• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and control of the accelerator grid power supply-conversion system applied to CFETR N-NBI prototype

    2020-08-26 04:58:08DongyuWANG王棟煜MingZHANG張明ShaoxiangMA馬少翔ShuYANG楊舒KexunYU于克訓(xùn)andYuanPAN潘垣
    Plasma Science and Technology 2020年8期
    關(guān)鍵詞:王棟張明

    Dongyu WANG(王棟煜),Ming ZHANG(張明),Shaoxiang MA(馬少翔),Shu YANG (楊舒), Kexun YU (于克訓(xùn)) and Yuan PAN (潘垣)

    1 State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

    2 School of Electrical and Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430074, People’s Republic of China

    Abstract The acceleration grid power supply (AGPS) rated 200 kV/25 A is a key component devoted to supply the acceleration grids of the China fusion engineering test reactor negative-ion-based neutral beam injector(N-NBI)prototype system.This paper focused on the design and control of the AGPS conversion system (AGPS-CS), with emphasis on the requirement of the wide range output voltage and rise time.A voltage regulation switch at the front of step-down transformer is applied to optimize the grid current and DC-link voltage. Moreover, a new feedforward control strategy with piecewise PI compensator is proposed to improve the characteristics of AGPS.The simulation results of the proposed AGPS-CS are presented, proving the performance of the power supply to achieve the desired requirements.

    Keywords: CFETR, NBI, accelerator grid power supply, feedforward control, high voltage power supply

    1. Introduction

    In order to prepare for China fusion engineering test reactor(CFETR), a prototype of CFETR negative-ion-based Neutral Beam Injector (N-NBI) is under designing. The N-NBI prototype should accelerate hydrogen negative ions up to 200 keV with a beam current as high as 20 A for 3600 s, and an acceleration grid power supply (AGPS) rated at 200 kV/25 A/3600 s needs to be researched and developed. The scheme of the AGPS for CFETR N-NBI prototype is shown in figure 1 [1].

    The scenario of the inverter-type high voltage power supply is applied to AGPS, this scenario is also utilized for ITER, JT-60U N-NBI system [2, 3]. In the AGPS prototype scheme, a step-down transformer with voltage regulation switch feeds a 12-pulse thyristor rectifier, which supplies the three-level neutral point clamped (3L-NPC) inverter. Inverter generates a 150 Hz square wave voltage to the primary side of the step-up transformer, and the secondary side is connected to the uncontrolled diode rectifier.The output voltage is dealt with a DC filter to provide the required 200 kV high-voltage.In order to produce high DC voltage, a lot of diodes are connected in series. Compared with thyristor, the reliability and cost of diode solution is satisfactory due to the less drive circuit and control optical. In general, the high-voltage part consisted of step-up transformer, diode rectifier and DC filter is named direct current generator (DCG), the medium-high voltage part consisted of step-down transformer, rectifier and inverter is named conversion system(CS).In order to provide a central point for the connection to the neutral point of 3LNPC,the 12-pulse rectifier made by the two 6-pulse rectifiers connected in series is utilized, and the rated DC-link voltage is 5 kV.Considered the actual requirements of power capacity and the high switch-off time, the 4.5 kV injection enhanced gate transistor (IEGT) is used in 3L-NPC inverter. Major specification of the AGPS for the CFETR N-NBI prototype is summarized in table 1.AGPS-CS is the key component of the AGPS. The DC-link voltage and modulation coefficient are controlled in real time during AGPS operation. Output voltage of the AGPS depends on the DC-link voltage and inverter modulation [4]. Furthermore, the protection against breakdown or beam-off between accelerator grids also relies on fast switch-off of the inverter [2].Thus,the control and design of the AGPS-CS are important.

    Figure 1.The scheme of the AGPS.

    In ITER AGPS design, the proportional-integral derivative (PID) regulator is used in the control loop [5]. At the output,the modulation coefficient of 3L-NPC is generated by the PID regulator.This modulation coefficientDis defined as the duty of the 3L-NPC phase-leg with the 150 Hz modulation frequency. In order to minimize the ripple voltage, the DC-link voltage also can be adjusted uniformly [6]. The relationship between modulation coefficient and ripple voltage is analyzed and reported in[7].It has been proved that the control is satisfactory for ITER AGPS [8]. However, it is noted that the wide range and adjustable rise-time of output voltage for CFETR AGPS prototype are desired during NBI runtime debugging.The performance of AGPS is affected by fixed PI parameter. Hence, control strategy for optimal performance based on feedforward control with piecewise PI parameter at such operation of AGPS should be considered.On the other hand,the performance of the DC-link voltage is improved by the regulation switch,in particular,when the low output voltage of AGPS such as 20% rated voltage is required.

    In this paper, the development of CFETR N-NBI prototype AGPS-CS is introduced. The detailed design of the AGPS-CS for CFETR N-NBI prototype is described in section 2. The simplified average model of rectifier and inverter is discussed in section 3.In addition,an improvement of the feedforward control strategy based on piecewise PI is proposed in section 4. The performance achievable with this solution is verified by simulation results in section 5.

    Table 1.Specification of the AGPS.

    2. Design of the AGPS-CS

    2.1. CS overview

    As shown in figure 1, the circuit of the CS is a typical AC/DC/AC topology. The main components are thyristor rectifier and 3L-NPC inverter. The DC-link power is provided by the rectifier and inverted by the 3L-NPC.

    The thyristor rectifier presents two fundamental advantages compared to the active front end: (1) with the same large capacity, the cost is low, and the reliability is high due to the simple control method.(2)Based on the regulation of the firing angle,the DC-link voltage can be adjusted in quite a large range.

    Figure 2.Assembly design of AGPS-CS.

    Figure 3. Topology of thyristor rectifier.

    The 3L-NPC inverter presents two fundamental advantages compared to the two-level inverter:(1)the harmonics in step-up transformer and the output ripple voltage are reduced with the multilevel. (2) With the same DC-link voltage, the power semiconductor devices withstand the half voltage, so the inverter capacity is doubled as well.

    The detailed assembly design of the AGPS-CS is shown in figure 2.There are 8 equipment cabinets in AGPS-CS.The total size is 9.4 × 1.5 × 2.2 m3. It must be point out that the two control cabinets are utilized as main-slave structure,the main inverter cabinet connects to the AGPS controller. It receives the operation commands and controls the inverter state. The slave rectifier cabinet connects to the inverter cabinet.It receives the reference DC-link voltage and controls the states of rectifier and voltage regulation switch.

    2.2. Thyristor rectifier

    The topology of thyristor rectifier is shown in figure 3. The rated output power of the CSPois 5 MW, considered the power factor 0.95 and efficiency 0.95, the rated input power of CSPiis 5.5 MW and the rated DC-link voltagevdcis 5 kV,so the output current of the rectifierIdis 1.1 kA. A realistic per-unit inductive short-circuit voltage of the step-down transformer rated for this powervXSCis 8%. Considered thevXSCand the minimum voltage of the grid respect to the rated grid voltage Δvg(90%), the secondary voltage of the transformerv20.SDcan be expressed as equation (1)

    Thus,the input current of each thyristori2.SDis given by equation (2)

    Assuming the DD and DY connections, the turn ratio of the step-down transformernSDcan be given by equation (3)

    wherevgis the nominal grid voltage (10 kV). The equivalent short-circuit inductance of transformer is determined by equation (4)

    wherefgis the grid frequency. The dry-type transformer installed in indoor is selected.

    Figure 4.Phase-leg of inverter. (a) Circuit diagram of the phase-leg. (b) Assembly diagram of the phase-leg.

    In the output of rectifier, the capacitance of DC-linkCdcis a key parameter for AGPS. When breakdown or beam-off occurs, the inverter would cut off within 100 μs, and the rectifier remains the DC-link voltage in suitable range without load. Hence, the design of DC-link considers this fault condition.

    The DC-link inductorLdcsmooths the output current of rectifier, and it can be expressed by equation (5)

    wherevLis the drop voltage factor of the DC inductor (5%),ΔIdis the ripple factor ofid(15%).

    During the fault process,Eoff,LandEoff,grepresented the energy from the leakage inductance of the step-down transformer and grid can be estimated as equation (6)

    Then according to the maximum overvoltage permitted on the DC-link voltagevdc.max(109% ofvdc), the minimumCdccan be calculated as equation (7)

    The voltage regulation switch equipped in the primary side of step-down transformer has 13 voltage gears,the rated voltage is 10.4 kV with the difference 400 V among each gear. When the lowest 40 kV output voltage of AGPS is required, the lowest gear would be chosen and thenv20.SDwould decrease by about a half (from 2.3 to 1.24 kV). Thus,the firing angle of thyristor and input current are improved.

    2.3. 3L-NPC inverter

    The RMS value of the output current of the inverterIINV,depending on the output current of AGPSIoutand the turn ratio of the step-up transformernSU, can be expressed by equation (8)

    Based on the calculate results,the IEGT ST1500GXH24 with nominal parameter 4500 V/1500 A is used in inverter,the antiparallel diode is integrated in IEGT pack. During normal operation of N-NBI, frequent grid breakdown occurs,which leads to short-circuit of the load for AGPS. Then the current flowing in inverter and DCG would rapidly increase.When breakdown event is detected, the inverter shuts down and the current is switched off within 100 μs. As a result of the voltage driving method,IEGT could cut off larger current compared with the integrated gate-commutated thyristor [9].Thus, IEGT is a better choice considering frequent shortcircuit current caused by breakdown. Moreover, the snubber circuit consists of a resistor, a capacitor and a DC inductor,and a clamped diode is not required,except for improving the converter’s reliability.

    Considered the output performance, design risk and cost,the inverter frequency is selected as 150 Hz. The higher inverter frequency would have beneficial effect on the dynamic performance of the inverter, permit a reduction of the ripple voltage of the AGPS but decrease the short-circuit impedance of the step-up transformer and then the over-currents in case of grid breakdown. Also the losses in the inverter active devices and step-up transformer are affected by the frequency of the output waveform. Thus, the cost of inverter and step-up transformer increases.With the analyses shown in this paper,it has been demonstrated that the requirements in terms of ripple on the AGPS output voltages (±5%) can be achieved with 150 Hz. Moreover, the 150 Hz inverter frequency is equal to the ITER AGPS, which is a useful reference.

    Figure 5. Control unit architecture of AGPS-CS.

    The phase-leg of the inverter is shown in figure 4,whereCcis a part of DC capacitor,Dp1,2are clamp diodes,S1_4are IEGTs andD1_4are antiparallel diodes of IEGTs. Clamp resistanceRpis 20 kΩ and can prevent the clamp failure ofDp1,2. To reduce the shock voltage of driver and peak voltage of IEGT, the driver is placed with IEGT as close as possible.

    The design of the high power 3L-NPC inverter is difficult, particular with the basic phase-leg. Thus, the configurations of the phase-leg, snubber circuit and the gate resistance of the driver are discussed with supplier,a series of experiments including the dual-pulse test,minimum pulse test and the short-circuit current test are completed [1]. It means that the design of the inverter is viable.

    2.4. Control unit

    The schematic of control unit architecture for AGPS-CS is shown in figure 5. It has PXIe interfaced with a real-time controller deployed with National Instruments real-time (NI RT) software as AGPS controller [10]. The AGPS-CS controller based on digital signal processor (DSP) and field programmable gate array (FPGA) of optical fiber sensor signal was applied. The DSP is also used as converter controller for rectifier and inverter.From a functional standpoint,the control command of converter is generated and executed by DSP, and the high-speed communication is realized by FPGA between AGPS-CS controller and other controllers.The reference signal and power data are provided by AGPS controller based on the graphical user interface.Moreover,the converter controller has the direct interface for fault signal in order to switch off the converter as fast as possible.

    Figure 6. The block diagram of the interlock of the AGPS.

    The interlock system is a high-reliability system devoted to the investment protection of N-NBI system.Figure 6 shows the block diagram of the interlock of the AGPS. Electrical faults (EFs) of AGPS include output overcurrent, output undercurrent, output overvoltage and internal fault. They are related to electrical insulation, short-circuit, open-circuit and overvoltage inside in CS.Moreover,the acceleration grid will operate breakdown and beam-off conditions, during normal operation of the NBI system, beam current would switch off and arcs can occur frequently and unpredictably. Therefore,the breakdown and beam-off are not considered as fault even if it may cause stresses of AGPS. In order to coordinates the protective actions of AGPS, an independent block named breakdown and beam-off detector (BBD) is generated. BBD and EF would switch off the CS to shut down AGPS. They require detection and intervention within 100 μs to avoid major damage of AGPS. The intervention time is defined as the time form the fault detection to the inverter switch-off,which is estimated to be less than 10 μs. The delay time is reduced by the implementation of FPGA in the proposed control unit. On the other hand, if the BBD fails, a back-up intervention is granted by the overcurrent and undercurrent detectors in EF. These fault signals would also communicate with AGPS controller and NBI controller in the interlock system.

    Figure 7.Block diagram of the proposed feedforward control.

    Figure 8. Flow diagram of the implemented calculate process.

    Table 2.Parameters used in the simulations.

    On the other hand,the frequent breakdown and beam-off decrease the source conditioning efficiency. In order to improve this situation, the output voltage of AGPS will automatically recover with the predefined rise time after the predefined restart time.

    3. AGPS-CS analysis and modeling

    The required output voltage is realized by the control of thyristor rectifier and 3L-NPC inverter. The main circuit of the thyristor and diode rectifiers is similar, the difference between two rectifiers is that thyristor rectifier is controlled by firing angle,and diode rectifier is adjusted by input source.In order to describe the characteristic of three phase rectifier, a simplified average model, approximating the original system by ‘neglecting’ or ‘a(chǎn)veraging’ the effect of fast switching within a prototypical switching interval and assuming overlap, is obtained by equation (9) [5]

    Figure 9. Steady-state operation of AGPS with breakdown at the output voltage of 40 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Output voltage vout. (d) Output current iout.

    wherevois the average output voltage,vo.0is the average output voltage without load,fis the frequency of input source,Lis the input inductor,iois the average output current.

    For the thyristor rectifier,the input sinusoidal source and the phase control are considered, which influenced thevo.0.Therefore, the output voltage of thyristor controlled by the firing angle α can be expressed by equation (10)

    For the diode rectifier, the input source is provided by 3L-NPC inverter. Due to the square wave modulation, the source voltage is multilevel voltage controlled byDas shown in equation (11)

    Figure 10.Steady-state operation of AGPS with breakdown at the output voltage of 200 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Output voltage vout. (d) Output current iout.

    wherevoutis the output voltage of AGPS,vout.0is the voltage with no load,fsis the constant inverter frequency equaled to 150 Hz,LSC.SUis the equivalent short-circuit inductance of step-up transformer.

    According to the equation (11), any value ofvoutcan be accessed by adjustingDorvdc.ButDis also a key parameter for the ripple voltage. It should be noted that ripple voltage has significant effect on the N-NBI system. Thus, the minimum ripple voltage is required, too. As for the specificvoutandiout,the certain value ofDfor lower ripple voltage could be estimated.

    4. Proposed control scheme

    The inverter in AGPS-CS with fixed PI control parameters may not meet the desired and acceptable performance in CFETR NBI prototype test, particularly with respect to low output voltage and short rise time. A feedforward control strategy with piecewise PI is proposed in this section to realize suitable parameters for AGPS.

    Figure 11.Operation during breakdown of AGPS with load changed at the output voltage of 40 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Inverter current iINV. (d) Ripple of output voltage vrip. (e) Ripple of output current iout.

    The control diagram for AGPS-CS is shown in figure 7.The reference voltagevout*(kV) and rise timetr*(ms) are selected by operator. According to thevout*, the gear of voltage regulation switchS, PI parametersKPandKI,vdc*(kV) and referenceD*are calculated, the calculate workflow is shown in figure 8. WhereKP0andKI0are the initial values of inverter PI regulator for rated output voltage.During the AGPS runtime,D*is continuously updated based on thevout*andiout(t)according to equation (11). However, the error of the average model and the excursion of system parameters lead to the unsatisfactory accuracy.This difference ΔDis compensated by a PI regulator.The finalDis decided by theD*and ΔD.In this control system,the measured voltagevout(t)and thevout*(t)are in per-unit values.

    5. Simulation validation

    Figure 12.Operation during breakdown of AGPS with load changed at the output voltage of 200 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Inverter current iINV. (d) Ripple of output voltage vrip. (e) Ripple of output current iout.

    To study the operation of the proposed control strategy, the AGPS has been simulated using the PSIM software. The load model is a nonlinear voltage-controlled current source referenced in[11].The main electrical parameters of the circuit and control data are given in table 2.Simulations are done for 200 and 40 kV,because they are the top and bottom limitations of output voltage of AGPS.The rise time is set to 80,50 and 30 ms considering the actual requirements, and it could be changed further.

    Figures 9 and 10 present the steady-state operation of AGPS with breakdown at the output voltage of 40 kV and 200 kV, respectively.voutmeets the required stability and can track the reference curve as well. Thevdcis not stable during breakdown,the fluctuation ofvdcis ±5%at 5 kV and become more serious with the reduce ofvdc*. The response time of lowervdc*is larger, too. However, the performance ofvdcis sufficient to apply for AGPS. As for lowervdc*, the peak voltage ofvdcis lower, too. The converter and DC-link capacitor are not damaged.Moreover, due to the fixed capacitance of DC-link, small current causes the response time increasing.

    Figure 13.Start performance and DC-link voltage of AGPS with different rise time. (a) Output voltage vout. (b) DC-link voltage vdc.

    Figures 11 and 12 present the operation during breakdown of AGPS with load changed at the output voltage of 40 kV and 200 kV,respectively.The ripple ofvoutis±2.5%,which is half of the requirement. The accuracy ofvoutis 2%, although the 20%ioutincreased at 410 ms.ioutdecreases with the reducing output voltage,the influence of the current perturbation becomes little impact on thevout. On the other hand, when breakdown occurs, the 3L-NPC inverter switches off and the inverter current enlarges slightly within 100 μs,and the grid current cuts off in about 4 ms. Moreover, total harmonic distortions (THDs) of grid current are 11.2%and 9.3%at the output voltage of 40 kV and 200 kV,respectively.The improved of THD can be mostly attributed to the voltage regulation switch.

    The start performance and DC-link voltage of AGPS with different rise time are presented in figure 13. With the lower rise time, the supposed output voltage and the output power of DC-link are close to step waveform. Thus, the oscillations of output voltage and DC-link voltage are distinct gradually. The response performance is improved with the reduction ofand output power in figure 13(a). However,the slight overvoltage can also be observed due to the overvoltage of DC-link appearing at the full AGPS output voltage as shown in figure 13(b).This oscillation would not affect the AGPS operation.On the other hand,the peak voltage of DC-link in figure 13(b)is 5285 V.The maximum ripple voltage in transient conditions is 7.68%, which meets the requirements.

    6. Conclusions

    In this paper, the main development about the design and control of the CFETR N-NBI AGPS prototype is described.The parameter design of the AGPS-CS including the converter and controller is analyzed in detail.In order to improve the grid current and DC-link voltage, the voltage regulation switch is utilized. Then, a feedforward control strategy with piecewise PI is proposed. With this method, a wide range of output voltage and rise time for AGPS is realized. The PI regulation of inverter is implemented in order to compensate for the drawback of average model. Simulation results are conducted to validate the performance of the proposed control strategy. The experiment based on test platform would be done in future.

    Acknowledgments

    This work is supported by the National Key R&D Program of China under Grant No. 2017YFE0300104 and by National Natural Science Foundation of China (Nos. 51707073 and 51821005).

    猜你喜歡
    王棟張明
    Effect of electron–electron interaction on polarization process of exciton and biexciton in conjugated polymer
    Transformation relation between coherence and entanglement for two-qubit states
    Quantum correlation and entropic uncertainty in a quantum-dot system
    中正平和——王棟山水畫中的古意
    金橋(2022年2期)2022-03-02 05:43:02
    張明:如何系統(tǒng)地構(gòu)建“雙循環(huán)”新發(fā)展格局?
    被女生拒絕后
    三月三(2017年5期)2017-06-05 02:10:50
    二手貨
    The variations of suspended sediment concentration in Yangtze River Estuary*
    你怎么不向我借錢
    張明等
    涩涩av久久男人的天堂| 高清毛片免费观看视频网站 | 人人妻人人澡人人看| 另类亚洲欧美激情| 亚洲自偷自拍图片 自拍| 在线观看免费日韩欧美大片| 欧美黑人欧美精品刺激| 欧美不卡视频在线免费观看 | 午夜视频精品福利| 超色免费av| 伊人久久大香线蕉亚洲五| 国产激情久久老熟女| 亚洲七黄色美女视频| 国产在线观看jvid| 高清欧美精品videossex| 老司机午夜福利在线观看视频| 一夜夜www| 少妇 在线观看| 夜夜夜夜夜久久久久| 少妇裸体淫交视频免费看高清 | 99热国产这里只有精品6| 国产一卡二卡三卡精品| 黄色成人免费大全| 亚洲午夜理论影院| 亚洲精品国产色婷婷电影| 麻豆久久精品国产亚洲av | 亚洲一区中文字幕在线| 久久久精品国产亚洲av高清涩受| 国产午夜精品久久久久久| 无遮挡黄片免费观看| 日韩精品中文字幕看吧| 丰满人妻熟妇乱又伦精品不卡| 男人的好看免费观看在线视频 | 欧美+亚洲+日韩+国产| 欧美日韩国产mv在线观看视频| 免费久久久久久久精品成人欧美视频| 国产亚洲精品久久久久5区| 涩涩av久久男人的天堂| 97人妻天天添夜夜摸| av国产精品久久久久影院| 国产欧美日韩综合在线一区二区| 淫秽高清视频在线观看| 不卡一级毛片| av天堂久久9| 亚洲精华国产精华精| 88av欧美| 激情视频va一区二区三区| 看免费av毛片| 亚洲欧美一区二区三区黑人| 欧美黄色片欧美黄色片| 亚洲欧美日韩另类电影网站| 国产精品永久免费网站| 国产精品久久视频播放| 国产一卡二卡三卡精品| 动漫黄色视频在线观看| 日韩免费高清中文字幕av| 日本免费一区二区三区高清不卡 | 久久精品亚洲av国产电影网| 村上凉子中文字幕在线| 欧美人与性动交α欧美软件| 亚洲精品国产一区二区精华液| 在线观看免费日韩欧美大片| 亚洲熟妇熟女久久| 亚洲精品一区av在线观看| 777久久人妻少妇嫩草av网站| xxx96com| 夜夜夜夜夜久久久久| 久久精品91无色码中文字幕| 久久香蕉国产精品| 丁香欧美五月| 搡老熟女国产l中国老女人| 亚洲欧美激情综合另类| 十八禁人妻一区二区| 国内毛片毛片毛片毛片毛片| 在线视频色国产色| 在线观看免费高清a一片| 别揉我奶头~嗯~啊~动态视频| 男女下面插进去视频免费观看| 男人舔女人下体高潮全视频| 日本黄色视频三级网站网址| 9191精品国产免费久久| 亚洲人成伊人成综合网2020| а√天堂www在线а√下载| 狠狠狠狠99中文字幕| 他把我摸到了高潮在线观看| 大型黄色视频在线免费观看| av免费在线观看网站| 一级毛片精品| 熟女少妇亚洲综合色aaa.| 国产av又大| 国产精品久久久久久人妻精品电影| 岛国视频午夜一区免费看| 自线自在国产av| av免费在线观看网站| 久久国产亚洲av麻豆专区| 欧美中文综合在线视频| 在线av久久热| av网站在线播放免费| 欧美成狂野欧美在线观看| 香蕉丝袜av| 国产精品二区激情视频| 亚洲av成人不卡在线观看播放网| 777久久人妻少妇嫩草av网站| 免费一级毛片在线播放高清视频 | 久久精品影院6| 国产亚洲精品久久久久久毛片| 麻豆成人av在线观看| 高清黄色对白视频在线免费看| 黑人欧美特级aaaaaa片| 女人被狂操c到高潮| 国产一区二区三区在线臀色熟女 | 亚洲av成人av| 国产主播在线观看一区二区| 日本免费一区二区三区高清不卡 | 色播在线永久视频| 国内久久婷婷六月综合欲色啪| 两人在一起打扑克的视频| 久久精品成人免费网站| 亚洲狠狠婷婷综合久久图片| 亚洲熟妇熟女久久| 1024香蕉在线观看| 啦啦啦免费观看视频1| 精品人妻1区二区| 久久久久亚洲av毛片大全| 亚洲五月色婷婷综合| 欧美性长视频在线观看| 国产免费男女视频| 一级毛片女人18水好多| 精品日产1卡2卡| 亚洲欧美激情综合另类| x7x7x7水蜜桃| 能在线免费观看的黄片| 一区二区三区四区激情视频 | 国产黄片美女视频| 免费av不卡在线播放| av天堂中文字幕网| 亚洲欧美日韩东京热| 波多野结衣巨乳人妻| 欧美激情久久久久久爽电影| 国产综合懂色| 亚洲欧美精品综合久久99| 国产成人aa在线观看| 一边摸一边抽搐一进一小说| 69av精品久久久久久| 一级毛片久久久久久久久女| 午夜福利免费观看在线| 亚洲av美国av| 国产高清激情床上av| 18禁黄网站禁片免费观看直播| 国产精品影院久久| 日本黄色视频三级网站网址| 亚洲av二区三区四区| 亚洲国产日韩欧美精品在线观看| 美女被艹到高潮喷水动态| 在线播放国产精品三级| 夜夜夜夜夜久久久久| 精品熟女少妇八av免费久了| 男人的好看免费观看在线视频| 一区二区三区四区激情视频 | 国产一区二区激情短视频| 十八禁网站免费在线| 日韩欧美三级三区| 婷婷六月久久综合丁香| 少妇丰满av| 少妇丰满av| 搡老岳熟女国产| av中文乱码字幕在线| 国产高潮美女av| 成年女人看的毛片在线观看| 变态另类成人亚洲欧美熟女| 亚洲色图av天堂| 欧美绝顶高潮抽搐喷水| 久久久久免费精品人妻一区二区| 99久久99久久久精品蜜桃| 真人做人爱边吃奶动态| 可以在线观看毛片的网站| 免费观看精品视频网站| 日韩大尺度精品在线看网址| 天堂影院成人在线观看| 日本在线视频免费播放| 成人亚洲精品av一区二区| 性欧美人与动物交配| 蜜桃亚洲精品一区二区三区| 午夜福利成人在线免费观看| 国产单亲对白刺激| 成人鲁丝片一二三区免费| 熟女人妻精品中文字幕| 日韩有码中文字幕| 国产淫片久久久久久久久 | 婷婷丁香在线五月| 麻豆av噜噜一区二区三区| 51国产日韩欧美| 最近在线观看免费完整版| 人妻久久中文字幕网| 国产高清三级在线| 日本在线视频免费播放| 欧美成人免费av一区二区三区| 美女 人体艺术 gogo| 国产人妻一区二区三区在| av女优亚洲男人天堂| 精品欧美国产一区二区三| 久久久国产成人免费| 久久亚洲真实| 亚洲av第一区精品v没综合| 国产高清有码在线观看视频| 欧美在线一区亚洲| 欧美成人性av电影在线观看| 免费人成视频x8x8入口观看| 两个人视频免费观看高清| 亚洲av熟女| 久久午夜福利片| 男插女下体视频免费在线播放| 毛片女人毛片| 亚洲人成电影免费在线| av女优亚洲男人天堂| 日本黄色片子视频| 男人狂女人下面高潮的视频| 国产69精品久久久久777片| 国产v大片淫在线免费观看| 熟女人妻精品中文字幕| 无人区码免费观看不卡| 极品教师在线视频| 亚洲在线自拍视频| 波多野结衣巨乳人妻| 搞女人的毛片| 国产精品98久久久久久宅男小说| 国产精品亚洲一级av第二区| 日韩中文字幕欧美一区二区| 精品人妻1区二区| 一区福利在线观看| 亚洲激情在线av| 亚洲自偷自拍三级| 国产精品一区二区性色av| 在线观看免费视频日本深夜| 一级黄色大片毛片| 欧美日韩黄片免| 精品一区二区三区视频在线观看免费| 精品国产亚洲在线| 国产精品久久久久久亚洲av鲁大| eeuss影院久久| 亚州av有码| 亚洲av日韩精品久久久久久密| 久久久久久久午夜电影| 91久久精品国产一区二区成人| 日韩高清综合在线| 国产人妻一区二区三区在| 免费在线观看亚洲国产| 中文字幕免费在线视频6| 天堂av国产一区二区熟女人妻| 激情在线观看视频在线高清| 欧美激情久久久久久爽电影| 脱女人内裤的视频| 欧美日韩瑟瑟在线播放| 一区二区三区激情视频| 精品人妻偷拍中文字幕| 午夜福利欧美成人| 国产高清视频在线观看网站| 最近中文字幕高清免费大全6 | 成人高潮视频无遮挡免费网站| .国产精品久久| 亚洲美女黄片视频| 精品乱码久久久久久99久播| or卡值多少钱| 一边摸一边抽搐一进一小说| 无人区码免费观看不卡| 亚洲天堂国产精品一区在线| 国内精品久久久久精免费| 在线观看舔阴道视频| 波野结衣二区三区在线| 老熟妇仑乱视频hdxx| 最好的美女福利视频网| 精品国产三级普通话版| 亚洲自偷自拍三级| 男女之事视频高清在线观看| 欧美xxxx性猛交bbbb| 又黄又爽又刺激的免费视频.| 免费看光身美女| 亚洲 国产 在线| 久久精品国产清高在天天线| 色综合站精品国产| 国产成人影院久久av| 非洲黑人性xxxx精品又粗又长| 亚洲第一电影网av| 精品国内亚洲2022精品成人| 国产精品亚洲美女久久久| 麻豆久久精品国产亚洲av| 日本 av在线| 免费高清视频大片| 中亚洲国语对白在线视频| 99在线视频只有这里精品首页| 欧美成人免费av一区二区三区| 国产激情偷乱视频一区二区| 色综合婷婷激情| 国产一区二区三区视频了| 国内揄拍国产精品人妻在线| 久久久久久国产a免费观看| 国产亚洲av嫩草精品影院| 色综合欧美亚洲国产小说| 啦啦啦韩国在线观看视频| 黄色一级大片看看| 久久久久久九九精品二区国产| 午夜福利18| 亚洲成人中文字幕在线播放| 波多野结衣高清作品| 久久午夜亚洲精品久久| www.熟女人妻精品国产| 欧美日韩福利视频一区二区| 国产美女午夜福利| 国产精品永久免费网站| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆久久精品国产亚洲av| www日本黄色视频网| 九色成人免费人妻av| 国产精品久久视频播放| 国产精品伦人一区二区| 精品久久久久久久人妻蜜臀av| av天堂中文字幕网| 亚洲经典国产精华液单 | 两个人视频免费观看高清| 欧美成人免费av一区二区三区| 高清在线国产一区| 欧美最新免费一区二区三区 | 国产精品,欧美在线| 深爱激情五月婷婷| 国产精品嫩草影院av在线观看 | 天堂√8在线中文| 俺也久久电影网| 级片在线观看| 国产精品1区2区在线观看.| av福利片在线观看| 此物有八面人人有两片| 长腿黑丝高跟| 很黄的视频免费| 国产色爽女视频免费观看| 如何舔出高潮| 波多野结衣巨乳人妻| 不卡一级毛片| 精品一区二区免费观看| 日本免费a在线| 亚洲欧美激情综合另类| 国产色爽女视频免费观看| 国产视频一区二区在线看| 一a级毛片在线观看| 在线观看美女被高潮喷水网站 | 精品日产1卡2卡| 特级一级黄色大片| 国产高清视频在线播放一区| 深夜精品福利| 91在线精品国自产拍蜜月| 99精品久久久久人妻精品| 国产精品一区二区免费欧美| 国产精品综合久久久久久久免费| 男人舔女人下体高潮全视频| 亚洲最大成人av| 欧美色视频一区免费| 最新在线观看一区二区三区| 日本一本二区三区精品| 99久国产av精品| 日本一本二区三区精品| 麻豆成人av在线观看| 搡老岳熟女国产| 亚洲熟妇中文字幕五十中出| 性插视频无遮挡在线免费观看| 成年人黄色毛片网站| x7x7x7水蜜桃| 国产伦精品一区二区三区四那| av福利片在线观看| 九九久久精品国产亚洲av麻豆| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av第一区精品v没综合| 欧美3d第一页| 久久久久久久亚洲中文字幕 | 日本熟妇午夜| 在线观看av片永久免费下载| 国产精品免费一区二区三区在线| 噜噜噜噜噜久久久久久91| 国产高清有码在线观看视频| 国内精品久久久久久久电影| 亚洲七黄色美女视频| 国产成人福利小说| 嫁个100分男人电影在线观看| 熟女人妻精品中文字幕| 性欧美人与动物交配| 美女被艹到高潮喷水动态| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品sss在线观看| 国产午夜福利久久久久久| 欧美+日韩+精品| 好男人电影高清在线观看| 亚洲自偷自拍三级| 欧美色视频一区免费| 十八禁国产超污无遮挡网站| 亚洲国产日韩欧美精品在线观看| 成人国产一区最新在线观看| 久久久久久国产a免费观看| 51午夜福利影视在线观看| 中亚洲国语对白在线视频| 欧美黄色淫秽网站| 日日夜夜操网爽| 欧美不卡视频在线免费观看| 亚洲无线观看免费| 亚洲精品在线美女| 国产精品久久久久久亚洲av鲁大| 久久婷婷人人爽人人干人人爱| 免费大片18禁| 97超级碰碰碰精品色视频在线观看| 午夜视频国产福利| 波野结衣二区三区在线| 国产爱豆传媒在线观看| 久久精品国产自在天天线| 欧美又色又爽又黄视频| 亚洲内射少妇av| 亚洲黑人精品在线| 国产av一区在线观看免费| 欧美高清成人免费视频www| 欧美+日韩+精品| 少妇人妻一区二区三区视频| 天堂动漫精品| 久久精品久久久久久噜噜老黄 | 婷婷亚洲欧美| 亚洲欧美日韩无卡精品| 国内揄拍国产精品人妻在线| 精品久久国产蜜桃| 亚洲欧美清纯卡通| 欧美国产日韩亚洲一区| 真实男女啪啪啪动态图| 91久久精品电影网| 91麻豆精品激情在线观看国产| 久久6这里有精品| 性插视频无遮挡在线免费观看| 久久午夜亚洲精品久久| 女人被狂操c到高潮| 国产色婷婷99| 黄色一级大片看看| 黄色女人牲交| 日韩av在线大香蕉| 久久天躁狠狠躁夜夜2o2o| 老司机福利观看| 亚洲午夜理论影院| 国产真实伦视频高清在线观看 | 99久久九九国产精品国产免费| 日韩精品中文字幕看吧| 我的女老师完整版在线观看| 在线观看美女被高潮喷水网站 | 99久久无色码亚洲精品果冻| 国产麻豆成人av免费视频| 欧美激情国产日韩精品一区| avwww免费| 国产精品人妻久久久久久| 国产男靠女视频免费网站| 亚洲精品影视一区二区三区av| 久久精品国产亚洲av天美| 欧美一区二区精品小视频在线| 欧美日韩中文字幕国产精品一区二区三区| 成熟少妇高潮喷水视频| 999久久久精品免费观看国产| 深夜精品福利| 一级av片app| 欧美高清成人免费视频www| 男女做爰动态图高潮gif福利片| 好男人在线观看高清免费视频| 国产精品野战在线观看| 草草在线视频免费看| 性插视频无遮挡在线免费观看| 夜夜躁狠狠躁天天躁| 亚洲av二区三区四区| 少妇丰满av| 99在线视频只有这里精品首页| 脱女人内裤的视频| 欧美在线黄色| 午夜精品在线福利| 免费观看精品视频网站| 91av网一区二区| 99国产精品一区二区蜜桃av| 真实男女啪啪啪动态图| 国产精品一区二区性色av| 久久久久久久精品吃奶| 成人精品一区二区免费| 久久欧美精品欧美久久欧美| 亚洲五月天丁香| 丰满人妻熟妇乱又伦精品不卡| 人妻夜夜爽99麻豆av| 国产精品日韩av在线免费观看| 老司机福利观看| 成年版毛片免费区| 亚洲av电影在线进入| 18美女黄网站色大片免费观看| 人妻丰满熟妇av一区二区三区| 亚洲午夜理论影院| 男人舔女人下体高潮全视频| 久久6这里有精品| 美女被艹到高潮喷水动态| 国产高潮美女av| 69av精品久久久久久| 欧美极品一区二区三区四区| 1000部很黄的大片| 麻豆国产97在线/欧美| 精品99又大又爽又粗少妇毛片 | 日本黄色视频三级网站网址| 免费高清视频大片| 成年女人毛片免费观看观看9| 日韩免费av在线播放| 99国产精品一区二区蜜桃av| 久久久久久久久中文| 丁香欧美五月| 国产真实乱freesex| 久久精品国产亚洲av涩爱 | 久久国产精品人妻蜜桃| 亚洲成人免费电影在线观看| 最近视频中文字幕2019在线8| aaaaa片日本免费| 天堂av国产一区二区熟女人妻| ponron亚洲| 亚洲性夜色夜夜综合| 精品人妻一区二区三区麻豆 | 一边摸一边抽搐一进一小说| 18+在线观看网站| 日本五十路高清| 性色avwww在线观看| 高潮久久久久久久久久久不卡| 搡老岳熟女国产| 久久午夜福利片| 国产熟女xx| 亚洲国产精品sss在线观看| 99在线视频只有这里精品首页| 91九色精品人成在线观看| 日韩欧美三级三区| 一进一出抽搐动态| 欧美日韩综合久久久久久 | 亚洲天堂国产精品一区在线| 亚洲成人精品中文字幕电影| 国产精品久久久久久人妻精品电影| 国产精品野战在线观看| 久久久久亚洲av毛片大全| 久久精品久久久久久噜噜老黄 | ponron亚洲| 一级毛片久久久久久久久女| 国产淫片久久久久久久久 | 少妇高潮的动态图| 亚洲av.av天堂| 欧美黄色淫秽网站| 免费av不卡在线播放| 最近视频中文字幕2019在线8| 国产成人欧美在线观看| 日本免费一区二区三区高清不卡| 亚洲美女搞黄在线观看 | 国产免费一级a男人的天堂| 久久久久久久久大av| 首页视频小说图片口味搜索| 欧美不卡视频在线免费观看| 国产一区二区三区在线臀色熟女| 日本撒尿小便嘘嘘汇集6| 久久精品91蜜桃| 国产国拍精品亚洲av在线观看| 日韩欧美在线二视频| 动漫黄色视频在线观看| 一个人观看的视频www高清免费观看| 国产高清三级在线| 国产高清激情床上av| 禁无遮挡网站| 99久久九九国产精品国产免费| 黄片小视频在线播放| 亚洲美女搞黄在线观看 | 有码 亚洲区| 欧美中文日本在线观看视频| 午夜福利高清视频| 欧美性感艳星| 日韩欧美在线乱码| 村上凉子中文字幕在线| 成人鲁丝片一二三区免费| 看黄色毛片网站| 亚洲成人中文字幕在线播放| 久久天躁狠狠躁夜夜2o2o| 少妇熟女aⅴ在线视频| 丰满的人妻完整版| 亚洲美女搞黄在线观看 | 国产高清视频在线播放一区| 最近中文字幕高清免费大全6 | 精品人妻视频免费看| 欧美日韩福利视频一区二区| 国产精品亚洲一级av第二区| 性插视频无遮挡在线免费观看| 成年版毛片免费区| www.999成人在线观看| 亚洲在线自拍视频| 亚洲,欧美精品.| 色尼玛亚洲综合影院| 日韩人妻高清精品专区| 久久九九热精品免费| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 久久久久性生活片| 欧美一级a爱片免费观看看| 日本五十路高清| 很黄的视频免费| 国产老妇女一区| 美女cb高潮喷水在线观看| 亚洲中文字幕一区二区三区有码在线看| 啪啪无遮挡十八禁网站| 亚洲经典国产精华液单 | 日韩中文字幕欧美一区二区| 亚洲激情在线av| 精品久久久久久久久av| 亚洲成a人片在线一区二区| 久久人人精品亚洲av| 夜夜夜夜夜久久久久| 搡老熟女国产l中国老女人| 偷拍熟女少妇极品色| 中文资源天堂在线| 在线免费观看的www视频| 国产综合懂色| 自拍偷自拍亚洲精品老妇| 69av精品久久久久久| 国内精品久久久久精免费|