• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and control of the accelerator grid power supply-conversion system applied to CFETR N-NBI prototype

    2020-08-26 04:58:08DongyuWANG王棟煜MingZHANG張明ShaoxiangMA馬少翔ShuYANG楊舒KexunYU于克訓(xùn)andYuanPAN潘垣
    Plasma Science and Technology 2020年8期
    關(guān)鍵詞:王棟張明

    Dongyu WANG(王棟煜),Ming ZHANG(張明),Shaoxiang MA(馬少翔),Shu YANG (楊舒), Kexun YU (于克訓(xùn)) and Yuan PAN (潘垣)

    1 State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

    2 School of Electrical and Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430074, People’s Republic of China

    Abstract The acceleration grid power supply (AGPS) rated 200 kV/25 A is a key component devoted to supply the acceleration grids of the China fusion engineering test reactor negative-ion-based neutral beam injector(N-NBI)prototype system.This paper focused on the design and control of the AGPS conversion system (AGPS-CS), with emphasis on the requirement of the wide range output voltage and rise time.A voltage regulation switch at the front of step-down transformer is applied to optimize the grid current and DC-link voltage. Moreover, a new feedforward control strategy with piecewise PI compensator is proposed to improve the characteristics of AGPS.The simulation results of the proposed AGPS-CS are presented, proving the performance of the power supply to achieve the desired requirements.

    Keywords: CFETR, NBI, accelerator grid power supply, feedforward control, high voltage power supply

    1. Introduction

    In order to prepare for China fusion engineering test reactor(CFETR), a prototype of CFETR negative-ion-based Neutral Beam Injector (N-NBI) is under designing. The N-NBI prototype should accelerate hydrogen negative ions up to 200 keV with a beam current as high as 20 A for 3600 s, and an acceleration grid power supply (AGPS) rated at 200 kV/25 A/3600 s needs to be researched and developed. The scheme of the AGPS for CFETR N-NBI prototype is shown in figure 1 [1].

    The scenario of the inverter-type high voltage power supply is applied to AGPS, this scenario is also utilized for ITER, JT-60U N-NBI system [2, 3]. In the AGPS prototype scheme, a step-down transformer with voltage regulation switch feeds a 12-pulse thyristor rectifier, which supplies the three-level neutral point clamped (3L-NPC) inverter. Inverter generates a 150 Hz square wave voltage to the primary side of the step-up transformer, and the secondary side is connected to the uncontrolled diode rectifier.The output voltage is dealt with a DC filter to provide the required 200 kV high-voltage.In order to produce high DC voltage, a lot of diodes are connected in series. Compared with thyristor, the reliability and cost of diode solution is satisfactory due to the less drive circuit and control optical. In general, the high-voltage part consisted of step-up transformer, diode rectifier and DC filter is named direct current generator (DCG), the medium-high voltage part consisted of step-down transformer, rectifier and inverter is named conversion system(CS).In order to provide a central point for the connection to the neutral point of 3LNPC,the 12-pulse rectifier made by the two 6-pulse rectifiers connected in series is utilized, and the rated DC-link voltage is 5 kV.Considered the actual requirements of power capacity and the high switch-off time, the 4.5 kV injection enhanced gate transistor (IEGT) is used in 3L-NPC inverter. Major specification of the AGPS for the CFETR N-NBI prototype is summarized in table 1.AGPS-CS is the key component of the AGPS. The DC-link voltage and modulation coefficient are controlled in real time during AGPS operation. Output voltage of the AGPS depends on the DC-link voltage and inverter modulation [4]. Furthermore, the protection against breakdown or beam-off between accelerator grids also relies on fast switch-off of the inverter [2].Thus,the control and design of the AGPS-CS are important.

    Figure 1.The scheme of the AGPS.

    In ITER AGPS design, the proportional-integral derivative (PID) regulator is used in the control loop [5]. At the output,the modulation coefficient of 3L-NPC is generated by the PID regulator.This modulation coefficientDis defined as the duty of the 3L-NPC phase-leg with the 150 Hz modulation frequency. In order to minimize the ripple voltage, the DC-link voltage also can be adjusted uniformly [6]. The relationship between modulation coefficient and ripple voltage is analyzed and reported in[7].It has been proved that the control is satisfactory for ITER AGPS [8]. However, it is noted that the wide range and adjustable rise-time of output voltage for CFETR AGPS prototype are desired during NBI runtime debugging.The performance of AGPS is affected by fixed PI parameter. Hence, control strategy for optimal performance based on feedforward control with piecewise PI parameter at such operation of AGPS should be considered.On the other hand,the performance of the DC-link voltage is improved by the regulation switch,in particular,when the low output voltage of AGPS such as 20% rated voltage is required.

    In this paper, the development of CFETR N-NBI prototype AGPS-CS is introduced. The detailed design of the AGPS-CS for CFETR N-NBI prototype is described in section 2. The simplified average model of rectifier and inverter is discussed in section 3.In addition,an improvement of the feedforward control strategy based on piecewise PI is proposed in section 4. The performance achievable with this solution is verified by simulation results in section 5.

    Table 1.Specification of the AGPS.

    2. Design of the AGPS-CS

    2.1. CS overview

    As shown in figure 1, the circuit of the CS is a typical AC/DC/AC topology. The main components are thyristor rectifier and 3L-NPC inverter. The DC-link power is provided by the rectifier and inverted by the 3L-NPC.

    The thyristor rectifier presents two fundamental advantages compared to the active front end: (1) with the same large capacity, the cost is low, and the reliability is high due to the simple control method.(2)Based on the regulation of the firing angle,the DC-link voltage can be adjusted in quite a large range.

    Figure 2.Assembly design of AGPS-CS.

    Figure 3. Topology of thyristor rectifier.

    The 3L-NPC inverter presents two fundamental advantages compared to the two-level inverter:(1)the harmonics in step-up transformer and the output ripple voltage are reduced with the multilevel. (2) With the same DC-link voltage, the power semiconductor devices withstand the half voltage, so the inverter capacity is doubled as well.

    The detailed assembly design of the AGPS-CS is shown in figure 2.There are 8 equipment cabinets in AGPS-CS.The total size is 9.4 × 1.5 × 2.2 m3. It must be point out that the two control cabinets are utilized as main-slave structure,the main inverter cabinet connects to the AGPS controller. It receives the operation commands and controls the inverter state. The slave rectifier cabinet connects to the inverter cabinet.It receives the reference DC-link voltage and controls the states of rectifier and voltage regulation switch.

    2.2. Thyristor rectifier

    The topology of thyristor rectifier is shown in figure 3. The rated output power of the CSPois 5 MW, considered the power factor 0.95 and efficiency 0.95, the rated input power of CSPiis 5.5 MW and the rated DC-link voltagevdcis 5 kV,so the output current of the rectifierIdis 1.1 kA. A realistic per-unit inductive short-circuit voltage of the step-down transformer rated for this powervXSCis 8%. Considered thevXSCand the minimum voltage of the grid respect to the rated grid voltage Δvg(90%), the secondary voltage of the transformerv20.SDcan be expressed as equation (1)

    Thus,the input current of each thyristori2.SDis given by equation (2)

    Assuming the DD and DY connections, the turn ratio of the step-down transformernSDcan be given by equation (3)

    wherevgis the nominal grid voltage (10 kV). The equivalent short-circuit inductance of transformer is determined by equation (4)

    wherefgis the grid frequency. The dry-type transformer installed in indoor is selected.

    Figure 4.Phase-leg of inverter. (a) Circuit diagram of the phase-leg. (b) Assembly diagram of the phase-leg.

    In the output of rectifier, the capacitance of DC-linkCdcis a key parameter for AGPS. When breakdown or beam-off occurs, the inverter would cut off within 100 μs, and the rectifier remains the DC-link voltage in suitable range without load. Hence, the design of DC-link considers this fault condition.

    The DC-link inductorLdcsmooths the output current of rectifier, and it can be expressed by equation (5)

    wherevLis the drop voltage factor of the DC inductor (5%),ΔIdis the ripple factor ofid(15%).

    During the fault process,Eoff,LandEoff,grepresented the energy from the leakage inductance of the step-down transformer and grid can be estimated as equation (6)

    Then according to the maximum overvoltage permitted on the DC-link voltagevdc.max(109% ofvdc), the minimumCdccan be calculated as equation (7)

    The voltage regulation switch equipped in the primary side of step-down transformer has 13 voltage gears,the rated voltage is 10.4 kV with the difference 400 V among each gear. When the lowest 40 kV output voltage of AGPS is required, the lowest gear would be chosen and thenv20.SDwould decrease by about a half (from 2.3 to 1.24 kV). Thus,the firing angle of thyristor and input current are improved.

    2.3. 3L-NPC inverter

    The RMS value of the output current of the inverterIINV,depending on the output current of AGPSIoutand the turn ratio of the step-up transformernSU, can be expressed by equation (8)

    Based on the calculate results,the IEGT ST1500GXH24 with nominal parameter 4500 V/1500 A is used in inverter,the antiparallel diode is integrated in IEGT pack. During normal operation of N-NBI, frequent grid breakdown occurs,which leads to short-circuit of the load for AGPS. Then the current flowing in inverter and DCG would rapidly increase.When breakdown event is detected, the inverter shuts down and the current is switched off within 100 μs. As a result of the voltage driving method,IEGT could cut off larger current compared with the integrated gate-commutated thyristor [9].Thus, IEGT is a better choice considering frequent shortcircuit current caused by breakdown. Moreover, the snubber circuit consists of a resistor, a capacitor and a DC inductor,and a clamped diode is not required,except for improving the converter’s reliability.

    Considered the output performance, design risk and cost,the inverter frequency is selected as 150 Hz. The higher inverter frequency would have beneficial effect on the dynamic performance of the inverter, permit a reduction of the ripple voltage of the AGPS but decrease the short-circuit impedance of the step-up transformer and then the over-currents in case of grid breakdown. Also the losses in the inverter active devices and step-up transformer are affected by the frequency of the output waveform. Thus, the cost of inverter and step-up transformer increases.With the analyses shown in this paper,it has been demonstrated that the requirements in terms of ripple on the AGPS output voltages (±5%) can be achieved with 150 Hz. Moreover, the 150 Hz inverter frequency is equal to the ITER AGPS, which is a useful reference.

    Figure 5. Control unit architecture of AGPS-CS.

    The phase-leg of the inverter is shown in figure 4,whereCcis a part of DC capacitor,Dp1,2are clamp diodes,S1_4are IEGTs andD1_4are antiparallel diodes of IEGTs. Clamp resistanceRpis 20 kΩ and can prevent the clamp failure ofDp1,2. To reduce the shock voltage of driver and peak voltage of IEGT, the driver is placed with IEGT as close as possible.

    The design of the high power 3L-NPC inverter is difficult, particular with the basic phase-leg. Thus, the configurations of the phase-leg, snubber circuit and the gate resistance of the driver are discussed with supplier,a series of experiments including the dual-pulse test,minimum pulse test and the short-circuit current test are completed [1]. It means that the design of the inverter is viable.

    2.4. Control unit

    The schematic of control unit architecture for AGPS-CS is shown in figure 5. It has PXIe interfaced with a real-time controller deployed with National Instruments real-time (NI RT) software as AGPS controller [10]. The AGPS-CS controller based on digital signal processor (DSP) and field programmable gate array (FPGA) of optical fiber sensor signal was applied. The DSP is also used as converter controller for rectifier and inverter.From a functional standpoint,the control command of converter is generated and executed by DSP, and the high-speed communication is realized by FPGA between AGPS-CS controller and other controllers.The reference signal and power data are provided by AGPS controller based on the graphical user interface.Moreover,the converter controller has the direct interface for fault signal in order to switch off the converter as fast as possible.

    Figure 6. The block diagram of the interlock of the AGPS.

    The interlock system is a high-reliability system devoted to the investment protection of N-NBI system.Figure 6 shows the block diagram of the interlock of the AGPS. Electrical faults (EFs) of AGPS include output overcurrent, output undercurrent, output overvoltage and internal fault. They are related to electrical insulation, short-circuit, open-circuit and overvoltage inside in CS.Moreover,the acceleration grid will operate breakdown and beam-off conditions, during normal operation of the NBI system, beam current would switch off and arcs can occur frequently and unpredictably. Therefore,the breakdown and beam-off are not considered as fault even if it may cause stresses of AGPS. In order to coordinates the protective actions of AGPS, an independent block named breakdown and beam-off detector (BBD) is generated. BBD and EF would switch off the CS to shut down AGPS. They require detection and intervention within 100 μs to avoid major damage of AGPS. The intervention time is defined as the time form the fault detection to the inverter switch-off,which is estimated to be less than 10 μs. The delay time is reduced by the implementation of FPGA in the proposed control unit. On the other hand, if the BBD fails, a back-up intervention is granted by the overcurrent and undercurrent detectors in EF. These fault signals would also communicate with AGPS controller and NBI controller in the interlock system.

    Figure 7.Block diagram of the proposed feedforward control.

    Figure 8. Flow diagram of the implemented calculate process.

    Table 2.Parameters used in the simulations.

    On the other hand,the frequent breakdown and beam-off decrease the source conditioning efficiency. In order to improve this situation, the output voltage of AGPS will automatically recover with the predefined rise time after the predefined restart time.

    3. AGPS-CS analysis and modeling

    The required output voltage is realized by the control of thyristor rectifier and 3L-NPC inverter. The main circuit of the thyristor and diode rectifiers is similar, the difference between two rectifiers is that thyristor rectifier is controlled by firing angle,and diode rectifier is adjusted by input source.In order to describe the characteristic of three phase rectifier, a simplified average model, approximating the original system by ‘neglecting’ or ‘a(chǎn)veraging’ the effect of fast switching within a prototypical switching interval and assuming overlap, is obtained by equation (9) [5]

    Figure 9. Steady-state operation of AGPS with breakdown at the output voltage of 40 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Output voltage vout. (d) Output current iout.

    wherevois the average output voltage,vo.0is the average output voltage without load,fis the frequency of input source,Lis the input inductor,iois the average output current.

    For the thyristor rectifier,the input sinusoidal source and the phase control are considered, which influenced thevo.0.Therefore, the output voltage of thyristor controlled by the firing angle α can be expressed by equation (10)

    For the diode rectifier, the input source is provided by 3L-NPC inverter. Due to the square wave modulation, the source voltage is multilevel voltage controlled byDas shown in equation (11)

    Figure 10.Steady-state operation of AGPS with breakdown at the output voltage of 200 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Output voltage vout. (d) Output current iout.

    wherevoutis the output voltage of AGPS,vout.0is the voltage with no load,fsis the constant inverter frequency equaled to 150 Hz,LSC.SUis the equivalent short-circuit inductance of step-up transformer.

    According to the equation (11), any value ofvoutcan be accessed by adjustingDorvdc.ButDis also a key parameter for the ripple voltage. It should be noted that ripple voltage has significant effect on the N-NBI system. Thus, the minimum ripple voltage is required, too. As for the specificvoutandiout,the certain value ofDfor lower ripple voltage could be estimated.

    4. Proposed control scheme

    The inverter in AGPS-CS with fixed PI control parameters may not meet the desired and acceptable performance in CFETR NBI prototype test, particularly with respect to low output voltage and short rise time. A feedforward control strategy with piecewise PI is proposed in this section to realize suitable parameters for AGPS.

    Figure 11.Operation during breakdown of AGPS with load changed at the output voltage of 40 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Inverter current iINV. (d) Ripple of output voltage vrip. (e) Ripple of output current iout.

    The control diagram for AGPS-CS is shown in figure 7.The reference voltagevout*(kV) and rise timetr*(ms) are selected by operator. According to thevout*, the gear of voltage regulation switchS, PI parametersKPandKI,vdc*(kV) and referenceD*are calculated, the calculate workflow is shown in figure 8. WhereKP0andKI0are the initial values of inverter PI regulator for rated output voltage.During the AGPS runtime,D*is continuously updated based on thevout*andiout(t)according to equation (11). However, the error of the average model and the excursion of system parameters lead to the unsatisfactory accuracy.This difference ΔDis compensated by a PI regulator.The finalDis decided by theD*and ΔD.In this control system,the measured voltagevout(t)and thevout*(t)are in per-unit values.

    5. Simulation validation

    Figure 12.Operation during breakdown of AGPS with load changed at the output voltage of 200 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Inverter current iINV. (d) Ripple of output voltage vrip. (e) Ripple of output current iout.

    To study the operation of the proposed control strategy, the AGPS has been simulated using the PSIM software. The load model is a nonlinear voltage-controlled current source referenced in[11].The main electrical parameters of the circuit and control data are given in table 2.Simulations are done for 200 and 40 kV,because they are the top and bottom limitations of output voltage of AGPS.The rise time is set to 80,50 and 30 ms considering the actual requirements, and it could be changed further.

    Figures 9 and 10 present the steady-state operation of AGPS with breakdown at the output voltage of 40 kV and 200 kV, respectively.voutmeets the required stability and can track the reference curve as well. Thevdcis not stable during breakdown,the fluctuation ofvdcis ±5%at 5 kV and become more serious with the reduce ofvdc*. The response time of lowervdc*is larger, too. However, the performance ofvdcis sufficient to apply for AGPS. As for lowervdc*, the peak voltage ofvdcis lower, too. The converter and DC-link capacitor are not damaged.Moreover, due to the fixed capacitance of DC-link, small current causes the response time increasing.

    Figure 13.Start performance and DC-link voltage of AGPS with different rise time. (a) Output voltage vout. (b) DC-link voltage vdc.

    Figures 11 and 12 present the operation during breakdown of AGPS with load changed at the output voltage of 40 kV and 200 kV,respectively.The ripple ofvoutis±2.5%,which is half of the requirement. The accuracy ofvoutis 2%, although the 20%ioutincreased at 410 ms.ioutdecreases with the reducing output voltage,the influence of the current perturbation becomes little impact on thevout. On the other hand, when breakdown occurs, the 3L-NPC inverter switches off and the inverter current enlarges slightly within 100 μs,and the grid current cuts off in about 4 ms. Moreover, total harmonic distortions (THDs) of grid current are 11.2%and 9.3%at the output voltage of 40 kV and 200 kV,respectively.The improved of THD can be mostly attributed to the voltage regulation switch.

    The start performance and DC-link voltage of AGPS with different rise time are presented in figure 13. With the lower rise time, the supposed output voltage and the output power of DC-link are close to step waveform. Thus, the oscillations of output voltage and DC-link voltage are distinct gradually. The response performance is improved with the reduction ofand output power in figure 13(a). However,the slight overvoltage can also be observed due to the overvoltage of DC-link appearing at the full AGPS output voltage as shown in figure 13(b).This oscillation would not affect the AGPS operation.On the other hand,the peak voltage of DC-link in figure 13(b)is 5285 V.The maximum ripple voltage in transient conditions is 7.68%, which meets the requirements.

    6. Conclusions

    In this paper, the main development about the design and control of the CFETR N-NBI AGPS prototype is described.The parameter design of the AGPS-CS including the converter and controller is analyzed in detail.In order to improve the grid current and DC-link voltage, the voltage regulation switch is utilized. Then, a feedforward control strategy with piecewise PI is proposed. With this method, a wide range of output voltage and rise time for AGPS is realized. The PI regulation of inverter is implemented in order to compensate for the drawback of average model. Simulation results are conducted to validate the performance of the proposed control strategy. The experiment based on test platform would be done in future.

    Acknowledgments

    This work is supported by the National Key R&D Program of China under Grant No. 2017YFE0300104 and by National Natural Science Foundation of China (Nos. 51707073 and 51821005).

    猜你喜歡
    王棟張明
    Effect of electron–electron interaction on polarization process of exciton and biexciton in conjugated polymer
    Transformation relation between coherence and entanglement for two-qubit states
    Quantum correlation and entropic uncertainty in a quantum-dot system
    中正平和——王棟山水畫中的古意
    金橋(2022年2期)2022-03-02 05:43:02
    張明:如何系統(tǒng)地構(gòu)建“雙循環(huán)”新發(fā)展格局?
    被女生拒絕后
    三月三(2017年5期)2017-06-05 02:10:50
    二手貨
    The variations of suspended sediment concentration in Yangtze River Estuary*
    你怎么不向我借錢
    張明等
    90打野战视频偷拍视频| 国产色婷婷99| 亚洲成人免费电影在线观看| 久久精品国产亚洲av香蕉五月| 在线观看美女被高潮喷水网站 | 日韩欧美在线乱码| 国产男靠女视频免费网站| 欧美精品国产亚洲| 简卡轻食公司| 国产探花在线观看一区二区| 麻豆久久精品国产亚洲av| 国产精品一及| 午夜免费激情av| 国内久久婷婷六月综合欲色啪| 99国产精品一区二区三区| 一区二区三区高清视频在线| 女生性感内裤真人,穿戴方法视频| 久久九九热精品免费| 黄色丝袜av网址大全| 白带黄色成豆腐渣| 一进一出好大好爽视频| 成年人黄色毛片网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲va日本ⅴa欧美va伊人久久| 婷婷精品国产亚洲av在线| 麻豆国产97在线/欧美| 久久午夜亚洲精品久久| 99热这里只有是精品50| 国内少妇人妻偷人精品xxx网站| 国产91精品成人一区二区三区| 啪啪无遮挡十八禁网站| 直男gayav资源| 亚洲国产精品合色在线| 色综合亚洲欧美另类图片| 亚洲国产精品成人综合色| 国产v大片淫在线免费观看| 国产成+人综合+亚洲专区| av天堂在线播放| 90打野战视频偷拍视频| 男人狂女人下面高潮的视频| 99国产精品一区二区三区| 深夜a级毛片| 超碰av人人做人人爽久久| 免费在线观看亚洲国产| 天天一区二区日本电影三级| 草草在线视频免费看| 日韩av在线大香蕉| 亚洲精品乱码久久久v下载方式| 人妻制服诱惑在线中文字幕| 国产欧美日韩一区二区三| 久久天躁狠狠躁夜夜2o2o| 日韩欧美在线二视频| 久久久久国产精品人妻aⅴ院| 深夜a级毛片| 嫩草影院新地址| 国产精品亚洲av一区麻豆| 韩国av一区二区三区四区| 国产精品影院久久| 99国产综合亚洲精品| 在线看三级毛片| 国产精品不卡视频一区二区 | 99热这里只有精品一区| 全区人妻精品视频| 国产一区二区激情短视频| 别揉我奶头~嗯~啊~动态视频| 国产色婷婷99| 最好的美女福利视频网| 亚洲aⅴ乱码一区二区在线播放| 特大巨黑吊av在线直播| 精品不卡国产一区二区三区| 日韩欧美三级三区| 日韩有码中文字幕| 小蜜桃在线观看免费完整版高清| 久久精品人妻少妇| 午夜亚洲福利在线播放| 欧美高清性xxxxhd video| 麻豆久久精品国产亚洲av| 高清日韩中文字幕在线| 最近在线观看免费完整版| 免费在线观看日本一区| 一区二区三区高清视频在线| 在线观看美女被高潮喷水网站 | 精品一区二区三区人妻视频| a级毛片免费高清观看在线播放| bbb黄色大片| 久久久久久久久中文| 亚洲乱码一区二区免费版| 免费观看人在逋| 99久国产av精品| 成人国产综合亚洲| 九九久久精品国产亚洲av麻豆| 久久午夜福利片| 国产 一区 欧美 日韩| 全区人妻精品视频| 一个人免费在线观看的高清视频| 国产精品久久久久久久久免 | 欧美性猛交╳xxx乱大交人| 美女高潮的动态| 久久精品国产亚洲av涩爱 | 欧美一级a爱片免费观看看| 永久网站在线| or卡值多少钱| 一级av片app| 国产精品一区二区三区四区免费观看 | 国产在线精品亚洲第一网站| 嫩草影视91久久| 中文字幕熟女人妻在线| 蜜桃久久精品国产亚洲av| 国产视频一区二区在线看| 一二三四社区在线视频社区8| 精品人妻熟女av久视频| 久久精品国产亚洲av涩爱 | 99久久精品一区二区三区| 波多野结衣高清无吗| 偷拍熟女少妇极品色| 亚洲欧美精品综合久久99| h日本视频在线播放| 久久久久久久久大av| 男人和女人高潮做爰伦理| a级一级毛片免费在线观看| 亚洲精品在线观看二区| 99国产综合亚洲精品| 欧美成人免费av一区二区三区| 波野结衣二区三区在线| 淫秽高清视频在线观看| 亚洲欧美精品综合久久99| 久久国产精品影院| 丰满乱子伦码专区| 亚洲人成网站在线播| 国产视频一区二区在线看| 亚洲av成人av| 如何舔出高潮| 精品一区二区三区人妻视频| 91在线精品国自产拍蜜月| 亚洲美女搞黄在线观看 | 国产乱人伦免费视频| 亚洲综合色惰| 国产日本99.免费观看| 欧美激情久久久久久爽电影| 国产欧美日韩精品亚洲av| 老司机午夜十八禁免费视频| av福利片在线观看| 淫秽高清视频在线观看| 天堂影院成人在线观看| 国产av在哪里看| av视频在线观看入口| 精品人妻一区二区三区麻豆 | 成人精品一区二区免费| 成人三级黄色视频| 国产精品嫩草影院av在线观看 | 国语自产精品视频在线第100页| 精品乱码久久久久久99久播| 午夜激情福利司机影院| 小说图片视频综合网站| 国产精品自产拍在线观看55亚洲| av黄色大香蕉| 亚洲乱码一区二区免费版| 中亚洲国语对白在线视频| 高潮久久久久久久久久久不卡| 又粗又爽又猛毛片免费看| 搡老妇女老女人老熟妇| 亚洲在线自拍视频| 国产不卡一卡二| 亚洲五月婷婷丁香| 欧美日韩瑟瑟在线播放| 国产一区二区激情短视频| 国产精品久久久久久久久免 | 亚洲精品影视一区二区三区av| 啦啦啦观看免费观看视频高清| 波多野结衣高清无吗| 丝袜美腿在线中文| 赤兔流量卡办理| 婷婷色综合大香蕉| 给我免费播放毛片高清在线观看| 99国产精品一区二区三区| 宅男免费午夜| 又爽又黄无遮挡网站| 在线a可以看的网站| 亚洲精品粉嫩美女一区| 国产久久久一区二区三区| 麻豆久久精品国产亚洲av| 偷拍熟女少妇极品色| 日韩欧美国产在线观看| 丁香欧美五月| 欧美xxxx性猛交bbbb| 欧美日韩瑟瑟在线播放| 综合色av麻豆| 国产色爽女视频免费观看| 又粗又爽又猛毛片免费看| 啪啪无遮挡十八禁网站| 久久久久免费精品人妻一区二区| 99久久精品热视频| 国产69精品久久久久777片| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久国产a免费观看| 国产精品久久久久久久久免 | 成人无遮挡网站| 亚洲三级黄色毛片| 亚洲美女视频黄频| 亚洲一区高清亚洲精品| 国产视频一区二区在线看| 国产一区二区三区在线臀色熟女| 直男gayav资源| 97碰自拍视频| 国产av不卡久久| 亚洲第一欧美日韩一区二区三区| 国产视频一区二区在线看| 嫩草影院精品99| 级片在线观看| 中文字幕人成人乱码亚洲影| 中文字幕精品亚洲无线码一区| 网址你懂的国产日韩在线| 国产一区二区亚洲精品在线观看| 最近最新中文字幕大全电影3| 午夜福利在线在线| 国产亚洲精品久久久com| 久久精品国产亚洲av涩爱 | 亚洲中文日韩欧美视频| 亚州av有码| 性欧美人与动物交配| 日本黄色视频三级网站网址| 欧美激情在线99| 国产精品电影一区二区三区| 国产精品久久久久久精品电影| 国内精品久久久久久久电影| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 国产伦在线观看视频一区| 在线免费观看的www视频| 欧美丝袜亚洲另类 | 久久中文看片网| 成年免费大片在线观看| 久久久久久九九精品二区国产| 毛片一级片免费看久久久久 | 看十八女毛片水多多多| a级毛片免费高清观看在线播放| 在线播放国产精品三级| 美女免费视频网站| 亚洲欧美激情综合另类| 国产精品综合久久久久久久免费| www.www免费av| 内射极品少妇av片p| www.999成人在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久九九精品二区国产| 亚洲精品影视一区二区三区av| 国产精品不卡视频一区二区 | 久久久久免费精品人妻一区二区| 国产一区二区激情短视频| 黄色丝袜av网址大全| 日本与韩国留学比较| 毛片女人毛片| 日本成人三级电影网站| 日韩av在线大香蕉| 两性午夜刺激爽爽歪歪视频在线观看| 黄色视频,在线免费观看| 欧美一级a爱片免费观看看| 男女下面进入的视频免费午夜| 亚洲人与动物交配视频| 国产高潮美女av| 国产精品久久视频播放| 亚洲av五月六月丁香网| 性色av乱码一区二区三区2| 国产精品电影一区二区三区| 香蕉av资源在线| 极品教师在线视频| 精品人妻偷拍中文字幕| 亚洲欧美日韩高清专用| 成年女人看的毛片在线观看| 国产精品久久视频播放| 99国产精品一区二区三区| 色综合站精品国产| 国产探花在线观看一区二区| 国产蜜桃级精品一区二区三区| 女人被狂操c到高潮| 亚洲 国产 在线| 禁无遮挡网站| 亚洲人成网站在线播放欧美日韩| 男女视频在线观看网站免费| 黄色配什么色好看| 搡老妇女老女人老熟妇| 赤兔流量卡办理| 亚洲自偷自拍三级| 国产 一区 欧美 日韩| 美女大奶头视频| 三级毛片av免费| 国产极品精品免费视频能看的| 69av精品久久久久久| 亚洲国产日韩欧美精品在线观看| 国产精品日韩av在线免费观看| 日韩欧美国产在线观看| 九九久久精品国产亚洲av麻豆| 男人狂女人下面高潮的视频| 国产午夜精品久久久久久一区二区三区 | 国产极品天堂在线| 欧美xxxx性猛交bbbb| 制服丝袜香蕉在线| 2021少妇久久久久久久久久久| 亚洲成色77777| 黄色怎么调成土黄色| 日韩一区二区视频免费看| 中国三级夫妇交换| 久久久a久久爽久久v久久| 又大又黄又爽视频免费| 亚洲国产成人一精品久久久| eeuss影院久久| 99热全是精品| 神马国产精品三级电影在线观看| 下体分泌物呈黄色| 插逼视频在线观看| videossex国产| 精品酒店卫生间| av在线天堂中文字幕| 秋霞伦理黄片| 亚洲国产欧美人成| 波多野结衣巨乳人妻| 精品午夜福利在线看| videos熟女内射| 久久精品国产自在天天线| a级毛色黄片| 亚洲激情五月婷婷啪啪| 少妇 在线观看| 亚洲精品aⅴ在线观看| 毛片女人毛片| 全区人妻精品视频| 2021少妇久久久久久久久久久| 国产高清不卡午夜福利| av国产久精品久网站免费入址| 成人高潮视频无遮挡免费网站| 国产精品女同一区二区软件| 日韩在线高清观看一区二区三区| 国产高清国产精品国产三级 | 神马国产精品三级电影在线观看| av女优亚洲男人天堂| 寂寞人妻少妇视频99o| 日韩欧美精品免费久久| 99精国产麻豆久久婷婷| 日本一二三区视频观看| 日本黄大片高清| 免费观看的影片在线观看| 在线a可以看的网站| 性插视频无遮挡在线免费观看| 精品酒店卫生间| 国产av国产精品国产| 人人妻人人爽人人添夜夜欢视频 | 国产精品成人在线| 国产一级毛片在线| 欧美日韩精品成人综合77777| 美女视频免费永久观看网站| 少妇被粗大猛烈的视频| 日本三级黄在线观看| 国产一区二区在线观看日韩| 欧美极品一区二区三区四区| 日本wwww免费看| 午夜精品国产一区二区电影 | 久久99热6这里只有精品| 2022亚洲国产成人精品| 欧美3d第一页| 精品国产乱码久久久久久小说| 女的被弄到高潮叫床怎么办| 男女下面进入的视频免费午夜| 欧美成人精品欧美一级黄| 亚洲天堂av无毛| 亚洲精品中文字幕在线视频 | 久久鲁丝午夜福利片| 精品少妇久久久久久888优播| 国产伦理片在线播放av一区| 国产黄片视频在线免费观看| 九草在线视频观看| av国产久精品久网站免费入址| 免费av不卡在线播放| 成人漫画全彩无遮挡| 国产成人午夜福利电影在线观看| 国产精品女同一区二区软件| kizo精华| 在线观看美女被高潮喷水网站| 国产精品99久久久久久久久| 免费观看无遮挡的男女| 国产高清不卡午夜福利| 毛片女人毛片| 天天躁夜夜躁狠狠久久av| 国产精品熟女久久久久浪| 精品熟女少妇av免费看| 中文乱码字字幕精品一区二区三区| 国产免费一级a男人的天堂| 久久久久网色| 婷婷色麻豆天堂久久| 97精品久久久久久久久久精品| 日韩一本色道免费dvd| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱码久久久久久按摩| 秋霞在线观看毛片| 91aial.com中文字幕在线观看| 免费看日本二区| 哪个播放器可以免费观看大片| 国产一级毛片在线| 99久久精品热视频| 成人美女网站在线观看视频| 丰满乱子伦码专区| 特级一级黄色大片| 嫩草影院入口| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| 两个人的视频大全免费| 国产乱来视频区| 深夜a级毛片| 晚上一个人看的免费电影| 欧美bdsm另类| 老女人水多毛片| 亚洲自偷自拍三级| 看黄色毛片网站| 嫩草影院精品99| 欧美人与善性xxx| 亚洲色图综合在线观看| 亚洲经典国产精华液单| 午夜福利视频1000在线观看| 日韩人妻高清精品专区| 成人鲁丝片一二三区免费| 精品国产乱码久久久久久小说| 别揉我奶头 嗯啊视频| 成人国产av品久久久| 夫妻午夜视频| 中文资源天堂在线| 亚洲,一卡二卡三卡| 一个人看的www免费观看视频| 一区二区三区免费毛片| 日本-黄色视频高清免费观看| 久久久久精品性色| 日产精品乱码卡一卡2卡三| 美女高潮的动态| 男女下面进入的视频免费午夜| 极品少妇高潮喷水抽搐| 国产av不卡久久| 97超碰精品成人国产| 校园人妻丝袜中文字幕| 国产老妇女一区| 亚洲精品日本国产第一区| 亚洲精品自拍成人| 18禁动态无遮挡网站| 亚洲怡红院男人天堂| 一级爰片在线观看| 亚洲精品国产色婷婷电影| 内射极品少妇av片p| 性插视频无遮挡在线免费观看| 免费观看av网站的网址| 天天躁夜夜躁狠狠久久av| 麻豆乱淫一区二区| 亚洲欧洲国产日韩| 国产日韩欧美在线精品| 成人特级av手机在线观看| 中国美白少妇内射xxxbb| 国精品久久久久久国模美| 最近中文字幕2019免费版| 精品一区二区三区视频在线| 只有这里有精品99| av线在线观看网站| 中文精品一卡2卡3卡4更新| 人人妻人人看人人澡| 日本av手机在线免费观看| 大香蕉久久网| 久久久色成人| 国产精品国产三级专区第一集| 久久久久久久大尺度免费视频| av免费在线看不卡| 日韩电影二区| 日本av手机在线免费观看| 成人亚洲欧美一区二区av| 亚洲国产精品成人久久小说| 国产真实伦视频高清在线观看| 亚洲精品一区蜜桃| 国产一区二区亚洲精品在线观看| 搞女人的毛片| 亚洲欧美清纯卡通| 国产极品天堂在线| 直男gayav资源| 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜添av毛片| 男男h啪啪无遮挡| 在线看a的网站| 麻豆精品久久久久久蜜桃| 视频区图区小说| 天堂网av新在线| 搡老乐熟女国产| 久久久久久久久久久免费av| 亚洲国产色片| 深夜a级毛片| 涩涩av久久男人的天堂| 国产视频首页在线观看| 成年版毛片免费区| 在线 av 中文字幕| 日本与韩国留学比较| 精品亚洲乱码少妇综合久久| 欧美少妇被猛烈插入视频| 国产欧美亚洲国产| 老司机影院成人| 亚洲欧美精品专区久久| 国产 一区 欧美 日韩| 91久久精品国产一区二区三区| 国产成人精品福利久久| 好男人在线观看高清免费视频| 中文欧美无线码| 亚洲天堂国产精品一区在线| 亚洲最大成人av| 三级经典国产精品| 男人和女人高潮做爰伦理| 汤姆久久久久久久影院中文字幕| 内地一区二区视频在线| 日本猛色少妇xxxxx猛交久久| 搞女人的毛片| 禁无遮挡网站| 国产真实伦视频高清在线观看| 国产大屁股一区二区在线视频| 激情 狠狠 欧美| 国产男女超爽视频在线观看| 少妇 在线观看| 看非洲黑人一级黄片| 一级爰片在线观看| 午夜亚洲福利在线播放| 亚洲第一区二区三区不卡| 久久精品夜色国产| 黄片wwwwww| 日韩电影二区| 国产成人免费无遮挡视频| 交换朋友夫妻互换小说| 久久久久久久国产电影| 九色成人免费人妻av| 岛国毛片在线播放| av女优亚洲男人天堂| eeuss影院久久| 国产淫语在线视频| 久久97久久精品| 交换朋友夫妻互换小说| 亚洲人成网站在线播| 国产一区二区亚洲精品在线观看| 久久久久久久久久久免费av| 狂野欧美白嫩少妇大欣赏| 日本wwww免费看| 午夜免费男女啪啪视频观看| 卡戴珊不雅视频在线播放| 久久热精品热| 高清毛片免费看| 亚洲欧洲日产国产| 亚洲经典国产精华液单| 99热全是精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费电影在线观看免费观看| 97超碰精品成人国产| 一区二区三区乱码不卡18| 亚洲av国产av综合av卡| 国产大屁股一区二区在线视频| 成人漫画全彩无遮挡| 亚洲电影在线观看av| 亚洲精品456在线播放app| 国产成人精品婷婷| 九草在线视频观看| 欧美xxxx性猛交bbbb| 亚洲国产精品专区欧美| 国产毛片在线视频| 国产亚洲av嫩草精品影院| 97人妻精品一区二区三区麻豆| 大又大粗又爽又黄少妇毛片口| 69av精品久久久久久| 男女啪啪激烈高潮av片| 亚洲精品一区蜜桃| 久久人人爽av亚洲精品天堂 | 国产男女内射视频| h日本视频在线播放| 麻豆乱淫一区二区| 国产一区亚洲一区在线观看| 日本熟妇午夜| 国产黄色视频一区二区在线观看| 久久99热这里只有精品18| 免费av观看视频| 午夜福利视频1000在线观看| 亚洲成人中文字幕在线播放| 成人一区二区视频在线观看| 性插视频无遮挡在线免费观看| 蜜臀久久99精品久久宅男| 久久久a久久爽久久v久久| 最近中文字幕高清免费大全6| 久久久久久九九精品二区国产| 久久精品国产鲁丝片午夜精品| 舔av片在线| 寂寞人妻少妇视频99o| 成年av动漫网址| 噜噜噜噜噜久久久久久91| 欧美三级亚洲精品| 中文字幕免费在线视频6| 国产视频首页在线观看| 亚洲第一区二区三区不卡| 欧美极品一区二区三区四区| 狂野欧美激情性xxxx在线观看| 日本免费在线观看一区| 久热久热在线精品观看| 日韩成人av中文字幕在线观看| 在线看a的网站| 亚洲图色成人| 欧美性猛交╳xxx乱大交人| av在线蜜桃| 亚洲精品一区蜜桃| 色视频在线一区二区三区| 国内少妇人妻偷人精品xxx网站| 高清在线视频一区二区三区| 日韩成人av中文字幕在线观看| 国产爱豆传媒在线观看| 又爽又黄a免费视频| 青春草亚洲视频在线观看| av在线蜜桃| 97在线人人人人妻| 午夜免费鲁丝| 亚洲精品视频女| 天堂网av新在线| 18禁在线无遮挡免费观看视频| 精品人妻视频免费看| 人妻 亚洲 视频|