• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and control of the accelerator grid power supply-conversion system applied to CFETR N-NBI prototype

    2020-08-26 04:58:08DongyuWANG王棟煜MingZHANG張明ShaoxiangMA馬少翔ShuYANG楊舒KexunYU于克訓(xùn)andYuanPAN潘垣
    Plasma Science and Technology 2020年8期
    關(guān)鍵詞:王棟張明

    Dongyu WANG(王棟煜),Ming ZHANG(張明),Shaoxiang MA(馬少翔),Shu YANG (楊舒), Kexun YU (于克訓(xùn)) and Yuan PAN (潘垣)

    1 State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

    2 School of Electrical and Electronic Engineering, Huazhong University of Science and Technology,Wuhan 430074, People’s Republic of China

    Abstract The acceleration grid power supply (AGPS) rated 200 kV/25 A is a key component devoted to supply the acceleration grids of the China fusion engineering test reactor negative-ion-based neutral beam injector(N-NBI)prototype system.This paper focused on the design and control of the AGPS conversion system (AGPS-CS), with emphasis on the requirement of the wide range output voltage and rise time.A voltage regulation switch at the front of step-down transformer is applied to optimize the grid current and DC-link voltage. Moreover, a new feedforward control strategy with piecewise PI compensator is proposed to improve the characteristics of AGPS.The simulation results of the proposed AGPS-CS are presented, proving the performance of the power supply to achieve the desired requirements.

    Keywords: CFETR, NBI, accelerator grid power supply, feedforward control, high voltage power supply

    1. Introduction

    In order to prepare for China fusion engineering test reactor(CFETR), a prototype of CFETR negative-ion-based Neutral Beam Injector (N-NBI) is under designing. The N-NBI prototype should accelerate hydrogen negative ions up to 200 keV with a beam current as high as 20 A for 3600 s, and an acceleration grid power supply (AGPS) rated at 200 kV/25 A/3600 s needs to be researched and developed. The scheme of the AGPS for CFETR N-NBI prototype is shown in figure 1 [1].

    The scenario of the inverter-type high voltage power supply is applied to AGPS, this scenario is also utilized for ITER, JT-60U N-NBI system [2, 3]. In the AGPS prototype scheme, a step-down transformer with voltage regulation switch feeds a 12-pulse thyristor rectifier, which supplies the three-level neutral point clamped (3L-NPC) inverter. Inverter generates a 150 Hz square wave voltage to the primary side of the step-up transformer, and the secondary side is connected to the uncontrolled diode rectifier.The output voltage is dealt with a DC filter to provide the required 200 kV high-voltage.In order to produce high DC voltage, a lot of diodes are connected in series. Compared with thyristor, the reliability and cost of diode solution is satisfactory due to the less drive circuit and control optical. In general, the high-voltage part consisted of step-up transformer, diode rectifier and DC filter is named direct current generator (DCG), the medium-high voltage part consisted of step-down transformer, rectifier and inverter is named conversion system(CS).In order to provide a central point for the connection to the neutral point of 3LNPC,the 12-pulse rectifier made by the two 6-pulse rectifiers connected in series is utilized, and the rated DC-link voltage is 5 kV.Considered the actual requirements of power capacity and the high switch-off time, the 4.5 kV injection enhanced gate transistor (IEGT) is used in 3L-NPC inverter. Major specification of the AGPS for the CFETR N-NBI prototype is summarized in table 1.AGPS-CS is the key component of the AGPS. The DC-link voltage and modulation coefficient are controlled in real time during AGPS operation. Output voltage of the AGPS depends on the DC-link voltage and inverter modulation [4]. Furthermore, the protection against breakdown or beam-off between accelerator grids also relies on fast switch-off of the inverter [2].Thus,the control and design of the AGPS-CS are important.

    Figure 1.The scheme of the AGPS.

    In ITER AGPS design, the proportional-integral derivative (PID) regulator is used in the control loop [5]. At the output,the modulation coefficient of 3L-NPC is generated by the PID regulator.This modulation coefficientDis defined as the duty of the 3L-NPC phase-leg with the 150 Hz modulation frequency. In order to minimize the ripple voltage, the DC-link voltage also can be adjusted uniformly [6]. The relationship between modulation coefficient and ripple voltage is analyzed and reported in[7].It has been proved that the control is satisfactory for ITER AGPS [8]. However, it is noted that the wide range and adjustable rise-time of output voltage for CFETR AGPS prototype are desired during NBI runtime debugging.The performance of AGPS is affected by fixed PI parameter. Hence, control strategy for optimal performance based on feedforward control with piecewise PI parameter at such operation of AGPS should be considered.On the other hand,the performance of the DC-link voltage is improved by the regulation switch,in particular,when the low output voltage of AGPS such as 20% rated voltage is required.

    In this paper, the development of CFETR N-NBI prototype AGPS-CS is introduced. The detailed design of the AGPS-CS for CFETR N-NBI prototype is described in section 2. The simplified average model of rectifier and inverter is discussed in section 3.In addition,an improvement of the feedforward control strategy based on piecewise PI is proposed in section 4. The performance achievable with this solution is verified by simulation results in section 5.

    Table 1.Specification of the AGPS.

    2. Design of the AGPS-CS

    2.1. CS overview

    As shown in figure 1, the circuit of the CS is a typical AC/DC/AC topology. The main components are thyristor rectifier and 3L-NPC inverter. The DC-link power is provided by the rectifier and inverted by the 3L-NPC.

    The thyristor rectifier presents two fundamental advantages compared to the active front end: (1) with the same large capacity, the cost is low, and the reliability is high due to the simple control method.(2)Based on the regulation of the firing angle,the DC-link voltage can be adjusted in quite a large range.

    Figure 2.Assembly design of AGPS-CS.

    Figure 3. Topology of thyristor rectifier.

    The 3L-NPC inverter presents two fundamental advantages compared to the two-level inverter:(1)the harmonics in step-up transformer and the output ripple voltage are reduced with the multilevel. (2) With the same DC-link voltage, the power semiconductor devices withstand the half voltage, so the inverter capacity is doubled as well.

    The detailed assembly design of the AGPS-CS is shown in figure 2.There are 8 equipment cabinets in AGPS-CS.The total size is 9.4 × 1.5 × 2.2 m3. It must be point out that the two control cabinets are utilized as main-slave structure,the main inverter cabinet connects to the AGPS controller. It receives the operation commands and controls the inverter state. The slave rectifier cabinet connects to the inverter cabinet.It receives the reference DC-link voltage and controls the states of rectifier and voltage regulation switch.

    2.2. Thyristor rectifier

    The topology of thyristor rectifier is shown in figure 3. The rated output power of the CSPois 5 MW, considered the power factor 0.95 and efficiency 0.95, the rated input power of CSPiis 5.5 MW and the rated DC-link voltagevdcis 5 kV,so the output current of the rectifierIdis 1.1 kA. A realistic per-unit inductive short-circuit voltage of the step-down transformer rated for this powervXSCis 8%. Considered thevXSCand the minimum voltage of the grid respect to the rated grid voltage Δvg(90%), the secondary voltage of the transformerv20.SDcan be expressed as equation (1)

    Thus,the input current of each thyristori2.SDis given by equation (2)

    Assuming the DD and DY connections, the turn ratio of the step-down transformernSDcan be given by equation (3)

    wherevgis the nominal grid voltage (10 kV). The equivalent short-circuit inductance of transformer is determined by equation (4)

    wherefgis the grid frequency. The dry-type transformer installed in indoor is selected.

    Figure 4.Phase-leg of inverter. (a) Circuit diagram of the phase-leg. (b) Assembly diagram of the phase-leg.

    In the output of rectifier, the capacitance of DC-linkCdcis a key parameter for AGPS. When breakdown or beam-off occurs, the inverter would cut off within 100 μs, and the rectifier remains the DC-link voltage in suitable range without load. Hence, the design of DC-link considers this fault condition.

    The DC-link inductorLdcsmooths the output current of rectifier, and it can be expressed by equation (5)

    wherevLis the drop voltage factor of the DC inductor (5%),ΔIdis the ripple factor ofid(15%).

    During the fault process,Eoff,LandEoff,grepresented the energy from the leakage inductance of the step-down transformer and grid can be estimated as equation (6)

    Then according to the maximum overvoltage permitted on the DC-link voltagevdc.max(109% ofvdc), the minimumCdccan be calculated as equation (7)

    The voltage regulation switch equipped in the primary side of step-down transformer has 13 voltage gears,the rated voltage is 10.4 kV with the difference 400 V among each gear. When the lowest 40 kV output voltage of AGPS is required, the lowest gear would be chosen and thenv20.SDwould decrease by about a half (from 2.3 to 1.24 kV). Thus,the firing angle of thyristor and input current are improved.

    2.3. 3L-NPC inverter

    The RMS value of the output current of the inverterIINV,depending on the output current of AGPSIoutand the turn ratio of the step-up transformernSU, can be expressed by equation (8)

    Based on the calculate results,the IEGT ST1500GXH24 with nominal parameter 4500 V/1500 A is used in inverter,the antiparallel diode is integrated in IEGT pack. During normal operation of N-NBI, frequent grid breakdown occurs,which leads to short-circuit of the load for AGPS. Then the current flowing in inverter and DCG would rapidly increase.When breakdown event is detected, the inverter shuts down and the current is switched off within 100 μs. As a result of the voltage driving method,IEGT could cut off larger current compared with the integrated gate-commutated thyristor [9].Thus, IEGT is a better choice considering frequent shortcircuit current caused by breakdown. Moreover, the snubber circuit consists of a resistor, a capacitor and a DC inductor,and a clamped diode is not required,except for improving the converter’s reliability.

    Considered the output performance, design risk and cost,the inverter frequency is selected as 150 Hz. The higher inverter frequency would have beneficial effect on the dynamic performance of the inverter, permit a reduction of the ripple voltage of the AGPS but decrease the short-circuit impedance of the step-up transformer and then the over-currents in case of grid breakdown. Also the losses in the inverter active devices and step-up transformer are affected by the frequency of the output waveform. Thus, the cost of inverter and step-up transformer increases.With the analyses shown in this paper,it has been demonstrated that the requirements in terms of ripple on the AGPS output voltages (±5%) can be achieved with 150 Hz. Moreover, the 150 Hz inverter frequency is equal to the ITER AGPS, which is a useful reference.

    Figure 5. Control unit architecture of AGPS-CS.

    The phase-leg of the inverter is shown in figure 4,whereCcis a part of DC capacitor,Dp1,2are clamp diodes,S1_4are IEGTs andD1_4are antiparallel diodes of IEGTs. Clamp resistanceRpis 20 kΩ and can prevent the clamp failure ofDp1,2. To reduce the shock voltage of driver and peak voltage of IEGT, the driver is placed with IEGT as close as possible.

    The design of the high power 3L-NPC inverter is difficult, particular with the basic phase-leg. Thus, the configurations of the phase-leg, snubber circuit and the gate resistance of the driver are discussed with supplier,a series of experiments including the dual-pulse test,minimum pulse test and the short-circuit current test are completed [1]. It means that the design of the inverter is viable.

    2.4. Control unit

    The schematic of control unit architecture for AGPS-CS is shown in figure 5. It has PXIe interfaced with a real-time controller deployed with National Instruments real-time (NI RT) software as AGPS controller [10]. The AGPS-CS controller based on digital signal processor (DSP) and field programmable gate array (FPGA) of optical fiber sensor signal was applied. The DSP is also used as converter controller for rectifier and inverter.From a functional standpoint,the control command of converter is generated and executed by DSP, and the high-speed communication is realized by FPGA between AGPS-CS controller and other controllers.The reference signal and power data are provided by AGPS controller based on the graphical user interface.Moreover,the converter controller has the direct interface for fault signal in order to switch off the converter as fast as possible.

    Figure 6. The block diagram of the interlock of the AGPS.

    The interlock system is a high-reliability system devoted to the investment protection of N-NBI system.Figure 6 shows the block diagram of the interlock of the AGPS. Electrical faults (EFs) of AGPS include output overcurrent, output undercurrent, output overvoltage and internal fault. They are related to electrical insulation, short-circuit, open-circuit and overvoltage inside in CS.Moreover,the acceleration grid will operate breakdown and beam-off conditions, during normal operation of the NBI system, beam current would switch off and arcs can occur frequently and unpredictably. Therefore,the breakdown and beam-off are not considered as fault even if it may cause stresses of AGPS. In order to coordinates the protective actions of AGPS, an independent block named breakdown and beam-off detector (BBD) is generated. BBD and EF would switch off the CS to shut down AGPS. They require detection and intervention within 100 μs to avoid major damage of AGPS. The intervention time is defined as the time form the fault detection to the inverter switch-off,which is estimated to be less than 10 μs. The delay time is reduced by the implementation of FPGA in the proposed control unit. On the other hand, if the BBD fails, a back-up intervention is granted by the overcurrent and undercurrent detectors in EF. These fault signals would also communicate with AGPS controller and NBI controller in the interlock system.

    Figure 7.Block diagram of the proposed feedforward control.

    Figure 8. Flow diagram of the implemented calculate process.

    Table 2.Parameters used in the simulations.

    On the other hand,the frequent breakdown and beam-off decrease the source conditioning efficiency. In order to improve this situation, the output voltage of AGPS will automatically recover with the predefined rise time after the predefined restart time.

    3. AGPS-CS analysis and modeling

    The required output voltage is realized by the control of thyristor rectifier and 3L-NPC inverter. The main circuit of the thyristor and diode rectifiers is similar, the difference between two rectifiers is that thyristor rectifier is controlled by firing angle,and diode rectifier is adjusted by input source.In order to describe the characteristic of three phase rectifier, a simplified average model, approximating the original system by ‘neglecting’ or ‘a(chǎn)veraging’ the effect of fast switching within a prototypical switching interval and assuming overlap, is obtained by equation (9) [5]

    Figure 9. Steady-state operation of AGPS with breakdown at the output voltage of 40 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Output voltage vout. (d) Output current iout.

    wherevois the average output voltage,vo.0is the average output voltage without load,fis the frequency of input source,Lis the input inductor,iois the average output current.

    For the thyristor rectifier,the input sinusoidal source and the phase control are considered, which influenced thevo.0.Therefore, the output voltage of thyristor controlled by the firing angle α can be expressed by equation (10)

    For the diode rectifier, the input source is provided by 3L-NPC inverter. Due to the square wave modulation, the source voltage is multilevel voltage controlled byDas shown in equation (11)

    Figure 10.Steady-state operation of AGPS with breakdown at the output voltage of 200 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Output voltage vout. (d) Output current iout.

    wherevoutis the output voltage of AGPS,vout.0is the voltage with no load,fsis the constant inverter frequency equaled to 150 Hz,LSC.SUis the equivalent short-circuit inductance of step-up transformer.

    According to the equation (11), any value ofvoutcan be accessed by adjustingDorvdc.ButDis also a key parameter for the ripple voltage. It should be noted that ripple voltage has significant effect on the N-NBI system. Thus, the minimum ripple voltage is required, too. As for the specificvoutandiout,the certain value ofDfor lower ripple voltage could be estimated.

    4. Proposed control scheme

    The inverter in AGPS-CS with fixed PI control parameters may not meet the desired and acceptable performance in CFETR NBI prototype test, particularly with respect to low output voltage and short rise time. A feedforward control strategy with piecewise PI is proposed in this section to realize suitable parameters for AGPS.

    Figure 11.Operation during breakdown of AGPS with load changed at the output voltage of 40 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Inverter current iINV. (d) Ripple of output voltage vrip. (e) Ripple of output current iout.

    The control diagram for AGPS-CS is shown in figure 7.The reference voltagevout*(kV) and rise timetr*(ms) are selected by operator. According to thevout*, the gear of voltage regulation switchS, PI parametersKPandKI,vdc*(kV) and referenceD*are calculated, the calculate workflow is shown in figure 8. WhereKP0andKI0are the initial values of inverter PI regulator for rated output voltage.During the AGPS runtime,D*is continuously updated based on thevout*andiout(t)according to equation (11). However, the error of the average model and the excursion of system parameters lead to the unsatisfactory accuracy.This difference ΔDis compensated by a PI regulator.The finalDis decided by theD*and ΔD.In this control system,the measured voltagevout(t)and thevout*(t)are in per-unit values.

    5. Simulation validation

    Figure 12.Operation during breakdown of AGPS with load changed at the output voltage of 200 kV. (a) Grid current igrid. (b) DC-link voltage vdc1 and vdc2. (c) Inverter current iINV. (d) Ripple of output voltage vrip. (e) Ripple of output current iout.

    To study the operation of the proposed control strategy, the AGPS has been simulated using the PSIM software. The load model is a nonlinear voltage-controlled current source referenced in[11].The main electrical parameters of the circuit and control data are given in table 2.Simulations are done for 200 and 40 kV,because they are the top and bottom limitations of output voltage of AGPS.The rise time is set to 80,50 and 30 ms considering the actual requirements, and it could be changed further.

    Figures 9 and 10 present the steady-state operation of AGPS with breakdown at the output voltage of 40 kV and 200 kV, respectively.voutmeets the required stability and can track the reference curve as well. Thevdcis not stable during breakdown,the fluctuation ofvdcis ±5%at 5 kV and become more serious with the reduce ofvdc*. The response time of lowervdc*is larger, too. However, the performance ofvdcis sufficient to apply for AGPS. As for lowervdc*, the peak voltage ofvdcis lower, too. The converter and DC-link capacitor are not damaged.Moreover, due to the fixed capacitance of DC-link, small current causes the response time increasing.

    Figure 13.Start performance and DC-link voltage of AGPS with different rise time. (a) Output voltage vout. (b) DC-link voltage vdc.

    Figures 11 and 12 present the operation during breakdown of AGPS with load changed at the output voltage of 40 kV and 200 kV,respectively.The ripple ofvoutis±2.5%,which is half of the requirement. The accuracy ofvoutis 2%, although the 20%ioutincreased at 410 ms.ioutdecreases with the reducing output voltage,the influence of the current perturbation becomes little impact on thevout. On the other hand, when breakdown occurs, the 3L-NPC inverter switches off and the inverter current enlarges slightly within 100 μs,and the grid current cuts off in about 4 ms. Moreover, total harmonic distortions (THDs) of grid current are 11.2%and 9.3%at the output voltage of 40 kV and 200 kV,respectively.The improved of THD can be mostly attributed to the voltage regulation switch.

    The start performance and DC-link voltage of AGPS with different rise time are presented in figure 13. With the lower rise time, the supposed output voltage and the output power of DC-link are close to step waveform. Thus, the oscillations of output voltage and DC-link voltage are distinct gradually. The response performance is improved with the reduction ofand output power in figure 13(a). However,the slight overvoltage can also be observed due to the overvoltage of DC-link appearing at the full AGPS output voltage as shown in figure 13(b).This oscillation would not affect the AGPS operation.On the other hand,the peak voltage of DC-link in figure 13(b)is 5285 V.The maximum ripple voltage in transient conditions is 7.68%, which meets the requirements.

    6. Conclusions

    In this paper, the main development about the design and control of the CFETR N-NBI AGPS prototype is described.The parameter design of the AGPS-CS including the converter and controller is analyzed in detail.In order to improve the grid current and DC-link voltage, the voltage regulation switch is utilized. Then, a feedforward control strategy with piecewise PI is proposed. With this method, a wide range of output voltage and rise time for AGPS is realized. The PI regulation of inverter is implemented in order to compensate for the drawback of average model. Simulation results are conducted to validate the performance of the proposed control strategy. The experiment based on test platform would be done in future.

    Acknowledgments

    This work is supported by the National Key R&D Program of China under Grant No. 2017YFE0300104 and by National Natural Science Foundation of China (Nos. 51707073 and 51821005).

    猜你喜歡
    王棟張明
    Effect of electron–electron interaction on polarization process of exciton and biexciton in conjugated polymer
    Transformation relation between coherence and entanglement for two-qubit states
    Quantum correlation and entropic uncertainty in a quantum-dot system
    中正平和——王棟山水畫中的古意
    金橋(2022年2期)2022-03-02 05:43:02
    張明:如何系統(tǒng)地構(gòu)建“雙循環(huán)”新發(fā)展格局?
    被女生拒絕后
    三月三(2017年5期)2017-06-05 02:10:50
    二手貨
    The variations of suspended sediment concentration in Yangtze River Estuary*
    你怎么不向我借錢
    張明等
    成人三级黄色视频| 亚洲人成电影免费在线| 免费电影在线观看免费观看| 免费在线观看日本一区| 国产精品美女特级片免费视频播放器| 日日夜夜操网爽| 午夜精品在线福利| 久久精品国产清高在天天线| 色老头精品视频在线观看| www国产在线视频色| 亚洲黑人精品在线| 搡老岳熟女国产| 日韩精品中文字幕看吧| 国产av一区在线观看免费| 成人性生交大片免费视频hd| 国产国拍精品亚洲av在线观看 | 久久久久免费精品人妻一区二区| 国产成人av教育| 舔av片在线| 无遮挡黄片免费观看| 久久久久国产精品人妻aⅴ院| 婷婷丁香在线五月| 久久天躁狠狠躁夜夜2o2o| 精华霜和精华液先用哪个| 日韩国内少妇激情av| 亚洲一区高清亚洲精品| 女人十人毛片免费观看3o分钟| 最好的美女福利视频网| 国产精品乱码一区二三区的特点| 成熟少妇高潮喷水视频| 搡老妇女老女人老熟妇| 91在线观看av| 老鸭窝网址在线观看| 国产高清三级在线| 少妇裸体淫交视频免费看高清| 精品久久久久久久毛片微露脸| 琪琪午夜伦伦电影理论片6080| 国产精品久久久人人做人人爽| 成人三级黄色视频| 国产老妇女一区| 午夜免费男女啪啪视频观看 | 国产 一区 欧美 日韩| 免费高清视频大片| 欧美又色又爽又黄视频| 亚洲精品日韩av片在线观看 | 毛片女人毛片| 亚洲成a人片在线一区二区| 中出人妻视频一区二区| 级片在线观看| 国产伦精品一区二区三区四那| 久久精品国产亚洲av涩爱 | 亚洲黑人精品在线| 99在线视频只有这里精品首页| 久久午夜亚洲精品久久| 亚洲av电影在线进入| 制服丝袜大香蕉在线| 国产淫片久久久久久久久 | 久久亚洲精品不卡| 此物有八面人人有两片| 99视频精品全部免费 在线| 精品久久久久久久人妻蜜臀av| 国产成人啪精品午夜网站| 热99re8久久精品国产| 久久天躁狠狠躁夜夜2o2o| 叶爱在线成人免费视频播放| 亚洲国产欧洲综合997久久,| av国产免费在线观看| 人人妻人人澡欧美一区二区| av天堂在线播放| 精品人妻偷拍中文字幕| 亚洲 欧美 日韩 在线 免费| 精品人妻偷拍中文字幕| 99国产极品粉嫩在线观看| 久久人人精品亚洲av| 色在线成人网| 亚洲国产高清在线一区二区三| 9191精品国产免费久久| 香蕉久久夜色| 亚洲成av人片在线播放无| 精品久久久久久久久久久久久| 丰满人妻熟妇乱又伦精品不卡| 免费一级毛片在线播放高清视频| 看片在线看免费视频| 看免费av毛片| 欧美一级a爱片免费观看看| 欧美中文综合在线视频| 少妇人妻精品综合一区二区 | 两人在一起打扑克的视频| 日韩欧美精品免费久久 | 亚洲国产欧洲综合997久久,| 美女免费视频网站| 每晚都被弄得嗷嗷叫到高潮| 白带黄色成豆腐渣| a级一级毛片免费在线观看| 亚洲精品乱码久久久v下载方式 | 全区人妻精品视频| 国产毛片a区久久久久| 麻豆一二三区av精品| 亚洲av电影不卡..在线观看| 99在线视频只有这里精品首页| 99国产精品一区二区蜜桃av| 天堂√8在线中文| 精品久久久久久久毛片微露脸| 少妇裸体淫交视频免费看高清| 丰满人妻一区二区三区视频av | 99在线人妻在线中文字幕| 3wmmmm亚洲av在线观看| 亚洲一区二区三区色噜噜| 无限看片的www在线观看| 精品一区二区三区av网在线观看| 国产精品久久久久久久久免 | 国产私拍福利视频在线观看| 国产野战对白在线观看| 三级国产精品欧美在线观看| 成人高潮视频无遮挡免费网站| 精品一区二区三区av网在线观看| 午夜福利成人在线免费观看| 日韩有码中文字幕| 一区二区三区免费毛片| 俄罗斯特黄特色一大片| 高清日韩中文字幕在线| 99久久久亚洲精品蜜臀av| 久久国产精品影院| 日韩国内少妇激情av| 一区二区三区国产精品乱码| 欧美日韩亚洲国产一区二区在线观看| 可以在线观看的亚洲视频| 久久天躁狠狠躁夜夜2o2o| 午夜亚洲福利在线播放| 欧美日韩中文字幕国产精品一区二区三区| 丰满的人妻完整版| 少妇人妻一区二区三区视频| 日韩人妻高清精品专区| 女同久久另类99精品国产91| 内射极品少妇av片p| 国产伦精品一区二区三区四那| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲精品在线美女| 免费无遮挡裸体视频| 一本综合久久免费| 成人一区二区视频在线观看| 国产久久久一区二区三区| 国产精品亚洲av一区麻豆| 在线观看免费午夜福利视频| 俺也久久电影网| 亚洲aⅴ乱码一区二区在线播放| 18禁在线播放成人免费| 变态另类丝袜制服| 国产精品,欧美在线| 久久这里只有精品中国| 国产午夜精品久久久久久一区二区三区 | 国产蜜桃级精品一区二区三区| 亚洲精品日韩av片在线观看 | 一a级毛片在线观看| 日本与韩国留学比较| 成人国产一区最新在线观看| 身体一侧抽搐| 熟女电影av网| 欧美日韩综合久久久久久 | 亚洲国产精品999在线| 国产三级中文精品| 12—13女人毛片做爰片一| 成人特级黄色片久久久久久久| av天堂中文字幕网| 国产精品亚洲美女久久久| 麻豆一二三区av精品| 欧美最黄视频在线播放免费| 观看免费一级毛片| 国产在视频线在精品| 亚洲男人的天堂狠狠| 国产精品久久久久久久久免 | 亚洲国产欧美人成| 国产成人福利小说| 国产av不卡久久| 日本精品一区二区三区蜜桃| 国产欧美日韩一区二区三| 日本 av在线| 日韩 欧美 亚洲 中文字幕| 亚洲欧美日韩无卡精品| 亚洲真实伦在线观看| 欧美一区二区精品小视频在线| 小说图片视频综合网站| 国产黄片美女视频| 成年版毛片免费区| 网址你懂的国产日韩在线| 少妇熟女aⅴ在线视频| 99久久99久久久精品蜜桃| 久久久久久久亚洲中文字幕 | 国产日本99.免费观看| 老司机午夜十八禁免费视频| 国内精品久久久久久久电影| 一级黄片播放器| 国产视频内射| e午夜精品久久久久久久| 最新在线观看一区二区三区| 欧美黄色淫秽网站| 久久草成人影院| 蜜桃亚洲精品一区二区三区| 性欧美人与动物交配| 亚洲精品456在线播放app | 精品人妻偷拍中文字幕| 伊人久久大香线蕉亚洲五| 欧美又色又爽又黄视频| 亚洲精品一区av在线观看| 女人高潮潮喷娇喘18禁视频| 久久国产乱子伦精品免费另类| 国产精品免费一区二区三区在线| 欧美成人a在线观看| 亚洲欧美激情综合另类| 一本精品99久久精品77| 精品久久久久久久久久久久久| 色老头精品视频在线观看| 看片在线看免费视频| 1000部很黄的大片| 国产成年人精品一区二区| 国产精品久久视频播放| 久9热在线精品视频| 亚洲国产色片| 久99久视频精品免费| 中文字幕精品亚洲无线码一区| 一级黄片播放器| 女人被狂操c到高潮| 老司机福利观看| 淫妇啪啪啪对白视频| 日韩大尺度精品在线看网址| 美女被艹到高潮喷水动态| 国产精华一区二区三区| 久久午夜亚洲精品久久| bbb黄色大片| xxxwww97欧美| 婷婷丁香在线五月| 黄色丝袜av网址大全| 观看免费一级毛片| 可以在线观看毛片的网站| 久久精品国产综合久久久| 两性午夜刺激爽爽歪歪视频在线观看| 老司机在亚洲福利影院| 国产亚洲精品久久久久久毛片| 人妻夜夜爽99麻豆av| 国产精品久久久久久亚洲av鲁大| 午夜福利在线在线| 在线视频色国产色| 黄色成人免费大全| 日韩中文字幕欧美一区二区| a级一级毛片免费在线观看| 国产精品亚洲美女久久久| 一个人看的www免费观看视频| 在线观看免费视频日本深夜| 欧美日韩黄片免| 此物有八面人人有两片| 啦啦啦免费观看视频1| 欧美午夜高清在线| 亚洲av成人av| 在线观看美女被高潮喷水网站 | 国产成人系列免费观看| 国产一区二区激情短视频| 国产成人aa在线观看| 99久久精品国产亚洲精品| 亚洲午夜理论影院| 国产乱人视频| 叶爱在线成人免费视频播放| 国产日本99.免费观看| 亚洲avbb在线观看| 丁香六月欧美| 色老头精品视频在线观看| 国产午夜福利久久久久久| 国产男靠女视频免费网站| avwww免费| 有码 亚洲区| 69人妻影院| 国产亚洲av嫩草精品影院| 51国产日韩欧美| 色av中文字幕| 啦啦啦观看免费观看视频高清| 国产熟女xx| 国产视频一区二区在线看| 日韩免费av在线播放| 搡老岳熟女国产| 中文字幕人妻丝袜一区二区| 99国产综合亚洲精品| 嫩草影院入口| 国产成人av教育| 熟女少妇亚洲综合色aaa.| 怎么达到女性高潮| 伊人久久精品亚洲午夜| 999久久久精品免费观看国产| 国产男靠女视频免费网站| 香蕉av资源在线| 99国产综合亚洲精品| 久久久久久久久久黄片| 日韩欧美三级三区| 国产成人福利小说| 天美传媒精品一区二区| 欧美乱妇无乱码| 欧美一级毛片孕妇| 啦啦啦韩国在线观看视频| 久久精品国产亚洲av涩爱 | av欧美777| 国产av不卡久久| 一个人观看的视频www高清免费观看| 国产三级黄色录像| 岛国在线免费视频观看| 久久精品综合一区二区三区| 日日干狠狠操夜夜爽| 欧美日韩福利视频一区二区| 熟女少妇亚洲综合色aaa.| 国产伦精品一区二区三区四那| 亚洲色图av天堂| 国产精品久久久久久亚洲av鲁大| 久久久久久久久大av| 亚洲av一区综合| 日韩亚洲欧美综合| 欧美日韩亚洲国产一区二区在线观看| 精品国内亚洲2022精品成人| 老司机在亚洲福利影院| 久久欧美精品欧美久久欧美| 宅男免费午夜| 亚洲欧美一区二区三区黑人| 精品熟女少妇八av免费久了| 欧美国产日韩亚洲一区| 韩国av一区二区三区四区| 亚洲一区二区三区色噜噜| 他把我摸到了高潮在线观看| 非洲黑人性xxxx精品又粗又长| 国产探花极品一区二区| 国内少妇人妻偷人精品xxx网站| 他把我摸到了高潮在线观看| 亚洲欧美一区二区三区黑人| 两人在一起打扑克的视频| 少妇的逼水好多| 欧美三级亚洲精品| 婷婷六月久久综合丁香| 狠狠狠狠99中文字幕| 最新在线观看一区二区三区| 少妇的逼水好多| 一区二区三区高清视频在线| 欧美黄色片欧美黄色片| 男女视频在线观看网站免费| 婷婷丁香在线五月| 欧美绝顶高潮抽搐喷水| 人人妻,人人澡人人爽秒播| 成年女人永久免费观看视频| 精品欧美国产一区二区三| av黄色大香蕉| 老汉色∧v一级毛片| 19禁男女啪啪无遮挡网站| 精品欧美国产一区二区三| 欧美最黄视频在线播放免费| 99久久久亚洲精品蜜臀av| 69av精品久久久久久| 免费在线观看日本一区| av天堂在线播放| 亚洲av第一区精品v没综合| 两个人看的免费小视频| 久久精品91蜜桃| 午夜a级毛片| 男女之事视频高清在线观看| 午夜激情福利司机影院| 久久久精品大字幕| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 欧美一区二区亚洲| 黄色片一级片一级黄色片| 99热这里只有是精品50| 又紧又爽又黄一区二区| avwww免费| 欧美日韩乱码在线| 99久久精品国产亚洲精品| 亚洲av中文字字幕乱码综合| 999久久久精品免费观看国产| 精品国产美女av久久久久小说| 久久6这里有精品| 中出人妻视频一区二区| 国产伦一二天堂av在线观看| 神马国产精品三级电影在线观看| 床上黄色一级片| 成年人黄色毛片网站| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 18美女黄网站色大片免费观看| 人妻久久中文字幕网| 伊人久久精品亚洲午夜| 日韩欧美精品v在线| 叶爱在线成人免费视频播放| 成人性生交大片免费视频hd| 在线免费观看不下载黄p国产 | 女人十人毛片免费观看3o分钟| 国产伦人伦偷精品视频| 亚洲成av人片免费观看| 国产久久久一区二区三区| 成人国产综合亚洲| 国产av在哪里看| 亚洲精品美女久久久久99蜜臀| www.www免费av| 亚洲人成网站在线播| 亚洲 国产 在线| 长腿黑丝高跟| 午夜免费激情av| 精品久久久久久久久久久久久| 欧美日韩精品网址| 91av网一区二区| 天堂√8在线中文| 久久九九热精品免费| 中文在线观看免费www的网站| 757午夜福利合集在线观看| 99国产极品粉嫩在线观看| 国产精品女同一区二区软件 | 在线免费观看的www视频| xxxwww97欧美| 精品一区二区三区视频在线观看免费| 亚洲18禁久久av| 18禁黄网站禁片午夜丰满| 国产熟女xx| 亚洲片人在线观看| www.www免费av| 国产毛片a区久久久久| 成年女人永久免费观看视频| 无人区码免费观看不卡| 亚洲午夜理论影院| 亚洲精品日韩av片在线观看 | 性欧美人与动物交配| 欧美日韩精品网址| 88av欧美| 少妇人妻精品综合一区二区 | 午夜福利视频1000在线观看| 国产精品国产高清国产av| 国产一区二区在线av高清观看| 亚洲天堂国产精品一区在线| 国产三级在线视频| 国产欧美日韩一区二区精品| 午夜福利在线观看免费完整高清在 | 蜜桃亚洲精品一区二区三区| 成人特级av手机在线观看| 精品熟女少妇八av免费久了| 天堂网av新在线| 午夜免费成人在线视频| av视频在线观看入口| 一区二区三区国产精品乱码| 啦啦啦免费观看视频1| 亚洲黑人精品在线| 波多野结衣巨乳人妻| 国产高潮美女av| 岛国在线免费视频观看| 黄色丝袜av网址大全| 亚洲国产精品999在线| 亚洲五月婷婷丁香| 真人一进一出gif抽搐免费| 成人高潮视频无遮挡免费网站| 岛国视频午夜一区免费看| 欧美极品一区二区三区四区| 麻豆久久精品国产亚洲av| a级毛片a级免费在线| 特大巨黑吊av在线直播| 黄色成人免费大全| 在线免费观看的www视频| 欧美在线一区亚洲| 国产精品野战在线观看| 国产一级毛片七仙女欲春2| 亚洲精品色激情综合| 亚洲天堂国产精品一区在线| 麻豆久久精品国产亚洲av| 夜夜爽天天搞| 真实男女啪啪啪动态图| 国产乱人视频| 深爱激情五月婷婷| 成熟少妇高潮喷水视频| 国产黄片美女视频| 欧美bdsm另类| 亚洲aⅴ乱码一区二区在线播放| 日日摸夜夜添夜夜添小说| 18禁黄网站禁片免费观看直播| 啪啪无遮挡十八禁网站| 亚洲av成人精品一区久久| 高清日韩中文字幕在线| 久久久国产成人免费| 身体一侧抽搐| 毛片女人毛片| 亚洲电影在线观看av| 男人的好看免费观看在线视频| 日韩中文字幕欧美一区二区| 亚洲最大成人手机在线| av在线蜜桃| 18禁黄网站禁片午夜丰满| 国产精品1区2区在线观看.| 性色av乱码一区二区三区2| 搡老熟女国产l中国老女人| 欧美黑人欧美精品刺激| 亚洲欧美日韩高清在线视频| 国产国拍精品亚洲av在线观看 | 久久久久国产精品人妻aⅴ院| 俄罗斯特黄特色一大片| 伊人久久精品亚洲午夜| 18禁美女被吸乳视频| 日韩国内少妇激情av| 亚洲欧美一区二区三区黑人| 日韩精品中文字幕看吧| 亚洲欧美日韩卡通动漫| 老熟妇乱子伦视频在线观看| 免费搜索国产男女视频| 亚洲av二区三区四区| 老鸭窝网址在线观看| 一个人看视频在线观看www免费 | 一个人看视频在线观看www免费 | 99久久九九国产精品国产免费| 51午夜福利影视在线观看| 欧美日韩瑟瑟在线播放| 亚洲av电影在线进入| 亚洲无线观看免费| 欧美日韩乱码在线| 国产免费男女视频| 两个人视频免费观看高清| 熟女少妇亚洲综合色aaa.| 婷婷精品国产亚洲av在线| 久久久久九九精品影院| 国内精品美女久久久久久| 成人无遮挡网站| 久久精品91蜜桃| 亚洲国产色片| 12—13女人毛片做爰片一| 少妇人妻精品综合一区二区 | 亚洲人成伊人成综合网2020| 成人国产一区最新在线观看| 在线看三级毛片| 成人国产一区最新在线观看| 久99久视频精品免费| 亚洲 国产 在线| 18禁黄网站禁片午夜丰满| 日韩精品青青久久久久久| 成人av在线播放网站| 色哟哟哟哟哟哟| 桃红色精品国产亚洲av| 亚洲中文字幕日韩| 精品久久久久久久末码| 国产毛片a区久久久久| 69av精品久久久久久| 91九色精品人成在线观看| 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 宅男免费午夜| 色尼玛亚洲综合影院| 欧美bdsm另类| 久久草成人影院| 亚洲精品在线观看二区| 1024手机看黄色片| 午夜两性在线视频| 嫩草影院入口| 在线十欧美十亚洲十日本专区| 九九热线精品视视频播放| 一级毛片高清免费大全| 亚洲精品粉嫩美女一区| 久久国产精品人妻蜜桃| 男女下面进入的视频免费午夜| 亚洲成a人片在线一区二区| 亚洲专区中文字幕在线| 男人和女人高潮做爰伦理| 三级男女做爰猛烈吃奶摸视频| 亚洲七黄色美女视频| 日日夜夜操网爽| 国产成年人精品一区二区| 精品人妻一区二区三区麻豆 | 最近在线观看免费完整版| 一个人看的www免费观看视频| 18禁美女被吸乳视频| h日本视频在线播放| 久久亚洲真实| 黄色日韩在线| 日韩高清综合在线| 成人av一区二区三区在线看| 色视频www国产| 国产真人三级小视频在线观看| 级片在线观看| 波多野结衣高清作品| 亚洲国产欧美网| 丝袜美腿在线中文| 三级男女做爰猛烈吃奶摸视频| 国产亚洲av嫩草精品影院| 欧美三级亚洲精品| bbb黄色大片| 97人妻精品一区二区三区麻豆| 欧美另类亚洲清纯唯美| 精品国产美女av久久久久小说| 国产精品永久免费网站| 一区福利在线观看| 国产在视频线在精品| 十八禁网站免费在线| 看免费av毛片| 丰满乱子伦码专区| 日韩大尺度精品在线看网址| 久久久久久久久久黄片| 日本一本二区三区精品| 亚洲真实伦在线观看| av女优亚洲男人天堂| 免费看a级黄色片| 亚洲成a人片在线一区二区| 波多野结衣高清无吗| 国产日本99.免费观看| 一区福利在线观看| 夜夜躁狠狠躁天天躁| av在线天堂中文字幕| www日本在线高清视频| 日韩高清综合在线| 又粗又爽又猛毛片免费看| 亚洲av不卡在线观看| 亚洲av免费在线观看| 久久精品国产综合久久久| 免费人成视频x8x8入口观看| 身体一侧抽搐| 又爽又黄无遮挡网站| 宅男免费午夜| 免费av观看视频| 一个人观看的视频www高清免费观看| av在线蜜桃| 老司机午夜福利在线观看视频| 97超视频在线观看视频| 9191精品国产免费久久| 午夜亚洲福利在线播放|