-CoV-2 3CLprohomodimer.Chain-A(protomer-A)is in multicolour and Chain-B(protomer-B)is in dark blue.The N-finger that plays an important role in dimerization maintaining the active conformation is shown in hot pink,domain I is coloured cyan,domain II is shown in green,and domain III is coloured yellow.The N-and C-termini are labelled.Residues of the catalytic dyad(Cys-145 and His-41)are highlighted in yellow and labelled.(D)Cartoon representation of the 3CLpromonomer model(chain/protomer-A)of SARS-CoV-2 superimposed with the SARS-CoV 3CLprostructure.The SARS-CoV 3CLprotemplate is coloured cyan,the SARS-CoV-2 3CLprostructure is coloured grey,and all identified mutations are highlighted in red.(E)Docking of 5,7,3′,4′-tetrahydroxy-2'-(3,3-dimethylallyl)iso flavone inside the receptor-binding site of SARS-CoV-2 3CLpro,showing hydrogen bonds with the catalytic dyad(Cys-145 and His-41).The 3CLprostructure is coloured dark blue,the 5,7,3′,4′-tetrahydroxy-2'-(3,3-dimethylallyl)iso flavone is orange,and hydrogen coloured maroon.

    Coronaviruses are single-stranded positive-sense RNA viruses that possess large viral RNA genomes[5].Recent studies showed that SARS-CoV-2 has a similar genomicorganization tothatof other beta-coronaviruses,consisting of a 5′-untranslated region(UTR),a replicasecomplex (orf1ab)encoding non-structuralproteins(nsps),a spike protein(S)gene,envelope protein(E)gene,a membrane protein(M)gene,a nucleocapsid protein(N)gene,3′-UTR,and several unidentified non-structural open reading frames[3].Although SARS-CoV-2 is classified into the beta-coronaviruses group,it is different from MERS-CoV and SARS-CoV.Recent studies highlighted that SARS-CoV-2 genes share<80% nucleotide identity and 89.10% nucleotide similarity with SARS-CoV genes[6,7].Usually,beta-coronaviruses produce a~800 kDa polypeptide upon transcription of the genome.This polypeptide is proteolytically cleaved to generate various proteins.The proteolytic processing is mediated by papain-like protease(PLpro)and 3-chymotrypsin-like protease(3CLpro).The 3CLprocleaves the polyprotein at 11 distinct sites to generate various non-structural proteins that are important for viral replication[8].3CLproplays a critical role in the replication of virus particles and unlike structural/accessory protein-encoding genes,it is located at the 3′end which exhibits excessive variability.Therefore,it is a potential target for anti-coronaviruses inhibitors screening[9].Structurebased activity analyses and high-throughput studies have identified potential inhibitors for SARS-CoV and MERS-CoV 3CLpro[10—12].Medicinal plants,especially those employed in traditional Chinese medicine,have attracted significant attention because they include bioactive compounds that could be used to develop formal drugs against several diseases with no or minimal side effects[13].Therefore,the present study was conducted to gain structural insights into the SARS-CoV-2 3CLproand to discover potent anti-COVID-19 natural compounds.

    2.Materials and methods

    2.1.Data collection

    Whole-genome sequences of all SARS-CoV-2 isolates available till January 31,2020,were downloaded from GISAID database(accession numbers and details are given in Table S1)[4].The genome sequence of BetaCoV/Kanagawa/1/2020(GISAID:EPI_-ISL_402126)was incomplete,and the genome sequence of Beta-CoV/bat/Yunnan/RaTG13/2013 (EPI_ISL_402131)was an old sequence(2013);therefore,these sequences were not included in our analyses.Gene sequences of 3CLprowere extracted from the whole-genome sequences and translated into protein sequences using the translate tool of the ExPASy server[14].The first SARSCoV-2 sequence(Wuhan-Hu-1;GSAID:EPI_ISL_402125)was used as a reference in our analysis.

    Table 1 Physicochemical parameters of SARS-CoV-2 3CLpro.

    Table 2 Summary of top ranked phytochemicals screened against SARS-CoV-2 3CLproreceptor binding site with their respective structures,docking score,binding affinity and interacting residues.

    Table 2(continued)

    2.2.Sequence analyses

    In order to identify similar sequences and key/conserved residues,and to infer phylogeny,multiple sequence alignment of SARSCoV-2 3CLprofollowed byphylogenetictreeanalyseswere performed using T-Coffee[15]and the alignment figure was generated using ESPript3[16].Physicochemical parameters of SARS-CoV-2 3CLproincluding isoelectric point,instability index,grand average of hydropathicity(GRAVY),and amino acid and atomic composition were investigated using the ProtParam tool of ExPASy[14].

    2.3.Structural analyses

    To probe the molecular architecture of SARS-CoV-2 3CLpro,comparative homology modelling was performed using Modeller v9.11[17].To select closely-related templates for modelling,PSIBLAST was performed against all known structures in the protein databank(PDB)[18].Chimera v1.8.1[19]and PyMOL educational version[20]were used for initial quality estimation,energy minimisation,mutation analyses,and image processing.

    2.4.Ligand database preparation and molecular docking

    A comprehensive medicinal plant library containing 32,297 potential anti-viral phytochemicals and traditional Chinese medicinal compounds was generated from our previously collected data and studies[13,21—23],and screened against the predicted SARS-CoV-2 3CLprostructure.Molecular operating environment(MOE)[24]was used for molecular docking,ligand-protein interaction and drug likeness analyses.All analyses were performed using the same protocols that are already described in our previous studies[13,25,26].The qualitative assessment of absorption,deposition,metabolism,excretion and toxicity(ADMET)profile of selected hits were predicted computationally by using ADMETsar server[27].

    2.5.Molecular dynamics simulations

    Explicit solvent molecular dynamics(MD)simulations were performed to verify docking results and to analyse the binding behaviour and stability of potential compounds using the predicted SARS-CoV-2 3CLprohomology model.GROMACS v5.1.4,GROMOS96 and the PRODRG server were employed to run 50 ns MD simulations[28,29]following the same protocol as described in our previous studies[13,30].

    3.Results and discussion

    3.1.Sequence and structural analyses

    Multiple sequence alignment results revealed that 3CLprowas conserved,with 100% identity among all SARS-CoV-2 genomes.Next,the SARS-CoV-2 3CLproprotein sequence was compared with its closest homologs(Bat-CoV,SARS-CoV,MERS-CoV,Human-CoV and Bovine-CoV).The results revealed that SARS-CoV-2 3CLproclusters with bat SARS-like coronaviruses and shares 99.02% sequence identity(Fig.1A).Furthermore,it shares 96.08% ,87.00% ,90.00% and 90.00% sequence identity with SARS-CoV,MERS-CoV,Human-CoV and Bovine-CoV homologs,respectively(Fig.1B).These findings were consistent with those of initial studies reporting that SARS-CoV-2 is more similar to SARS-CoV than to MERS-CoV,and shares a common ancestor with bat coronaviruses[1,3,31].Analysis of physicochemical parameters revealed that the SARS-CoV-2 3CLpropolypeptide is 306 amino acids long with a molecular weight of 33,796.64 Da and a GRAVY score of-0.019,categorising the protein as a stable,hydrophilic molecule capable of establishing hydrogen bonds(Table 1).

    Next,for comparative modelling,BLAST[32]search identified SARS-CoV 3CLpro(PDB ID:3M3V)as the best possible match in the PDB,with 100% query coverage,an E-value of 0.00,and 96.08% sequence identity.There were 12-point mutations(Val35Thr,Ser46Ala,Asn65Ser,Val86Leu,Lys88Arg,Ala94Ser,Phe134His,Asn180Lys,Val202Leu,Ser267Ala,Ser284Ala and Leu286Ala)between SARS-CoV and SARS-CoV-2 3CLproenzymes(Fig.S1).Except for replacement of Leu with Ala at position 286,all other replacements conserve polarity and hydrophobicity.However,these mutations may affect 3CLprostructure and function.Therefore,the 3D structure of SARS-CoV-2 3CLprowas predicted.Firstly,a single chain monomericmodelcomprisingalldomains(Domain I=residues 8—100;Domain II=residues 101—183;Domain III=residues 200—303)was built(Fig.S2).N-terminal amino acids 1 to 7 form the N-finger that plays a significant role in dimerization and formation of the active site of 3CLpro.Domains I and II,collectively referred to as the N-terminal domain,include an antiparallelβ-sheet structurewith 13β-strands.The binding site for the substrate is situated in a cleft between domains I and II.A loop from residues 184 to 199 joins the N-terminal domain and domain III,which is also called the C-terminal domain and comprises an antiparallel cluster of fiveα-helices.The overall molecular architecture of SARS-CoV-2 3CLprowas in consistent with the crystal structure of SARS-CoV(PDB ID:3M3V);the root mean square deviation(RMSD)between the homology model and the template was 0.629 ?.Structural and Ramachandran plot analyses revealed that 99% of residues are in favourable regions.

    After quality assessment,individual chains were combined to form a homodimeric 3D structure,as shown in Fig.1C.To facilitate other researchers,the predicted 3D model has been submitted to the Protein Model Database(PMDB)[33],and anyone can download/use the SARS-CoV-2 3CLprofinal structure using PMDB ID:PM0082635.Furthermore,mutational analyses depicted none of the mutations affected the overall structure of SARS-CoV-2,which fully superimposed on the SARS-CoV 3CLprostructure(Fig.1D).The results also revealed that SARS-CoV-2 has a Cys-His catalytic dyad(Cys-145 and His-41),consistent with that of SARS 3CLpro(Cys-145 and His-41),TGEV 3CLpro(Cys-144 and His-41)and HCoV 3CLpro(Cys-144 and His-41)[34].These results revealed that the SARSCoV-2 3CLproreceptor-binding pocket conformation resembles that of the SARS-CoV 3CLprobinding pocket and raises the possibility that inhibitors intended for SARS-CoV 3CLpromay also inhibit the activity of SARS-CoV-2 3CLpro.

    3.2.Molecular docking

    To test this hypothesis,we docked(R)-N-(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide),a potential noncovalent inhibitorof SARS-CoV 3CLpronamed ML188[35],with the SARS-CoV-2 3CLprohomology model.We also docked ML188 with the SARS-CoV 3CLprostructure(PDB ID:3M3V)as a reference,and ML188 bound strongly tothe receptor binding site of SARS-CoV 3CLpro.The inhibitor targets the Cys-His catalytic dyad(Cys-145 and His-41)along with the other residues,and the docking score(S=-12.27)was relatively high.However,surprisingly,ML188 did not show significant binding to the catalytic dyad(Cys-145 and His-41)of SARS-CoV-2,and the docking score(S=-8.31)was considerably lower(Fig.S3).These results indicated that the 12-point mutations identified at previous step may disrupt important hydrogen bonds and alter the receptor binding site,thereby affecting its ability to bind with the SARS-CoV inhibitors.

    Fig.2.(A)Root mean square deviation(RMSD),(B)root mean squarefluctuation(RMSF),(C)potential energy and(D)Hydrogen Bond interactions for all three complexes over the 50 ns simulation.

    Therefore,it is essential to discover novel compounds that may inhibit SARS-CoV-2 3CLproand serve as potential anti-COVID-19 drug compounds.We developed a library from our previously published studies that contains numerous natural compounds possessing potential anti-viral activities and screened it against the SARS-CoV-2 3CLprohomology model.Recent drug repurposing studies proposed few drugs that target SARS-CoV-2 3CLproand suggested that they could be used to treat COVID-19.Herein,we selected the best of these(Nel finavir,Prulifloxacin and Colistin)from three different drug repurposing studies[36,37]and docked them as controls in the present study(Fig.S4).Our analyses identified nine novel non-toxic,druggable natural compounds that are predicted to bind with the receptor binding site and catalytic dyad(Cys-145 and His-41)of SARS-CoV-2 3CLpro(Table 2;Fig.S5).ADMET profiling of the selected hits is given in Table S2.Among these screened phytochemicals,5,7,3′,4′-tetrahydroxy-2'-(3,3-dimethylallyl)iso flavone is an iso flavone extracted from Psorothamnus arborescens[38]that exhibited the highest binding affinity(-29.57 kcal/mol)and docking score(S=-16.35),and formed strong hydrogen bonds with the catalytic dyad residues(Cys-145 and His-41)as well as significant interactions with the receptor-binding residues Thr24,Thr25,Thr26,Cys44,Thr45,Ser46,Met49,Asn142,Gly143,His164,Glu166 and Gln189(Fig.1E).A literature review revealed that 5,7,3′,4′-tetrahydroxy-2'-(3,3-dimethylallyl)iso flavone has been successfully used as an antileishmanial agent[38],and it is also found in traditional Chinese medicine records[39].Our screened phytochemicals displayed higher docking scores,stronger binding energies,and closer interactions with the conserved catalytic dyad residues(Cys-145 and His-41)than Nel finavir,Prulifloxacin and Colistin.These results suggested that natural products identified in our study may prove more useful candidates for COVID-19 drug therapy.

    3.3.MD simulations

    To further investigate the molecular docking results,the top three phytochemical complexes,namely 5,7,3′,4′-tetrahydroxy-2'-(3,3-dimethylallyl)iso flavone,myricitrin,and methyl rosmarinate,were subjected to 50 ns MD simulation.The root mean square deviation(RMSD),root mean squarefluctuation(RMSF),radius of gyration(RoG)and hydrogen bond parameters were calculated.RMSD is an indicator of the stability of ligand-protein complexes.None of the complexes showed any obvious fluctuations,and all three were stable,with average RMSD values of 1.6 ± 0.02 ?,1.5 ± 0.02 ? and 1.7 ± 0.02 ? for 5,7,3′,4′-tetrahydroxy-2'-(3,3-dimethylallyl)iso flavone,myricitrin,and methyl rosmarinate,respectively(Fig.2A).RMSF is an indicator of residual flexibility.Minimal fluctuations were observed for myricitrin and methyl rosmarinate,and the overallcomplexes remained stable throughout the simulations.The functionally important catalytic dyad residues(Cys-145 and His-41)displayed stable behaviour,and fluctuations were observed toward the C-terminal end of the SARSCoV-2 3CLpromolecule(Fig.2B).RoG is an indicator of protein compactness,stability,and folding,and the results suggested normal behaviour for all three complexes;all remained compact and stable throughout the 50 ns simulations(Fig.2C).In addition,hydrogen bonds,which are the main stabilising interactions factors in proteins,suggested thattheSARS-CoV-2 3CLprointernal hydrogen bonds remain stable throughout the simulation,with no obvious fluctuations(Fig.2D).These results confirmed our findings and further indicated that these compounds may serve as potential anti-COVID-19 drug sources.

    4.Conclusion

    In conclusion,our study revealed that 3CLprois conserved in SARS-CoV-2.It is highly similar to bat SARS-like coronavirus 3CLpro,with some differences from other beta-coronaviruses.We predicted the 3D structure of the SARS-CoV-2 3CLproenzyme,and the findings may help researchers working on COVID-19 drug discovery.Despite significant overall similarity with the SARS-CoV 3CLprostructure,the SARS-CoV-2 3CLprosubstrate binding site had some key differences,which highlighted the need for rapid drug discovery to address the alarming COVID-19 pandemic.Medicinal plant compounds have already been used to successfully treat numerous viral diseases.Herein,we screened a medicinal plant database containing 32,297 potential anti-viral phytochemicals and selected the top nine hits that may inhibit SARS-CoV-2 3CLproactivity and hence virus replication.Further in-vitro and in-vivo analyses are required to transform these potential inhibitors into clinical drugs.We anticipate that the insights gained in the present study may prove valuable for exploring and developing novel natural anti-COVID-19 therapeutic agents in the future.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China(2020YFC0845600),the Hubei Provincial Natural Science Foundation of China(2019CFA014),the Starting Research Grant for High-level Talents from Guangxi University,Nanning,China and Postdoctoral Research Platform Grant of Guangxi University,Nanning,China.We also acknowledge all the authors and laboratories mentioned in Table S1 for their sampling,analysis,and genome sequencing efforts.In addition,we acknowledge GISAID(https://www.gisaid.org/)for facilitating open data sharing.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2020.03.009.

    久久热在线av| 亚洲性久久影院| 99热这里只有是精品在线观看| 9191精品国产免费久久| 视频中文字幕在线观看| 午夜福利乱码中文字幕| 少妇精品久久久久久久| 丝袜在线中文字幕| 亚洲精品国产av蜜桃| 欧美丝袜亚洲另类| av不卡在线播放| 黑人猛操日本美女一级片| 免费播放大片免费观看视频在线观看| 汤姆久久久久久久影院中文字幕| 久热这里只有精品99| 夜夜骑夜夜射夜夜干| 91久久精品国产一区二区三区| 人成视频在线观看免费观看| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美一区二区三区黑人 | 国产一区有黄有色的免费视频| 亚洲国产av新网站| 秋霞在线观看毛片| 中文字幕另类日韩欧美亚洲嫩草| 午夜老司机福利剧场| 久热这里只有精品99| 久久这里只有精品19| 国产一区有黄有色的免费视频| 国产激情久久老熟女| 久久精品熟女亚洲av麻豆精品| 精品少妇久久久久久888优播| 美女脱内裤让男人舔精品视频| 国精品久久久久久国模美| 精品少妇黑人巨大在线播放| 久久国内精品自在自线图片| 波多野结衣一区麻豆| 又黄又爽又刺激的免费视频.| 26uuu在线亚洲综合色| 又黄又爽又刺激的免费视频.| 亚洲精品久久午夜乱码| 国产探花极品一区二区| 人人妻人人添人人爽欧美一区卜| 丝瓜视频免费看黄片| 亚洲国产av新网站| 久久鲁丝午夜福利片| 国产色爽女视频免费观看| 中文乱码字字幕精品一区二区三区| 9191精品国产免费久久| 91精品国产国语对白视频| 极品人妻少妇av视频| 日本-黄色视频高清免费观看| 黑丝袜美女国产一区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美一区二区三区黑人 | 日韩大片免费观看网站| 亚洲熟女精品中文字幕| 纵有疾风起免费观看全集完整版| 如日韩欧美国产精品一区二区三区| 看十八女毛片水多多多| 两个人免费观看高清视频| 免费人成在线观看视频色| 国产日韩欧美在线精品| 在线观看一区二区三区激情| 国产精品蜜桃在线观看| 国产亚洲av片在线观看秒播厂| 国产精品久久久久久精品古装| 久久人人爽av亚洲精品天堂| 日本wwww免费看| 91aial.com中文字幕在线观看| 男女下面插进去视频免费观看 | 亚洲三级黄色毛片| 国产日韩欧美亚洲二区| 嫩草影院入口| 成人影院久久| 亚洲精品乱久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 草草在线视频免费看| 波多野结衣一区麻豆| 亚洲精品日韩在线中文字幕| a级片在线免费高清观看视频| 热re99久久精品国产66热6| 麻豆精品久久久久久蜜桃| 婷婷色综合www| 国产1区2区3区精品| www.熟女人妻精品国产 | 国产精品成人在线| 看免费成人av毛片| 97在线人人人人妻| 精品久久久精品久久久| 黑人欧美特级aaaaaa片| 一级片'在线观看视频| 一级毛片电影观看| av福利片在线| 最新的欧美精品一区二区| 满18在线观看网站| 伦理电影大哥的女人| 精品人妻在线不人妻| 国产在线一区二区三区精| 国产日韩欧美视频二区| 丝袜脚勾引网站| 成人无遮挡网站| 亚洲一级一片aⅴ在线观看| 99久久中文字幕三级久久日本| 免费人妻精品一区二区三区视频| 国产精品 国内视频| 欧美亚洲 丝袜 人妻 在线| 亚洲伊人久久精品综合| 亚洲婷婷狠狠爱综合网| 亚洲美女搞黄在线观看| 日韩,欧美,国产一区二区三区| 国产福利在线免费观看视频| 亚洲国产欧美在线一区| 国产精品久久久久久av不卡| 蜜桃国产av成人99| 久久精品国产亚洲av涩爱| 亚洲激情五月婷婷啪啪| 成人影院久久| 国产精品一二三区在线看| 精品一品国产午夜福利视频| 你懂的网址亚洲精品在线观看| 一区二区av电影网| 亚洲综合精品二区| 婷婷色av中文字幕| 精品国产一区二区三区四区第35| 久久午夜福利片| 日日撸夜夜添| 最近最新中文字幕免费大全7| 极品人妻少妇av视频| 国产国语露脸激情在线看| 婷婷色综合大香蕉| av免费在线看不卡| 久久久久人妻精品一区果冻| 午夜激情久久久久久久| 男女国产视频网站| 亚洲国产av新网站| 日日撸夜夜添| 日本vs欧美在线观看视频| 有码 亚洲区| 丰满乱子伦码专区| 国产成人精品婷婷| 亚洲综合色惰| 欧美日韩视频高清一区二区三区二| 在线观看免费高清a一片| 国语对白做爰xxxⅹ性视频网站| 欧美日韩av久久| 欧美日韩av久久| 中文乱码字字幕精品一区二区三区| 麻豆精品久久久久久蜜桃| 丝袜脚勾引网站| 久久精品国产鲁丝片午夜精品| 日韩一区二区视频免费看| 天天影视国产精品| 亚洲精品一区蜜桃| 日韩欧美一区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 桃花免费在线播放| 国产亚洲最大av| 久久人人爽av亚洲精品天堂| 精品少妇久久久久久888优播| 日韩欧美精品免费久久| 国产免费一区二区三区四区乱码| 国产精品女同一区二区软件| 美女国产高潮福利片在线看| 狂野欧美激情性bbbbbb| 亚洲av综合色区一区| 热re99久久精品国产66热6| 成人午夜精彩视频在线观看| 欧美日本中文国产一区发布| 日本-黄色视频高清免费观看| 欧美日韩成人在线一区二区| 久久99精品国语久久久| 男人操女人黄网站| 最近最新中文字幕免费大全7| 亚洲精品国产色婷婷电影| 国产精品国产三级国产av玫瑰| av在线播放精品| 日本欧美国产在线视频| 国产乱来视频区| 久久人人97超碰香蕉20202| 人妻系列 视频| 亚洲精品456在线播放app| 天天影视国产精品| 久热这里只有精品99| 欧美日韩一区二区视频在线观看视频在线| 日本欧美视频一区| 国产xxxxx性猛交| 国产不卡av网站在线观看| 国产男女超爽视频在线观看| 韩国精品一区二区三区 | 狂野欧美激情性xxxx在线观看| 91午夜精品亚洲一区二区三区| 国产精品偷伦视频观看了| kizo精华| 韩国高清视频一区二区三区| 好男人视频免费观看在线| 女人精品久久久久毛片| 少妇被粗大猛烈的视频| 2018国产大陆天天弄谢| 人人澡人人妻人| av不卡在线播放| 亚洲图色成人| 久久精品国产亚洲av涩爱| 看十八女毛片水多多多| 亚洲国产精品一区二区三区在线| 制服诱惑二区| 日日撸夜夜添| 久久99热这里只频精品6学生| 久久人人爽人人片av| 99久久人妻综合| 伦精品一区二区三区| 22中文网久久字幕| 少妇的丰满在线观看| 大香蕉久久成人网| 亚洲国产精品专区欧美| 男女边吃奶边做爰视频| 捣出白浆h1v1| 大话2 男鬼变身卡| 久久久久久久久久久久大奶| 亚洲精品一二三| 久久久久久久大尺度免费视频| 午夜福利视频在线观看免费| 久久婷婷青草| 精品视频人人做人人爽| 在线精品无人区一区二区三| 高清黄色对白视频在线免费看| 交换朋友夫妻互换小说| 一级,二级,三级黄色视频| 观看av在线不卡| 亚洲精华国产精华液的使用体验| 黄色 视频免费看| 亚洲四区av| 国产免费视频播放在线视频| 最近2019中文字幕mv第一页| tube8黄色片| 捣出白浆h1v1| 亚洲精品久久久久久婷婷小说| 色吧在线观看| 一区二区三区四区激情视频| 两个人看的免费小视频| 99久久中文字幕三级久久日本| 日韩精品有码人妻一区| 免费女性裸体啪啪无遮挡网站| 中国美白少妇内射xxxbb| 国产成人精品一,二区| 国产精品久久久久久精品电影小说| 黄色怎么调成土黄色| 波多野结衣一区麻豆| 久久99一区二区三区| 日本av免费视频播放| 午夜久久久在线观看| 夜夜骑夜夜射夜夜干| 成人二区视频| 久久精品国产a三级三级三级| 天天影视国产精品| 精品少妇黑人巨大在线播放| 观看av在线不卡| 亚洲精品乱码久久久久久按摩| 满18在线观看网站| 久久精品国产自在天天线| 中文字幕人妻丝袜制服| 18+在线观看网站| 国产av一区二区精品久久| 国产色婷婷99| 九九爱精品视频在线观看| 久久毛片免费看一区二区三区| 一级爰片在线观看| 女的被弄到高潮叫床怎么办| 久久久久久久久久人人人人人人| 欧美精品国产亚洲| 久久99热6这里只有精品| 看免费成人av毛片| 各种免费的搞黄视频| 免费黄色在线免费观看| 日韩,欧美,国产一区二区三区| 插逼视频在线观看| 国产免费一级a男人的天堂| 2022亚洲国产成人精品| 国产精品无大码| 夫妻性生交免费视频一级片| av在线观看视频网站免费| 日韩一本色道免费dvd| 精品人妻偷拍中文字幕| 七月丁香在线播放| 免费久久久久久久精品成人欧美视频 | 丰满饥渴人妻一区二区三| 男人添女人高潮全过程视频| 在线天堂中文资源库| 女性生殖器流出的白浆| 汤姆久久久久久久影院中文字幕| 寂寞人妻少妇视频99o| 成人毛片60女人毛片免费| 老司机影院毛片| 黄色一级大片看看| 精品久久久久久电影网| 久久这里只有精品19| 18禁裸乳无遮挡动漫免费视频| 男男h啪啪无遮挡| 久久人人97超碰香蕉20202| 尾随美女入室| 欧美精品人与动牲交sv欧美| 少妇被粗大猛烈的视频| 精品久久国产蜜桃| 毛片一级片免费看久久久久| 国产日韩欧美视频二区| 国产又爽黄色视频| 久久女婷五月综合色啪小说| av在线观看视频网站免费| 中文字幕人妻熟女乱码| 在线观看国产h片| 国产精品一区二区在线不卡| 午夜91福利影院| 亚洲av综合色区一区| 深夜精品福利| 免费观看在线日韩| 全区人妻精品视频| 80岁老熟妇乱子伦牲交| h视频一区二区三区| 精品少妇黑人巨大在线播放| 国产成人一区二区在线| 伊人亚洲综合成人网| 久久久亚洲精品成人影院| 精品一区二区免费观看| 最后的刺客免费高清国语| 最近的中文字幕免费完整| 国产成人欧美| 在线观看人妻少妇| 午夜视频国产福利| 成年人免费黄色播放视频| 久久av网站| 少妇被粗大的猛进出69影院 | 中文字幕亚洲精品专区| 精品亚洲成a人片在线观看| 日韩一区二区视频免费看| www.av在线官网国产| 久久久久久久久久久免费av| 交换朋友夫妻互换小说| 精品国产乱码久久久久久小说| 在线观看三级黄色| 国产成人av激情在线播放| 亚洲精品国产av成人精品| 天堂俺去俺来也www色官网| 如何舔出高潮| 国产亚洲精品第一综合不卡 | 免费播放大片免费观看视频在线观看| 国产精品无大码| av在线播放精品| 免费黄色在线免费观看| av视频免费观看在线观看| 国产有黄有色有爽视频| 精品国产一区二区久久| 亚洲欧洲日产国产| 久热久热在线精品观看| 成年美女黄网站色视频大全免费| 天美传媒精品一区二区| 在线观看一区二区三区激情| 69精品国产乱码久久久| 一二三四在线观看免费中文在 | 亚洲国产日韩一区二区| 午夜激情久久久久久久| 国产精品久久久久久久久免| 天天操日日干夜夜撸| 人人妻人人添人人爽欧美一区卜| 亚洲国产看品久久| 又大又黄又爽视频免费| 性色av一级| 国产成人精品久久久久久| 高清不卡的av网站| 亚洲精品久久成人aⅴ小说| 亚洲av国产av综合av卡| av女优亚洲男人天堂| 久久久久久久久久人人人人人人| videossex国产| 欧美最新免费一区二区三区| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 免费日韩欧美在线观看| 一级片免费观看大全| 国产黄色视频一区二区在线观看| 亚洲精品日韩在线中文字幕| 国产精品一二三区在线看| av播播在线观看一区| 亚洲成人一二三区av| 一区在线观看完整版| 女人被躁到高潮嗷嗷叫费观| 日韩精品有码人妻一区| 免费黄网站久久成人精品| 搡女人真爽免费视频火全软件| 18禁观看日本| 香蕉国产在线看| 成年人午夜在线观看视频| 人人妻人人添人人爽欧美一区卜| 精品99又大又爽又粗少妇毛片| 熟女电影av网| 91久久精品国产一区二区三区| 美女视频免费永久观看网站| 最近最新中文字幕大全免费视频 | 午夜福利视频精品| 成年动漫av网址| 亚洲美女黄色视频免费看| 婷婷色av中文字幕| 搡女人真爽免费视频火全软件| 伊人久久国产一区二区| 黑人高潮一二区| 精品视频人人做人人爽| av一本久久久久| 欧美老熟妇乱子伦牲交| 高清不卡的av网站| 国产av码专区亚洲av| 热99国产精品久久久久久7| 人成视频在线观看免费观看| 少妇熟女欧美另类| 国产一区二区在线观看日韩| 日日啪夜夜爽| 亚洲综合色网址| 成年动漫av网址| 国产片内射在线| 色5月婷婷丁香| 91在线精品国自产拍蜜月| www.av在线官网国产| 国产免费一区二区三区四区乱码| 中文字幕人妻丝袜制服| 狂野欧美激情性bbbbbb| 男人操女人黄网站| 亚洲少妇的诱惑av| 日本猛色少妇xxxxx猛交久久| 国产成人午夜福利电影在线观看| 日本爱情动作片www.在线观看| 看十八女毛片水多多多| 日本欧美国产在线视频| 丝袜人妻中文字幕| 国产欧美日韩一区二区三区在线| 国产成人免费观看mmmm| 国产xxxxx性猛交| www.熟女人妻精品国产 | 男女啪啪激烈高潮av片| 亚洲欧美清纯卡通| 欧美精品一区二区大全| 国产69精品久久久久777片| 日韩中字成人| 精品亚洲成a人片在线观看| 国产精品人妻久久久影院| 日韩电影二区| 青春草亚洲视频在线观看| 亚洲在久久综合| 丝袜美足系列| 男女下面插进去视频免费观看 | 视频区图区小说| 久久精品国产鲁丝片午夜精品| 精品久久蜜臀av无| 赤兔流量卡办理| 精品少妇久久久久久888优播| 亚洲av电影在线进入| 亚洲国产最新在线播放| 亚洲av欧美aⅴ国产| 在线观看www视频免费| 亚洲欧美成人综合另类久久久| 国产高清三级在线| 中文字幕最新亚洲高清| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇猛男粗大的猛烈进出视频| 国产av码专区亚洲av| 久久久久网色| 91aial.com中文字幕在线观看| 久久精品国产亚洲av天美| 在线观看三级黄色| 亚洲性久久影院| 嫩草影院入口| 男的添女的下面高潮视频| 欧美3d第一页| 国产精品秋霞免费鲁丝片| 亚洲国产毛片av蜜桃av| 国产高清国产精品国产三级| 黄色一级大片看看| www日本在线高清视频| 亚洲精品日韩在线中文字幕| 国产爽快片一区二区三区| 少妇的丰满在线观看| 热99久久久久精品小说推荐| 国产免费视频播放在线视频| 国产免费一级a男人的天堂| 国产亚洲一区二区精品| 久久久久久伊人网av| 久久精品aⅴ一区二区三区四区 | 日本欧美国产在线视频| 亚洲精品,欧美精品| 老熟女久久久| 多毛熟女@视频| 日韩,欧美,国产一区二区三区| 午夜福利影视在线免费观看| 丝袜人妻中文字幕| 99久久人妻综合| 午夜久久久在线观看| 国产伦理片在线播放av一区| 亚洲国产最新在线播放| 这个男人来自地球电影免费观看 | 在线观看www视频免费| 菩萨蛮人人尽说江南好唐韦庄| 国产淫语在线视频| 亚洲色图综合在线观看| 亚洲欧美精品自产自拍| 婷婷色av中文字幕| 国产欧美另类精品又又久久亚洲欧美| 色5月婷婷丁香| 亚洲国产最新在线播放| 最新的欧美精品一区二区| 三上悠亚av全集在线观看| 国产男人的电影天堂91| 免费看光身美女| 欧美 亚洲 国产 日韩一| 亚洲精品日韩在线中文字幕| 国产在线一区二区三区精| 一边亲一边摸免费视频| 日韩视频在线欧美| 国产男女内射视频| 国产精品99久久99久久久不卡 | 亚洲精品乱码久久久久久按摩| 免费日韩欧美在线观看| 日本黄大片高清| 丝袜脚勾引网站| 日韩av在线免费看完整版不卡| 最近的中文字幕免费完整| 国产黄频视频在线观看| 免费看av在线观看网站| 免费在线观看黄色视频的| 国产在线一区二区三区精| 国产成人免费观看mmmm| 夜夜爽夜夜爽视频| 国产精品免费大片| 日韩视频在线欧美| 欧美另类一区| 亚洲精品一二三| 亚洲,一卡二卡三卡| 欧美最新免费一区二区三区| 午夜福利影视在线免费观看| 成人毛片a级毛片在线播放| 亚洲综合精品二区| 日本-黄色视频高清免费观看| 久久国产亚洲av麻豆专区| 成人午夜精彩视频在线观看| 欧美xxⅹ黑人| 大香蕉97超碰在线| 国产精品久久久久久久电影| 我要看黄色一级片免费的| 肉色欧美久久久久久久蜜桃| 2021少妇久久久久久久久久久| 亚洲一码二码三码区别大吗| 国产成人aa在线观看| 国产精品无大码| 久久精品国产鲁丝片午夜精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品国产av在线观看| 久久午夜综合久久蜜桃| 亚洲三级黄色毛片| 欧美国产精品一级二级三级| 人人妻人人爽人人添夜夜欢视频| 久久热在线av| 亚洲精品一二三| 国产成人av激情在线播放| 不卡视频在线观看欧美| 天堂8中文在线网| 国产毛片在线视频| 天美传媒精品一区二区| 国产在线免费精品| 9191精品国产免费久久| av.在线天堂| 欧美日韩av久久| 久久久久久久久久成人| 日本av免费视频播放| 婷婷成人精品国产| 中文欧美无线码| 晚上一个人看的免费电影| 欧美日韩精品成人综合77777| av黄色大香蕉| 国产男女内射视频| 18禁国产床啪视频网站| 国产一区二区激情短视频 | 在线天堂中文资源库| 黑人猛操日本美女一级片| 久热这里只有精品99| 免费大片18禁| 五月开心婷婷网| 亚洲高清免费不卡视频| 免费女性裸体啪啪无遮挡网站| 久久久久网色| a级毛片在线看网站| 秋霞在线观看毛片| 亚洲色图 男人天堂 中文字幕 | 黄色一级大片看看| 男男h啪啪无遮挡| 亚洲欧美一区二区三区黑人 | 丰满饥渴人妻一区二区三| 69精品国产乱码久久久| 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频| 日韩熟女老妇一区二区性免费视频| 亚洲精品第二区| 国产精品人妻久久久影院| 性高湖久久久久久久久免费观看| 欧美成人午夜精品| 777米奇影视久久| 精品酒店卫生间| 亚洲欧美日韩另类电影网站| 国产欧美另类精品又又久久亚洲欧美| 国产欧美亚洲国产| 欧美成人午夜精品| 午夜激情久久久久久久| 国产男女超爽视频在线观看| 蜜桃国产av成人99| 一级毛片电影观看| 成年美女黄网站色视频大全免费| 男人舔女人的私密视频| 两个人看的免费小视频| 伊人亚洲综合成人网| 久久久国产欧美日韩av| 国产成人免费无遮挡视频|