• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-scale interaction between tearing modes and micro-turbulence in the HL-2A plasmas

    2020-08-26 04:57:38MinJIANG蔣敏YuhongXU許宇鴻ZhongbingSHI石中兵WulyuZHONG鐘武律WeiCHEN陳偉RuiKE柯銳JiquanLI李繼全XuantongDING丁玄同JunCHENG程鈞XiaoquanJI季小全ZengchenYANG楊曾辰PeiwanSHI施培萬JieWEN聞杰KairuiFANG方凱銳NaWU吳娜XiaoxueHE何小雪AnshuLIANG梁桉樹YiLIU劉儀Q
    Plasma Science and Technology 2020年8期

    Min JIANG (蔣敏), Yuhong XU (許宇鴻), Zhongbing SHI (石中兵),Wulyu ZHONG(鐘武律),Wei CHEN(陳偉),Rui KE(柯銳),Jiquan LI(李繼全),Xuantong DING (丁玄同), Jun CHENG (程鈞), Xiaoquan JI (季小全),Zengchen YANG (楊曾辰), Peiwan SHI (施培萬), Jie WEN (聞杰),Kairui FANG (方凱銳), Na WU (吳娜), Xiaoxue HE (何小雪),Anshu LIANG (梁桉樹), Yi LIU (劉儀), Qingwei YANG (楊青巍),Min XU (許敏) and HL-A Team

    1 Southwestern Institute of Physics, Chengdu 610041, People’s Republic of China

    2 Institute of Fusion Science, School of Physical Science and Technology, Southwest Jiaotong University,Chengdu 610031, People’s Republic of China

    3 School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract The influence of m/n = 2/1(m and n are poloidal and toroidal mode numbers)tearing modes on plasma perpendicular flows and micro-fluctuations has been investigated in HL-2A neutral beam injection heated L-mode plasmas. It is found that the local perpendicular rotation velocity and turbulence energy are modulated by the alternation between the island X-point and O-point of the naturally rotating tearing modes. Cross-correlation analysis indicates that the modulation of density fluctuations by the tearing mode is not only limited to the island region,but also occurs in the edge region near the last closed flux surface. The turbulence exhibits distinct spectral characteristics inside and outside the island region. In addition, it is observed that the particle flux near the strike point is also significantly impacted by the tearing modes. The experimental evidence reveals that there are strong core-edge interactions between the core tearing modes and the edge transport.

    Keywords: tearing modes, turbulence, particle flux, modulation, core-edge interaction

    1. Introduction

    Figure 1.The layouts of the diagnostic systems used in this work:(a)in the poloidal cross section;(b)in the toroidal cross section(top view).The definitions of the positive poloidal (θ) and toroidal angles (φ), along with the reference phases, are illustrated in the figure.

    Tearing modes, which form magnetic islands via the reconnection process, are ubiquitous in astrophysical and laboratory plasmas, such as the Earth’s magnetosphere and magnetically confined fusion plasma [1]. They are found to have a significant influence on plasma profiles and cross-field transport in tokamaks [2-7], and even lead to plasma disruption [8].However, experimental evidence suggests that the tearing mode contributes to rather than resists the formation of an internal transport barrier, due to the enhancedE×Bshear at the island boundary [4, 5, 9-11]and/or the accumulation of the heat flux at the island X-point [12].Experimental results on the DIII-D [13, 14], KSTAR [10],EAST [15], and HL-2A [16]tokamaks all verify that the turbulent fluctuations across the island region are significantly affected by the island topology structure both in the naturally rotating island and static island cases. A diffusive transport model [17]indicates an island-width threshold, only above which the magnetic island modifies the plasma profiles and turbulent transport, which has been corroborated by recent experimental observations [13, 16]. In addition, the turbulence can modify the bootstrap current, and thus stabilize or destabilize the tearing mode, depending on the direction of the gradient of the fluctuation intensity [18, 19]. Simulation results have also revealed that the turbulence modifies the threshold of magnetic island formation predicted by the conventional theory of spontaneous magnetic reconnection in a current sheet [20-22]. Therefore, detailed investigations on the interaction among multi-scale modes (tearing mode,plasma flows, and turbulence) are of paramount importance for thoroughly understanding tearing mode physics and island-induced transport, which will ultimately lead to developing a more effective method of tearing mode control and optimization of the plasma performance in fusion devices,such as ITER.

    In this work, the effect of the 2/1 naturally rotating tearing mode on plasma perpendicular flow, micro-fluctuations, and particle flux was investigated in HL-2A neutral beam injection (NBI)-heated plasmas. The local plasma rotation velocity and turbulent fluctuations are modulated by the rotation frequency of the island, due to the alternation of the island O- and X-points. Cross-correlation analysis shows that the modulation of the density fluctuations by the island is not only limited to the island region, but also occurs in the edge region. In addition, it is observed that the core tearing mode can modulate the edge particle flux near the strike point.The rest of this paper is organized as follows: the experimental setup is introduced in section 2. The experimental results and a discussion are presented in section 3.Finally,in section 4, our conclusions are drawn.

    2. Experimental setup

    In this work, the experiments were conducted at the HL-2A tokamak, which is a medium-sized tokamak with a major radiusR0= 165 cm and minor radiusa= 40 cm.The plasma was NBI-heated under a lower-single-null divertor configuration.The layouts of the main diagnostics used in this study are shown in figure 1, viewed from the poloidal (figure 1(a))and toroidal cross sections (top view, figure 1(b)), respectively. There are 16 window ports in the toroidal direction,with a 22.5°separation between each port.The definitions of the positive poloidal (θ) and toroidal angles (φ) (marked by arc arrows),along with the reference phases,are illustrated in the figure. TheTeprofiles are measured by a 60-channel electron cyclotron emission (ECE) radiometer (located at φ = 0°) with temporal-spatial resolutions of 5 μs and 1 cm[23]. The evolution and mode structure of the magnetic island, as well as the micro temperature fluctuations () are detected using two-dimensional electron cyclotron emission imaging (ECEI) diagnostics (located at φ = 0°) with a horizontal coverage of 20 cm and a vertical coverage of 52 cm in the plasma[24].The temporal and spatial resolutions are 2 μs and 1.2-2.3 cm, respectively. The perpendicular rotation velocity (V⊥) and density fluctuationswith characteristic perpendicular wavenumber (k⊥) are measured by a novel U-band microwave Doppler backscattering (DBS) reflectometer system operated in the X-mode polarization [25].It is installed at the φ = 0° port 12 cm below the midplane, as shown in figure 1. The long wavelength turbulentwithkθρs<0.8is also measured via beam emission spectroscopy(BES) by detecting the light emission from the neutral beam[26].It has been configured in a 12(radial)×2(poloidal)array near the midplane, covering the radial region ofR≈193-202 cm. The line of sight of the BES is located at φ = 202.5°.It has a high spatial resolution,e.g.,Δr≈ 0.8 cm and Δz≈ 1.2 cm. The edge particle flux is measured by the probes installed on the inner and outer divertor target plate at φ = 45°, where 11 detectors are aligned vertically, as illustrated in figure 1. The magnetic fluctuations of the tearing mode are detected by Mirnov coils, with 18 coils poloidally and 10 coils toroidally arranged around the device wall. The poloidal (m) and toroidal mode numbers (n) of the tearing mode can be deduced from the Mirnov signals,which turn out to bem= 2 andn= 1.

    Figure 2. Time evolutions of the discharge parameters of shot 36 656, with (a) the plasma current Ip and the loop voltage Vloop,(b)the line-averaged electron density and NBI power PNBI,(c)the core electron temperature Te,0 and ion temperature Ti,0, (d) the magnetic perturbation?B ?t and (e) the spectrum of? B ?t.

    3. Results and discussion

    Figure 2 displays the discharge parameters of the HL-2A shot 36 656, with the plasma currentIp≈160 kA and the lineaveraged plasma density≈ 1 .1 × 1 019m?3, as shown in figures 2(a) and (b). The NBI power is ramped up in two steps, 250 and 500 kW. With each increment of NBI power, the core electron (Te,0) and ion temperature (Ti,0) are elevated by 20% and 50%, respectively (see figure 2(c)).Here, it is interesting to find thatTe,0>Ti,0. This might result from the ohmic heating playing a significant role(POH=Ip×Vloop≈300- 320 kW, see figure 2(a)), and also the NBI power mainly heating the electrons in a relatively lowTecondition. As shown in figures 2(d) and (e), both the magnitude and frequency of the magnetic fluctuations(induced by the tearing mode)decrease dramatically with the increase of the NBI power.Figure 3 compares the evolutions of the mode structure of the tearing modes withPNBI= 0 and 500 kW. The result shows that the magnetic island center locates atR≈ 193 cm (q= 2 surface), and it rotates in the electron diamagnetic drift (counter-clockwise) direction both before and during NBI heating. Before the NBI is switched on, the island width is about 8 cm, and it drops to 5 cm with 500 kW of NBI heating power.

    Shown in figure 4 are the temporal evolutions of the perpendicular flow and micro-fluctuations (located near theq= 2 surface, poloidally across the island X- and O-points)with the rotation of the 2/1 island,where(a)is theTesignal atR= 191 cm inside theq= 2 surface measured by ECE, (b)and (c) the perpendicular flowV⊥and the envelope of(k⊥ρs≈2.4,located atR≈192.5 cm)in the frequency range of 50-300 kHz measured by DBS, (d) the envelope of(k θρs<0.8,located atR≈193 cm)in the frequency range of 10-75 kHz measured by BES, and (e) the envelope of the(located atR≈ 193 cm andZ≈ 1.1 cm) in the frequency range of 5-100 kHz measured by ECEI. Different frequency ranges are chosen for each diagnostic according to the main spectral power of the fluctuations.As shown in figure 1,these diagnostics detect signals at different locations, so there must be a phase lag (Δξ) between the time evolutions of theV⊥measured by DBS andby BES and those ofTemeasured by ECE, i.e.,Δξ=mΔθ?nΔφ, where Δθ and Δφ are the separations of poloidal and toroidal angles between the DBS (BES) and ECE, respectively. Due to the island rotation with a frequency offTM≈0.6 kHz, this offset translates to an effective time lag (Δτ) between theV⊥()andTesignals, i.e., Δτ= Δξ(2πfTM). Given the detecting locations the helical phase differences areΔξ∣DBS≈ ? 60°and Δξ∣BES≈ 160°, so the time lags are Δτ∣DBS≈?0.278 ms andΔτ∣BES≈ 0.741 ms relative to theTemeasurement.The time sequences shown in figures 4(b)-(d)have already been shifted byΔτ∣DBSandΔτ∣BES,respectively,and hence, they are in sync (synchronization) with theTeandmeasurements. The envelope ofwithin a given frequency range Δf= [f1,f2],ψ(t), is defined asψ(t)=where(f)is the Fourier transform of(t). The envelope of is calculated in a similarway. The envelope signals shown in figures 4(d) and (e) are band-pass filtered within 0.4-1 kHz. The peaks of theTesignal inside theq= 2 surface(see figure 4(a))correspond to the island X-point passing-by times, and the relatively flat phases correspond to the O-point, which are marked by the vertical dashed lines. The results show that both the local perpendicular velocity and turbulent fluctuations are modulated by the rotation of the island. At the island O-point, theV⊥is about 2-3 times smaller than that at the X-point, suggesting that the island geometry damps the perpendicular flow. For the fluctuations, the turbulence energy is the minimum at the O-point and the maximum at the X-point, in agreement with the change in the trend of the temperature gradient at the O-and X-point regions.This indicates that the pressure gradient driven effect plays a more dominant role in the dynamic of the turbulence at the island region than the flow shear suppression effect,even if theE×Bshear is also stronger at the X-point than the O-point, consistent with previous observations [10, 13, 16, 27, 28].

    Figure 3.Two-dimensional images of tearing modes,(a)-(d)before NBI heating and(e)-(h)during 500 kW NBI heating.The dashed circles denote the q = 2 surface (#36656).

    Figure 4.Influence of the island rotation on plasma flows and microfluctuations. (a) Electron temperature at R = 191 cm measured by ECE, (b) and (c) the perpendicular velocity and the envelope of density fluctuations (R ≈192.5 cm) in the frequency range of 50-300 kHz measured by DBS, (d) the envelope of density fluctuations (R ≈193 cm) in the frequency range of 10-75 kHz measured by BES, and (e) the envelope of the temperature fluctuations(R ≈ 193 cm and Z ≈ 1.1 cm)in the frequency range of 5-100 kHz measured by ECEI.As the helical phase lags between the DBS (BES) and ECE measurements, the x-axis of the figure is shifted tot+ Δτin order to keep the signals in sync, with Δ τ ( a) = Δ τ ( e) =0, Δ τ ( b ) = Δ τ (c ) ≈ ?0.278 ms and Δτ(d) ≈ 0.741 ms.The island O-point passing-by times are marked by the vertical dashed lines (#36656).

    Figure 5.Cross-correlation between the reference signal Te(Rref = 190 cm, t) located inside the q = 2 surface and the envelope signals ψ ( R ,t )at different radial regions.The coherence coefficient γ∣ f ≈fTM and cross-phaseΔφ∣f ≈fTM at the tearing mode frequency are shown in(a)and(b),respectively.The island region is shaded in the figure (#36656).

    Figure 6.Two-point poloidal correlation of the ne (by BES)at different radial regions(illustrated by the circles in figure 5(a)),with the two signals poloidally spaced by 1.2 cm.Location 3 is inside the island,poloidally across the O-point and X-point periodically,and location 7 is outside the island toward the plasma edge. Plotted in (a) and (d) are the cross spectral power∣ P1 2∣. (b) and (e) are the cross-phase θ12.(c) and (f) are the conditional spectrum S ( k θ∣f) in the frequency ranges of 10-80 and 10-40 kHz, respectively, in order to exclude the low frequency tearing mode and its harmonics (#36656).

    Radially resolved BES measurements allow us to investigate the modulation area of the turbulent fluctuations by the island. Figure 5 shows the cross-correlation between the referenceTe(Rref=190 cm,t) signal located inside theq= 2 surface (the minimum (maximum) amplitude corresponding to the island O-point (X-point) phase) and the envelopes of thesignals at different radial positionsψ(R,t), with (a) and (b) denoting the coherence coefficientγ∣f≈fTMand cross-phaseΔφ∣f≈fTMat the tearing mode frequency,respectively.As illustrated in figure 1(b),the toroidal separation between the BES and ECE is about ?160°, and therefore, the cross-phase shown in figure 5(b) has been shifted by the same value to keep the BES measurements in sync with the ECE measurements. As shown in figure 5(a),there are two regions with high coherence:one is at the island region (locations 1?4), and the other is at the edge region close to the last closed flux surface (locations 9 and 10),revealing that the modulation of the turbulence is not only confined to the island region, but also in the far edge region,which is different from the previous observations in DIII-D where the modulation is localized at the island region[13, 27]. Within the island region, the cross-phase is close to zero (see figure 5(b)), indicating that theenvelopes are in phase with the helical perturbation inTe(Rref,t), i.e., thelevel is the minimum at the island O-point and the maximum at X-point, in agreement with previous results in other tokamaks[10, 13, 28]. Modulation on the edge turbulence by the core islands has not been reported before, which somehow implies some kind of core-edge interaction.

    The turbulence properties inside the island and outside the island are further surveyed for a naturally rotating island.Figure 6 shows the cross-correlation of twonesignals which are poloidally spaced by 1.2 cm,with location 3 inside the island (poloidally across the island O- and X-points periodically) and location 7 outside the island toward the plasma edge, as illustrated by the circles in figure 5(a).Plotted in figures 6(a) and (d) are the cross-powerand figures 6(b) and (e) are the cross-phaseθ12(f) =Shown in figures 6(c)and (f) are the conditional spectrumS(k θ∣f)(defined asS(kθ∣f) =S(kθ,f)S(f)whereS(f) = ∑kθS(kθ,f)andS(kθ,f)is the local wavenumber frequency spectrum calculated using the two-point correlation technique [29]) for the frequency ranges of 10-80 kHz and 10-40 kHz,respectively,in order to exclude the low frequency tearing mode and its harmonics. As shown in figures 6(a) and (d), the turbulence intensity inside the island, which is the average over the island rotation, is several times smaller than that outside the island,consistent with the observations in the DIII-D[13,27]and KSTAR [10]tokamaks. Moreover, the turbulence spectrum inside the island appears in a wider frequency band(f< 80 kHz, figure 6(a)) than that outside the island region(f< 40 kHz, figure 6(d)). It is interesting to find that the spectral power inside the island region decreases non-monotonically with the increase of the frequency,e.g.,a drop atf≈10 kHz, leading to a discontinuity in the cross-phase at about 10 kHz, see figures 6(a) and (b). Inside the island region, the cross-phase (figure 6(b)) and the conditional spectrum(figure 6(c)) show that the high frequency turbulence propagates in the electron diamagnetic drift direction in the laboratory frame, with the spectrum having a peak atkθ≈?1.65 cm?1. Outside the island region, the cross-phase(figure 6(e)) and the conditional spectrum (figure 6(f)) indicate that the turbulent fluctuations propagate in the ion diamagnetic drift direction in the laboratory frame, with the spectra peaking atkθ≈ 1 cm?1.The reason for the reversal of the propagation directions inside and outside the island is not clear yet, but could be related to different turbulence properties in these two regions, such as trapped electron modes and ion temperature gradient modes. The propagation direction was found to reverse across the island region in the static island case in KSTAR [10].

    Figure 7. (a) Temporal evolutions of Te at R = 191 cm (inside but close to the q = 2 surface), (b) a spectrogram of the ion saturation current Jsat at the divertor target plate (close to the strike point),(c) the integrated spectral power of Jsat in the frequency range of 0-15 kHz, and (d) the line emission intensity of the Dα at the divertor target plate. Taking into account the helical phase lags between the different diagnostics,the x-axis of the figure is shifted to t + Δτ, with Δτ(a) = 0, Δτ(b) = Δτ(c) ≈ 0.625 ms, and Δτ(d) ≈ 0.521 ms (#36656).

    In this work,it is also found that the tearing mode in the core region has an impact on the edge particle flux.Shown in figure 7(a) is the temporal evolution ofTeatR= 191 cm(inside theq= 2 surface), which depicts the rotation of the island, and the island X- and O-point phases have been marked in the figure. Figures 7(b) and (c) are the spectrum and the integrated spectral power within 0-15 kHz of the ion saturation current(Jsat)signal at the divertor target plate close to the strike point.Plotted in figure 7(d)is the Dαintensity at the divertor target. As illustrated in figure 1, the divertor probes, divertor Dαarray, and ECE radiometer locate at different poloidal and toroidal angles, which leads to helical phase lags (Δξ∣probe=135°,Δξ∣Dα= 1 12.5°), and hence time lags(Δτ∣probe= Δξ∣probe(2πfTM) ≈0.625 ms ,Δτ∣Dα=Δξ∣Dα(2πfTM) ≈0.521 ms ) between theJsat, Dαintensity andTesignals.To make theJsatand Dαevolutions in sync with theTe,the time sequences shown in figures 7(b)-(d)have been shifted byΔτ∣ probe andΔτ∣Dα, respectively. TheJsatmeasurements shown in figures 7(b)and(c)reveal that the 2/1 tearing mode modulates the particle flux at the strike point, and can influence the particle transport nonlocally, which is further verified by the evolutions of the Dαintensity signal (see figure 7(d)).At the instant of the island X-point passing by,the particle flux enhances substantially, while for the island O-point passing-by phases, it is quite small. We also checked other channels ofJsatsignals at the target plate but far away from the strike point, and found that there was no modulation effect. This core-edge interaction is also consistent with the BES measurements (see figure 5(a)), however, its physical mechanism is still a mystery and will be our future focal topic.

    4. Conclusions

    In this work, the influence of the naturally rotatingm/n=2/1 macro-scale tearing mode on the meso-scale plasma flows and the micro-scale turbulent fluctuations is investigated. It is observed that the tearing mode modulates the plasma perpendicular flow, density, and temperature turbulence at the island region, with the minimum values at island O-point and the maximum values at the X-point. The crosscorrelation analysis indicates that the modulation of the turbulence is not only confined to the island region, but also occurs on the plasma edge region close to last closed flux surface. The turbulence inside the island area has quite different spectrum compared with that of the outside island region,and propagates in opposite directions in the laboratory frame. In addition, it is found that the 2/1 tearing mode modulates the edge particle flux near the strike point, suggesting a significant core-edge interaction between the core MHD mode and the edge transport.

    Acknowledgments

    The author M Jiang would like to sincerely thank the HL-2A team for their support of the experiments.This work is partly supported by the National Key R&D Program of China(Nos. 2017YFE0301201 and 2017YFE0301106), partly by National Natural Science Foundation of China (Nos.11705051, 11820101004, 11875021 and 11775069), and partly by the Young Elite Scientists Sponsorship Program by CAST (No. 2018QNRC001).

    欧美日本视频| 香蕉丝袜av| 亚洲av免费高清在线观看| 亚洲久久久久久中文字幕| 成人永久免费在线观看视频| 最好的美女福利视频网| 国内毛片毛片毛片毛片毛片| 性欧美人与动物交配| 国产探花在线观看一区二区| 国产精品综合久久久久久久免费| 九色成人免费人妻av| 久久九九热精品免费| 精品日产1卡2卡| 久久久久免费精品人妻一区二区| 日韩欧美精品v在线| 亚洲狠狠婷婷综合久久图片| 国产麻豆成人av免费视频| 亚洲在线观看片| 激情在线观看视频在线高清| 国产主播在线观看一区二区| 一区二区三区免费毛片| 国产 一区 欧美 日韩| 亚洲精品一卡2卡三卡4卡5卡| 18禁黄网站禁片免费观看直播| 舔av片在线| 欧美日韩福利视频一区二区| 免费在线观看日本一区| 亚洲专区中文字幕在线| 国产精品精品国产色婷婷| 国产麻豆成人av免费视频| 日日摸夜夜添夜夜添小说| 国内精品美女久久久久久| 免费av毛片视频| 老鸭窝网址在线观看| 校园春色视频在线观看| 欧美区成人在线视频| 国产主播在线观看一区二区| 午夜福利视频1000在线观看| 脱女人内裤的视频| 男人舔奶头视频| 老司机深夜福利视频在线观看| 欧美一区二区精品小视频在线| 亚洲av成人av| 国产成人av教育| av专区在线播放| 国产免费一级a男人的天堂| av欧美777| 岛国在线免费视频观看| 国产精品 欧美亚洲| 岛国在线观看网站| 色噜噜av男人的天堂激情| 女人十人毛片免费观看3o分钟| 欧美3d第一页| 免费看光身美女| 国产成人系列免费观看| 一区二区三区免费毛片| 午夜久久久久精精品| 波野结衣二区三区在线 | 国产伦人伦偷精品视频| 熟女少妇亚洲综合色aaa.| 国内精品一区二区在线观看| 国产一区在线观看成人免费| 成人无遮挡网站| 高清在线国产一区| 日本黄大片高清| 五月玫瑰六月丁香| av女优亚洲男人天堂| 日韩大尺度精品在线看网址| 欧美又色又爽又黄视频| 91在线精品国自产拍蜜月 | 丰满人妻一区二区三区视频av | 成人高潮视频无遮挡免费网站| 一级a爱片免费观看的视频| 国产伦人伦偷精品视频| 人妻久久中文字幕网| 精品久久久久久久久久久久久| 又黄又爽又免费观看的视频| 中文字幕av成人在线电影| 日韩欧美三级三区| 国产中年淑女户外野战色| 人妻丰满熟妇av一区二区三区| 色哟哟哟哟哟哟| 免费高清视频大片| 97超级碰碰碰精品色视频在线观看| 在线观看舔阴道视频| 国产三级在线视频| 男女视频在线观看网站免费| 最新美女视频免费是黄的| 夜夜看夜夜爽夜夜摸| 99热只有精品国产| 狂野欧美白嫩少妇大欣赏| 丁香六月欧美| 97人妻精品一区二区三区麻豆| 18禁美女被吸乳视频| 午夜福利成人在线免费观看| 国产精品久久久久久久电影 | 搡老熟女国产l中国老女人| 午夜福利18| 99国产精品一区二区蜜桃av| 欧美大码av| 欧美三级亚洲精品| 亚洲精品国产精品久久久不卡| 可以在线观看的亚洲视频| 亚洲中文日韩欧美视频| 色噜噜av男人的天堂激情| 国产精品久久视频播放| 99热这里只有是精品50| 2021天堂中文幕一二区在线观| 在线观看美女被高潮喷水网站 | 精品一区二区三区av网在线观看| 波多野结衣高清无吗| 极品教师在线免费播放| 精品久久久久久久久久久久久| 999久久久精品免费观看国产| 99在线人妻在线中文字幕| 中文字幕精品亚洲无线码一区| 在线观看舔阴道视频| av国产免费在线观看| 久久亚洲真实| 美女被艹到高潮喷水动态| 亚洲av成人不卡在线观看播放网| 丝袜美腿在线中文| 亚洲欧美日韩高清在线视频| 亚洲乱码一区二区免费版| 18禁美女被吸乳视频| 国产精品永久免费网站| 在线观看av片永久免费下载| 国内毛片毛片毛片毛片毛片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 伊人久久大香线蕉亚洲五| 天天添夜夜摸| www.熟女人妻精品国产| 日韩人妻高清精品专区| 国产精品久久久久久人妻精品电影| 亚洲第一电影网av| 好男人电影高清在线观看| 欧美性猛交╳xxx乱大交人| 老司机福利观看| 日韩中文字幕欧美一区二区| 国产精品女同一区二区软件 | 国产精品亚洲av一区麻豆| 99久久九九国产精品国产免费| 日韩欧美一区二区三区在线观看| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av涩爱 | 男人的好看免费观看在线视频| 国内精品久久久久精免费| 97碰自拍视频| 51午夜福利影视在线观看| svipshipincom国产片| 日韩中文字幕欧美一区二区| 久久久久久大精品| 欧美中文综合在线视频| 国内少妇人妻偷人精品xxx网站| 深爱激情五月婷婷| 亚洲久久久久久中文字幕| 国产午夜福利久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 久久伊人香网站| 精品一区二区三区视频在线观看免费| 一个人免费在线观看的高清视频| 黄色丝袜av网址大全| 精品一区二区三区人妻视频| 亚洲七黄色美女视频| 精品久久久久久久久久久久久| 老熟妇仑乱视频hdxx| 天美传媒精品一区二区| 日韩大尺度精品在线看网址| 国产精品香港三级国产av潘金莲| 在线观看日韩欧美| 国产精品99久久99久久久不卡| 男女床上黄色一级片免费看| 蜜桃亚洲精品一区二区三区| 老汉色∧v一级毛片| 两个人看的免费小视频| 国产成人系列免费观看| 国产欧美日韩一区二区精品| 老熟妇乱子伦视频在线观看| 亚洲无线在线观看| 精品久久久久久久久久久久久| 在线观看av片永久免费下载| www.www免费av| 高潮久久久久久久久久久不卡| 精品人妻1区二区| 男女视频在线观看网站免费| 午夜日韩欧美国产| 国产私拍福利视频在线观看| 欧美中文日本在线观看视频| 黄色成人免费大全| 国产一区二区三区在线臀色熟女| 亚洲在线自拍视频| 国产伦精品一区二区三区视频9 | 成人av一区二区三区在线看| 一个人观看的视频www高清免费观看| 欧美一级a爱片免费观看看| 亚洲真实伦在线观看| 夜夜爽天天搞| 国产午夜精品论理片| 丰满人妻一区二区三区视频av | 欧美一区二区精品小视频在线| 日日干狠狠操夜夜爽| 夜夜躁狠狠躁天天躁| 午夜影院日韩av| 叶爱在线成人免费视频播放| 国产视频内射| 亚洲色图av天堂| 无遮挡黄片免费观看| www.www免费av| 午夜日韩欧美国产| 一二三四社区在线视频社区8| 老司机午夜福利在线观看视频| 国产一区二区三区视频了| 男女之事视频高清在线观看| 免费在线观看日本一区| 男人舔女人下体高潮全视频| 色视频www国产| 亚洲人成网站在线播放欧美日韩| 日韩欧美三级三区| 国产欧美日韩一区二区精品| 国产精品98久久久久久宅男小说| 国产精品久久久人人做人人爽| 午夜福利在线观看吧| 一级毛片高清免费大全| 亚洲av免费在线观看| e午夜精品久久久久久久| 小说图片视频综合网站| 超碰av人人做人人爽久久 | 久久亚洲精品不卡| 桃色一区二区三区在线观看| 日韩欧美 国产精品| 欧美成人性av电影在线观看| 亚洲中文日韩欧美视频| 日韩欧美三级三区| 成人18禁在线播放| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频| 欧美激情久久久久久爽电影| 舔av片在线| 国产高清三级在线| www日本黄色视频网| 久久久国产成人免费| 色老头精品视频在线观看| 有码 亚洲区| 黄色丝袜av网址大全| 久久人人精品亚洲av| 免费观看的影片在线观看| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站| 欧美大码av| 亚洲成人中文字幕在线播放| 色视频www国产| 三级国产精品欧美在线观看| 男女视频在线观看网站免费| 亚洲欧美日韩东京热| 女生性感内裤真人,穿戴方法视频| 亚洲久久久久久中文字幕| 婷婷精品国产亚洲av在线| 99riav亚洲国产免费| 国产精品亚洲美女久久久| 亚洲国产欧洲综合997久久,| 在线播放国产精品三级| 男女下面进入的视频免费午夜| 日韩有码中文字幕| 999久久久精品免费观看国产| 日韩av在线大香蕉| 熟妇人妻久久中文字幕3abv| 淫秽高清视频在线观看| 午夜视频国产福利| 国产国拍精品亚洲av在线观看 | www日本黄色视频网| 三级毛片av免费| 亚洲成人免费电影在线观看| 久久天躁狠狠躁夜夜2o2o| 在线观看舔阴道视频| АⅤ资源中文在线天堂| 99热这里只有是精品50| 久久中文看片网| 欧美日韩亚洲国产一区二区在线观看| 97人妻精品一区二区三区麻豆| 狂野欧美白嫩少妇大欣赏| 精品国产亚洲在线| 高清毛片免费观看视频网站| 国产精品99久久99久久久不卡| 我要搜黄色片| 香蕉久久夜色| 嫩草影院精品99| 欧美最黄视频在线播放免费| 亚洲av美国av| 两个人看的免费小视频| 久久中文看片网| 亚洲国产中文字幕在线视频| 国产不卡一卡二| 国产中年淑女户外野战色| 精品一区二区三区人妻视频| 久久午夜亚洲精品久久| 亚洲电影在线观看av| 国产精品 国内视频| 又黄又粗又硬又大视频| 少妇裸体淫交视频免费看高清| 成人精品一区二区免费| 国产三级黄色录像| 脱女人内裤的视频| 天堂√8在线中文| 尤物成人国产欧美一区二区三区| 黄色女人牲交| svipshipincom国产片| 97人妻精品一区二区三区麻豆| 精品无人区乱码1区二区| av在线蜜桃| 一边摸一边抽搐一进一小说| 精品不卡国产一区二区三区| 午夜老司机福利剧场| 日韩精品中文字幕看吧| 亚洲欧美一区二区三区黑人| 老司机深夜福利视频在线观看| 嫩草影院精品99| 麻豆一二三区av精品| 天堂动漫精品| 国产成人a区在线观看| 国产免费av片在线观看野外av| 中出人妻视频一区二区| www日本黄色视频网| 最新在线观看一区二区三区| 免费看a级黄色片| 亚洲人与动物交配视频| 嫩草影视91久久| 亚洲av免费高清在线观看| 久久香蕉精品热| 欧美成人a在线观看| 成人高潮视频无遮挡免费网站| 欧美一区二区亚洲| 久久精品亚洲精品国产色婷小说| 欧美性猛交╳xxx乱大交人| 成人精品一区二区免费| 精品久久久久久久毛片微露脸| 免费观看精品视频网站| 波多野结衣高清作品| 精品人妻一区二区三区麻豆 | xxxwww97欧美| 国产三级在线视频| 少妇的丰满在线观看| av天堂在线播放| 操出白浆在线播放| 欧美高清成人免费视频www| 亚洲av免费在线观看| 中文字幕人妻熟人妻熟丝袜美 | 欧美最黄视频在线播放免费| 亚洲国产欧美人成| 美女被艹到高潮喷水动态| 国产国拍精品亚洲av在线观看 | 免费av毛片视频| 国产精品久久久久久久久免 | 国产蜜桃级精品一区二区三区| 校园春色视频在线观看| 久久这里只有精品中国| 日本三级黄在线观看| 中文字幕人成人乱码亚洲影| 亚洲av不卡在线观看| av国产免费在线观看| 亚洲第一欧美日韩一区二区三区| 在线观看一区二区三区| 高清在线国产一区| 国产私拍福利视频在线观看| 久久久精品大字幕| 亚洲熟妇熟女久久| 免费观看精品视频网站| 丰满乱子伦码专区| 在线国产一区二区在线| 床上黄色一级片| 啦啦啦韩国在线观看视频| 99在线人妻在线中文字幕| 国产精品电影一区二区三区| 国产一区二区亚洲精品在线观看| 99热精品在线国产| 淫秽高清视频在线观看| 国产成+人综合+亚洲专区| 国产精品精品国产色婷婷| 中文资源天堂在线| 91在线精品国自产拍蜜月 | 日韩亚洲欧美综合| 日本免费一区二区三区高清不卡| 99热6这里只有精品| 大型黄色视频在线免费观看| 国产日本99.免费观看| 男女午夜视频在线观看| 精品午夜福利视频在线观看一区| 婷婷六月久久综合丁香| 日韩欧美国产在线观看| 老汉色av国产亚洲站长工具| 小蜜桃在线观看免费完整版高清| 国内毛片毛片毛片毛片毛片| 国产精品国产高清国产av| 夜夜爽天天搞| 亚洲电影在线观看av| 1024手机看黄色片| 日韩精品青青久久久久久| 热99re8久久精品国产| 成人国产一区最新在线观看| 日本撒尿小便嘘嘘汇集6| 欧美日本亚洲视频在线播放| 蜜桃亚洲精品一区二区三区| 国产蜜桃级精品一区二区三区| 国产av一区在线观看免费| 久久久成人免费电影| 观看免费一级毛片| 国产一区二区激情短视频| 色综合婷婷激情| 黄色视频,在线免费观看| 搞女人的毛片| 久久天躁狠狠躁夜夜2o2o| 在线天堂最新版资源| 成年人黄色毛片网站| 久久久久久人人人人人| 日本黄色片子视频| 亚洲美女视频黄频| 国产综合懂色| 亚洲国产欧美人成| 内射极品少妇av片p| 91久久精品国产一区二区成人 | av视频在线观看入口| 一个人看的www免费观看视频| 最后的刺客免费高清国语| 日本黄色视频三级网站网址| 久久久国产成人免费| 嫩草影视91久久| 国产69精品久久久久777片| 在线视频色国产色| 亚洲精品乱码久久久v下载方式 | 精品国内亚洲2022精品成人| a级毛片a级免费在线| 韩国av一区二区三区四区| 制服丝袜大香蕉在线| 亚洲色图av天堂| 男插女下体视频免费在线播放| 国产一级毛片七仙女欲春2| 99精品久久久久人妻精品| 亚洲成av人片在线播放无| 免费大片18禁| 婷婷精品国产亚洲av| 美女cb高潮喷水在线观看| 老熟妇仑乱视频hdxx| 国产视频内射| 国产精品av视频在线免费观看| 久久久久精品国产欧美久久久| 宅男免费午夜| 波多野结衣巨乳人妻| 一个人免费在线观看电影| 国语自产精品视频在线第100页| 男人的好看免费观看在线视频| 久久久久久人人人人人| 久久精品国产99精品国产亚洲性色| 精品国产三级普通话版| 日韩大尺度精品在线看网址| 深爱激情五月婷婷| 在线观看66精品国产| 青草久久国产| av中文乱码字幕在线| 老司机午夜福利在线观看视频| 男女做爰动态图高潮gif福利片| 久久久久久久亚洲中文字幕 | xxxwww97欧美| 久久婷婷人人爽人人干人人爱| 亚洲在线观看片| 噜噜噜噜噜久久久久久91| 99国产精品一区二区三区| 精品久久久久久久末码| 人妻夜夜爽99麻豆av| av片东京热男人的天堂| 99久久精品热视频| 99久久精品一区二区三区| 午夜亚洲福利在线播放| 国产视频一区二区在线看| 欧美日韩福利视频一区二区| 色在线成人网| 国产又黄又爽又无遮挡在线| 亚洲国产欧美人成| 成人国产综合亚洲| 99在线视频只有这里精品首页| 女人高潮潮喷娇喘18禁视频| 亚洲国产中文字幕在线视频| 国产av不卡久久| 好看av亚洲va欧美ⅴa在| 欧美成人a在线观看| 1000部很黄的大片| 老司机午夜福利在线观看视频| 久久精品国产清高在天天线| 中文字幕av在线有码专区| 最近最新中文字幕大全免费视频| 999久久久精品免费观看国产| 国产日本99.免费观看| 搡女人真爽免费视频火全软件 | 91麻豆精品激情在线观看国产| 免费观看精品视频网站| 一夜夜www| 日本黄色视频三级网站网址| 桃色一区二区三区在线观看| 午夜免费观看网址| 午夜日韩欧美国产| 久久天躁狠狠躁夜夜2o2o| 久久久久久九九精品二区国产| 蜜桃亚洲精品一区二区三区| 国产成年人精品一区二区| 欧美乱码精品一区二区三区| 日韩欧美精品免费久久 | 久久久国产精品麻豆| 婷婷亚洲欧美| 欧美日韩福利视频一区二区| 国产一区在线观看成人免费| 国产探花在线观看一区二区| 国产高清有码在线观看视频| 精品国产亚洲在线| 欧美黄色淫秽网站| 亚洲av美国av| 内射极品少妇av片p| 午夜福利视频1000在线观看| 久久人人精品亚洲av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲av一区综合| 中文亚洲av片在线观看爽| x7x7x7水蜜桃| 国产精品久久久久久精品电影| 小蜜桃在线观看免费完整版高清| 日本 欧美在线| 又粗又爽又猛毛片免费看| 欧洲精品卡2卡3卡4卡5卡区| 琪琪午夜伦伦电影理论片6080| 国产精品一区二区三区四区免费观看 | 亚洲无线观看免费| 欧美黑人巨大hd| 大型黄色视频在线免费观看| 国产久久久一区二区三区| 久久精品综合一区二区三区| 手机成人av网站| 国产精华一区二区三区| 国产高清视频在线播放一区| bbb黄色大片| 欧美bdsm另类| 99精品在免费线老司机午夜| 亚洲狠狠婷婷综合久久图片| 99国产精品一区二区三区| 夜夜爽天天搞| 久久欧美精品欧美久久欧美| 色尼玛亚洲综合影院| 琪琪午夜伦伦电影理论片6080| 国产一区二区三区在线臀色熟女| 99视频精品全部免费 在线| 亚洲成a人片在线一区二区| 久久99热这里只有精品18| 久久久久久久久中文| 在线观看午夜福利视频| 国产野战对白在线观看| 国产成人a区在线观看| 日本a在线网址| 国内精品美女久久久久久| 免费在线观看亚洲国产| 宅男免费午夜| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆国产av国片精品| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区四那| 天天躁日日操中文字幕| 国产精品久久久久久亚洲av鲁大| 黄色丝袜av网址大全| 18禁在线播放成人免费| 国内精品美女久久久久久| 亚洲av电影不卡..在线观看| 丰满乱子伦码专区| 99视频精品全部免费 在线| 亚洲一区高清亚洲精品| 欧美黑人欧美精品刺激| 香蕉久久夜色| 1024手机看黄色片| av欧美777| netflix在线观看网站| 禁无遮挡网站| 亚洲精品日韩av片在线观看 | 精品乱码久久久久久99久播| 国产精品亚洲美女久久久| 国产欧美日韩一区二区精品| 日本 av在线| 中文字幕av在线有码专区| 久久久久九九精品影院| 亚洲成人中文字幕在线播放| a级一级毛片免费在线观看| 天天躁日日操中文字幕| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清在线视频| 国产精品久久久久久人妻精品电影| 日韩欧美国产一区二区入口| 九色国产91popny在线| 亚洲欧美一区二区三区黑人| 大型黄色视频在线免费观看| 欧美大码av| 亚洲av熟女| 欧美又色又爽又黄视频| 国产成人av激情在线播放| 男女视频在线观看网站免费| 免费看a级黄色片| 国产探花在线观看一区二区| 中亚洲国语对白在线视频| 亚洲美女黄片视频| 怎么达到女性高潮| 国产精品久久久久久人妻精品电影| 人人妻,人人澡人人爽秒播| 午夜精品一区二区三区免费看| 老鸭窝网址在线观看| 色在线成人网| 国产伦精品一区二区三区四那| 十八禁人妻一区二区| 少妇人妻一区二区三区视频| 丁香六月欧美| 午夜福利视频1000在线观看| av欧美777| 成人永久免费在线观看视频| 在线观看免费午夜福利视频|