• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance

    2020-08-26 04:57:46RonggangWANG王榮剛BenLI李犇TongkaiZHANG張桐愷JitingOUYANG歐陽吉庭5andYurongSUN孫玉榮
    Plasma Science and Technology 2020年8期
    關(guān)鍵詞:歐陽

    Ronggang WANG (王榮剛), Ben LI (李犇), Tongkai ZHANG (張桐愷),Jiting OUYANG (歐陽吉庭),5and Yurong SUN (孫玉榮)

    1 School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,People’s Republic of China

    2 School of Physics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China

    3 Beijing Orient Institute of Measurement and Test, Beijing 100094, People’s Republic of China

    4 Suzhou TA&A Ultra Clean Technology Co. Ltd, Suzhou 215121, People’s Republic of China

    5 Authors to whom any correspondence should be addressed.

    Abstract Plasma photonic crystals(PPCs)have been a hot research topic in the band gap(BG)material field in recent years due to their unique advantages, such as the feasibility of changing the parameters and hence the properties of the materials with respect to traditional photonic crystals(PCs).In this paper,we focus mainly on the effects of some types of defects introduced in PPCs on the changes in BG characteristics of microwave (MW) transmittance. The research is carried out using numerical simulation with a one-dimensional finite-difference time-domain (FDTD) method, and six types of defects,including a lattice-constant defect,radii-ratio defect,additional-column defect,column-width defect,plasma-frequency defect,and electron-collision-frequency defect,are concerned.It transpires that introducing a defect in a PPC in different manners may realize the symmetric change,alternative change, shifting, generating, transforming, disappearing, and attenuating of BGs in transmittance spectra,which has great potential for the manufacture of spatiotemporal-controllable MW materials and devices with more feasible modulating functions.

    Keywords: plasma photonic crystal, defect mode, microwave transmittance

    1. Introduction

    The photonic crystal (PC) was proposed by John and Yablonovitch independently in 1987,and is an artificial micro structure formed by periodic arrangement of mediums with different refractive indexes [1-3]. It is also known as a photonic band gap (PBG), which is a spatial periodic structure with large polarization and dispersion characteristics near the band edge and band gap (BG) characteristics of electromagnetic waves (EMWs) [4]. According to the unique characteristics,researchers designed filters,couplers,switches and modulators,and other devices[5,6],which are very effective for controlling EMW radiation sources[7,8].However,when the crystal is fixed,the performance of these conventional PC devices made of PBGs is usually fixed because the main parameters, such as the position, the width and depth of the dielectric constant and the lattice constant,remain unchanged.This drawback greatly influences the further development of PC application. As an alternative, plasma photonic crystals(PPCs) can solve this problem well, and they have been widely considered by scholars at home and abroad [9-12].The PPC was first proposed by Hojoet al[13,14].It is a type of artificial periodic array which introduces plasma gas and alternates with dielectrics. The state and structure of the gas discharge plasma can be changed by adjusting the driving source, voltage, pressure, gas type, and other working conditions, which usually have certain time-varying characteristics [15-17]. It provides a lot of convenience and rich methods for the control and modulation of PBG characteristics [18-20].

    In the field of PPCs, the effect of defects in the PPC structure on changing the material properties, and hence the interaction with microwaves (MWs), attracts considerable attention due to the fact that a defect usually provides some additional BGs for special use on the premise of not changing the basic BG character very much.Liuet al[21]simulated the propagation of EMWs in one-dimensional (1D) superlattice PPCs consisting alternately of a homogeneous unmagnetized plasma and dielectric material in terms of defect mode using a finite-difference time-domain (FDTD) algorithm. Konget al[22]reported a novel tunable filter featuring the defect mode of the TE(transverse electric field)wave from 1D PCs doped by magnetized plasma under the matrix transfer method.Qiet al[23]studied the properties of 1D magnetized PPCs with a dielectric defect layer using the transfer matrix method.

    In this paper, a 1D FDTD method is used to study the influence of lattice defects on the transmission spectrum BG characteristics of MWs passing through many types of PPCs.Six defects are discussed. Considering that MWs have many applications closely related to real life in the fields of communication, television satellite, radar, networks, and so on,the frequency range of incident MWs is selected as the C and X band (4-12 GHz).

    The gas discharge pattern is a typical self-organized PPC.In recent years,gas discharge systems have been well studied in theory and application, but the application research of the system’s mode is not as deep as the theoretical research. The research results of this paper have a certain reference value for its application research. As we all know, the figure structure of a gas discharge will show various continuous phase transitions with the change in control parameters.These structures are affected by the fluctuations of time and space, and often have lattice defects. In this paper, the relation, change mode,and differences in the defective gas discharge mode in MW transmission characteristics are described by comparison.The PPC’s structure constructed in this paper can be used as a good candidate structure similar to the gas discharge mode.

    2. Modelling

    As a time-domain method, FDTD is widely used in the modelling of computational electrodynamics, including the frequencydomain characteristics of PPCs. The parameters needed for FDTD simulation are mainly the spatial distribution, structure,and dielectric constant of the material. A detailed description of this method and its application in plasma science can be found in[24, 25]. In this paper, a 1D FDTD method is employed to simulate the interaction between the plasma column and MW,and then the BG characteristics of MW transmission in 1D periodic defect mode PPCs are demonstrated.

    In this study, figure 1 shows the simulation structure diagram of cylindrical PPCs. Each PPC column is a plasma column covered with a glass layer (or plasma-glass column).The relative permittivity(εr-glass)of the glass layer is 3.8,and the ambient environment is air with the relative permittivity εr-air= 1. The relative permittivity or dielectric function of the plasma is given by

    where ω is the angular frequency of the MW, and ωmis the electron-neutral elastic collision, respectively, and ωpis the angular plasma frequency determined by the electron densityneas

    whereeis the charge,ε0is the vacuum permittivity,andmeis the mass of an electron.

    In addition,to absorb the incident and transmitted waves,the boundary condition along the arrangement direction(x)of the PPC array is set to the perfectly matched layer (PML); to limit MWs within the simulation area,the boundary condition perpendicular to the arrangement direction (y) of the PPC array is set to ‘metal’.

    Some related parameters also need to be illustrated. For spatial parameters,L,rp,rc,anddrepresent the distance between the centers of two neighboring columns(or lattice constant),the plasma-column radius,glass-layer thickness,and diameter of the plasma-glass column, respectively. For plasma parameters,fpandvmrepresent the plasma frequency (equivalent to plasma density) and electron-collision frequency, respectively. For BG parameters,fcut,fc,fw,andTdrepresent the cut-off frequency,the central frequency between the starting and ending frequency of a BG, full width of half maximum of a BG, and the BG depth from the baseline to the bottom(absolute value),respectively.Nrepresents the total column number in a PPC,and Nirepresents theith column in a PPC.

    3. Results and discussion

    In this paper, PPC defect modes are introduced, and their schematic diagrams are shown in figure 2. The definitions of these defect modes will be introduced at the beginning of each subsection.

    3.1. Lattice-constant L defect

    The lattice-constantLdefect means that at least one plasmadielectric column deviates from its original position and,therefore, the distances from its neighboring columns are different fromL.For simplicity,we define Ni+1(Li-i+1)as the defect column Ni+1with a distanceLi-i+1away from its neighboring column close to the incidence of MWs.

    Figure 1. A simulation structure diagram of cylindrical PPCs.

    Figure 2.Schematic diagrams of the defect modes in PPCs.

    Figure 3 shows the effects ofLdefects of N2-N4at differentLi-i+1. The defects introduce some additional BGs.For all the defect cases compared with the no-defect case,the cut-off frequencyfcutand the positions(orfc)of the two main original BGs almost remain unchanged, with the BG depthsTddecreased to different values. The generation of BG is mainly due to the interference between the EMW reflected by the defect and the traveling EMW. This defect changes these parameters,so some extra BGs will be introduced,but the cutoff frequencyfcutis mainly determined by the plasma frequency (fp); when thefpis settled, it remains unchanged.Through detailed comparison, theTspectra present a symmetry property, being consistent for N2and N5defects(figures 3(a)and(d)),and for N3and N4defects(figures 3(b)and (c)). Moreover, another kind of symmetry property can also be found. TheTof N2(L1-2= 2 and 6 cm) defects are consistent with those of N5(L4-5= 6 and 2 cm) defects,respectively, and so are those of N2(L1-2= 3 and 5 cm) and N5(L4-5= 5 and 3 cm), and the same is also true for the N3and N4defects. This indicates a symmetry property of the PPC withLdefects, i.e. the corresponding defect columns from each edge of the PPC (e.g. N2and N5in the PPC ofN= 6) and with the same distance from its nearer PPC edge(e.g.L1-2= 2 andL4-5= 6 cm) will lead to a sameTcharacter.

    Furthermore, for the defects of each Ni, theTspectra ofLi-i+1= 2 and 6 cm, as well asLi-i+1= 3 and 5 cm, are similar to each other, which can be considered as a local symmetry. In figures 2(a) and (d), the defects ofLi-i+1= 2 and 6 cm do not introduce any additional BG but mainly decrease theTdof the two main BGs, while the defects ofLi-i+1= 3 and 5 cm introduce two BGs at each side of the first main BG, withfc= 5.8 and 6.4 GHz andfc= 8.9 and 9.6 GHz, respectively. In figures 2(b) and (c), the defects ofLi-i+1= 2 and 6 cm introduce a BG at each side of the second main BG, withfc= 10.1 and 11.7 GHz,respectively,while the defects ofLi-i+1= 3 and 5 cm introduce a BG offc= 5.3 GHz nearfcut,a BG at each side of the first main BG,withfc= 6.9 and 8.4 GHz, respectively, and a BG offc= 10.1 GHz to the left of the second main BG.

    Figure 3.The effect of the L defect on MW transmittance T.(a)Case of N1-N2(L)defect,(b)case of N2-N3(L)defect,(c)case of N3-N4(L)defect, (d) case of N4-N5(L) defect. The simulation condition is column number N = 6, column diameter d = 2 cm, lattice constant L = 4 cm, and plasma frequency fp = 5 GHz.

    3.2. Radii-ratio η defect

    The radii-ratio η defect means that one of the plasma-dielectric columns in the PPC has a different ratio of plasmacolumn radiusrpover the dielectric tube thicknessrcfrom the others. We use Ni(rp-rc) to represent the η defect configured to theith column with values ofrpandrc.

    Figure 4 shows the effect of the η defect on the MW transmittanceT. Figures 4(a) and (b) give theTspectra with the defect configured to N1of different groups ofrpandrc.There is no additional BG introduced, but just the deepening of the two main BGs from N1(10-0)(the dielectric tube being removed) until N1(5-5) (figure 3(a)). For N1(5-5), an additional BG (fc= 9.9 GHz) appears to the left of the second main BG. Withrpdecreasing (orrcincreasing) further, this new BG shift towards a lower frequency with its depth varies a little,and another new BG(around 11.5 GHz)appears to the right of the second main BG from N1(4-6) and deepens gradually afterwards (figure 3(b)). Despite some detailed differences, the results in figures 3(c)-(f) are largely consistent with those in figures 3(a) and (b). Furthermore, the symmetry property in figure 3 is still valid here,i.e.the results under defects on N4, N5, and N6corresponds to those on N3,N2,and N1,respectively.In general,configuring the defect on any one of the columns of the PPC will result in a similar result.

    3.3. Additional-column Nadd defect

    The additional-column Nadddefect means inserting at least one additional plasma-dielectric column at the center of the interval between neighboring columns of the original perfect PPC with columns evenly spaced.We use Nadd-ito represent a column defect placed in the interval between column Niand Ni+1. The defect column is the same as the others.

    Figure 5(a) shows the effect of one Nadddefect on the MW transmittanceT. It is found that, with the defect column inserted in whichever interval: (1) theTspectra are generally consistent with each other,indicating that inserting the defect column in whichever interval makes no difference, (2) the defect does not change the number and position of the original BGs, and (3) the defect deepens and elevates the BGs alternatively with respect to the those of the no-defect case.Introducing two Nadddefects does not change the ‘a(chǎn)lternating’property, but deepens or elevates the BGs to a larger extent(figure 5(b)).

    Figure 4.The effect of the η defect on MW transmittance T.(a)and(b)Case of N1(η)defect,(c)and(d)case of N2(η)defect,(e)and(f)case of N3(η) defect. The simulation condition is column number N = 6, column diameter d = 2 cm, lattice constant L = 4 cm, and plasma frequency fp = 5 GHz. The rp and rc is constant at 9 mm and 1 mm, respectively, except for the defect column.

    The generation of BG is mainly due to the interference between the EMW reflected by the defect and the traveling EMW.This defect changes the number of plasma columnsN.We found that whenNis greater than six, the new plasma columns cannot introduce new obvious BG, and the peak value of transmittance decreases with the increase inN. This is mainly because the plasma is a type of dissipative medium.Its dielectric constant and refractive index are related to the frequency of the incident EMW. It not only filters the EMW itself,but also absorbs the energy of the incident EMW due to the collision of the plasma when the frequency of the incident EMW is higher than the frequency of the plasma.The energy of the EMW is converted into that of the plasma’s internal energy.With the increase in the period constantN,the energy loss of the EMW in plasma increases accordingly, therefore,only increasing the period parameterNcannot introduce a new obvious BG, but it will affect the peak of the transmittance.

    3.4. Column-width d defect

    The column-widthddefect means one plasma-dielectric column has a differentd(along thex-axis) from the others.We use the term Ni(d) to represent the column Niserving as the defect with a width ofd.The PPC of a rectangular column array is employed to study the effect of theddefect on theTspectrum. It is found in simulation that the change inTcharacteristics will be very different when configuring theddefect to each column.

    Figure 5.The effects of the Nadd defect on MW transmittance T.The defect column is the same as the others. (a) The case of one Nadd defect,and(b)the case of two Nadd defects.The simulation condition is column number N = 6 (exclusive of defect column(s)), column diameter d = 2 cm, lattice constant L = 10 cm, and plasma frequency fp = 5 GHz.

    Figures 6(a) and (b) show the effect of the N2(d) defect on theTspectrum.Atd= 0.5,1,2.5,and 3 cm(figure 6(a)),the defect does not change the BG character of theTspectrum but just results in varied BG depths. Whendincreases to 3.5 and 4 cm(figure 6(b)),the second passing band and forbidden band in the range of 7-10 GHz transform into a group of small BGs.For the N3(d)defect,withddecreasing from 2 cm,a new BG of 7 GHz develops to the right of the first main BG(see the case of N3(d= 1 cm) in figure 6(c)), and then another two BGs of 8.3 and 9.6 GHz are born at the sides of the second main BG (see the case of N3(d= 0.5 cm) in figure 5(c)). For the N3(d= 2.5-4 cm) defect (figure 5(d)),the remarkable change in theTspectrum with respect to the case of‘no defect’lies in the range of 8-10 GHz.The second forbidden band, associated with partial passing bands, transforms into three BGs of 8.4,9,and 9.6 GHz(like the case of N3(d= 0.5 cm)), among which the first one at 8.4 GHz is deepened, the second at 9 GHz is elevated significantly to have the second depth, and the third one at 9.6 GHz has the smallest depth for the entire time and keeps being elevated until disappearing withdincreasing. The symmetry property is still valid, namely, theTspectra under N4(d) and N5(d)defects corresponding to those under N3(d)and N2(d)defects.

    3.5. Plasma-frequency fp defect and electron-collisionfrequency νm defect

    It has been confirmed that thefpaffectsTd,fc,andfwof BGs,while the introduction of νmleads to the attenuation of the wholeTspectrum. In general, increasingfpand νmwill both result inTattenuation, although in different ways. In this subsection,the effects offpand νmdefects onTcharacteristics are studied, respectively.

    Thefp(or νm) defect means configuring the plasma (or electron collision) frequency of one plasma-dielectric column different from that of the others in the PPC.We use Ni(fp)(or Ni(νm))to represent the column Niserving as the defect with a plasma (or electron collision) frequency offp(or νm). It is determined in simulation that configuring thefp(or νm) defect to any one of the columns in the PPC makes no difference and,therefore,figures 7 and 8,as an example,present the effects of N1(fp) and N1(νm) defects onTcharacteristics, respectively.

    When the plasma frequency of the defect is configured as lower (e.g. N1(fp= 1 GHz)) and not much higher (e.g.N1(νm= 6 GHz))than that(5 GHz)of the other columns in the PPC, theTspectra remain unchanged basically with respect to that of the no-defect case. With thefpof the defect increasing further (e.g. N1(νm= 8 and 9 GHz)), theTspectrum presents obvious attenuation with the BG shifting no more than 0.15 GHz. The attenuation effect of the defect is strengthened with the increase infp. The main reason for the above phenomenon is when the frequency of the incident EMW is close tofp,resonance attenuation is achieved, and the attenuation of the plasma to the EMW is very large. When the frequency of the incident EMW is greater than the plasma frequency,the attenuation of the plasma to the EMW is mainly collision absorption,and the attenuation of the EMW is far less than the resonance attenuation; at this time, the transmittance will increase.

    The introduction of the N1(νm) defect results in a slight attenuation of theTspectrum only.The parameter of νmonly affects the properties of the PC from the angle of energy attenuation of the EMW, and does not change the band structure significantly. The electrons in the plasma are accelerated by the electric field of the EMW, absorbing the energy of the EMW, and passing the energy to the neutral particles and ions through the collision.When νmincreases to a certain value, the transmission peak hardly increases with the increase in the collision frequency. But the interesting phenomenon is that theTattenuation changes in different ways with νmincreasing. It will be strengthened when νm≤fp,but weakened when νm>fp.In general,bothfpand νmdefects can serve as a kind of fine modulation of MW attenuation without changing the basic BG character.

    4. Conclusions

    To summarize,the effects of different kinds of defect modes on the BG characteristics in transmittance spectra of MWs passing through 1D periodic PPCs are investigated in numerical simulation using an FDTD method. For the lattice-constant defect,several kinds of symmetricity among different cases are obtained from different aspects. The radii-ratio defect introduces additional BGs and generates BG shifting with the related parameters changing. The additional-column defect does not change the basic BG characteristics (i.e. BG positions and widths), but deepens and elevates the BG depths in an alternative manner with respect to those in the no-defect case. The column-width defect provides the generation, transformation, and disappearance of additional BGs with the related parameters changing. Both the plasma frequency and the electron-collision frequency lead to the attenuation of transmittance spectra without the basic BG characters changing much. For the plasma-frequency defect, the spectra do not attenuate much when the defective frequency is not very high,but will attenuate much faster if the defective frequency is very high. For the electron-collision-frequency defect, the spectra also attenuate,but not so significantly.The interesting phenomenon is that,with the defective frequency increasing, the attenuation will be strengthened when νm≤fpbut weakened when νm>fp.

    Figure 6.The effect of the d defect on MW transmittance T.(a)and(b)Case of N2(d)defect,(c)and(d)case of N3(d)defect.The simulation condition is column number N = 6, column width d = 2 cm (exclusive of the defect column), column height h = 2 cm, lattice constant L = 5 cm, and plasma frequency fp = 5 GHz.

    Figure 7. The effect of the fp defect on MW transmittance T. The simulation condition is column number N = 6, column diameter d = 2 cm, lattice constant L = 4 cm, and plasma frequency fp = 5 GHz (exclusive of the defect column).

    Figure 8.The effect of the νm defect on MW transmittance T. The simulation condition is column number N = 6,column diameter d = 2 cm, lattice constant L = 4 cm, and plasma frequency fp = 5 GHz.

    In general,introducing a defect in a PPC in different ways may realize the symmetric change,alternative change,shifting,generating,transforming,disappearing,and attenuating of BGs in transmittance spectra, which has great potential for the manufacture of spatiotemporal-controllable MW materials and devices with more feasible modulating functions.

    Acknowledgments

    This work was partly supported by National Natural Science Foundation of China (No. 11475019).

    ORCID iDs

    猜你喜歡
    歐陽
    動(dòng)物怎樣聽和看?
    Positive unlabeled named entity recognition with multi-granularity linguistic information①
    雅皮狗(7)
    雅皮狗(6)
    雅皮狗(5)
    雅皮狗(4)
    雅皮狗(1)
    我家的健忘老媽
    歐陽彥等
    依依送別歐陽鶴先生
    中華詩詞(2019年9期)2019-05-21 03:05:18
    国产91精品成人一区二区三区| 亚洲人与动物交配视频| 12—13女人毛片做爰片一| 狂野欧美白嫩少妇大欣赏| 99热这里只有是精品50| 色哟哟哟哟哟哟| 免费在线观看完整版高清| 亚洲人与动物交配视频| av福利片在线观看| 十八禁网站免费在线| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 国产av不卡久久| 中文字幕精品亚洲无线码一区| 一区二区三区激情视频| or卡值多少钱| 国内久久婷婷六月综合欲色啪| 亚洲无线在线观看| 精品不卡国产一区二区三区| 欧美一级a爱片免费观看看 | 国内精品久久久久精免费| 精品熟女少妇八av免费久了| 99热只有精品国产| 一区二区三区高清视频在线| 久久久久免费精品人妻一区二区| 精品日产1卡2卡| 18禁美女被吸乳视频| 在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| 九色国产91popny在线| 久久性视频一级片| 日韩三级视频一区二区三区| 亚洲真实伦在线观看| 欧美日韩精品网址| 精品国产乱子伦一区二区三区| 亚洲一区高清亚洲精品| 男插女下体视频免费在线播放| 舔av片在线| 国产免费av片在线观看野外av| 久久精品人妻少妇| 老熟妇乱子伦视频在线观看| 真人做人爱边吃奶动态| 欧美中文综合在线视频| 狂野欧美白嫩少妇大欣赏| 天天添夜夜摸| 欧美大码av| av片东京热男人的天堂| 久9热在线精品视频| 久久天躁狠狠躁夜夜2o2o| 日韩欧美一区二区三区在线观看| 免费一级毛片在线播放高清视频| 非洲黑人性xxxx精品又粗又长| 九色成人免费人妻av| 欧美 亚洲 国产 日韩一| 操出白浆在线播放| 露出奶头的视频| 亚洲精品美女久久久久99蜜臀| 波多野结衣高清无吗| 亚洲国产日韩欧美精品在线观看 | 精品不卡国产一区二区三区| 中文在线观看免费www的网站 | 欧美精品啪啪一区二区三区| 高清在线国产一区| 国产97色在线日韩免费| 午夜福利在线观看吧| 一二三四社区在线视频社区8| 亚洲乱码一区二区免费版| 精品一区二区三区视频在线观看免费| 国产伦在线观看视频一区| 亚洲av成人精品一区久久| 97超级碰碰碰精品色视频在线观看| 久久精品91无色码中文字幕| 久久精品影院6| 国产精品久久久久久精品电影| 色在线成人网| 国产亚洲av高清不卡| 91老司机精品| 欧美色欧美亚洲另类二区| 亚洲黑人精品在线| 国产黄a三级三级三级人| 在线视频色国产色| 动漫黄色视频在线观看| 午夜久久久久精精品| cao死你这个sao货| 亚洲国产欧美人成| avwww免费| 在线观看www视频免费| 欧美日本视频| 欧美大码av| 女人被狂操c到高潮| 啪啪无遮挡十八禁网站| 美女午夜性视频免费| 成人av一区二区三区在线看| 9191精品国产免费久久| 夜夜夜夜夜久久久久| 男女视频在线观看网站免费 | 18禁黄网站禁片午夜丰满| 一本久久中文字幕| 欧美日韩乱码在线| 国产91精品成人一区二区三区| 欧美又色又爽又黄视频| 亚洲专区国产一区二区| 欧美最黄视频在线播放免费| av片东京热男人的天堂| 91国产中文字幕| 免费人成视频x8x8入口观看| 老汉色av国产亚洲站长工具| 国产三级中文精品| 久久婷婷成人综合色麻豆| 亚洲一区中文字幕在线| 国产激情欧美一区二区| 国内久久婷婷六月综合欲色啪| 国内精品久久久久久久电影| 99国产精品一区二区蜜桃av| 88av欧美| 久热爱精品视频在线9| 精品一区二区三区四区五区乱码| 色在线成人网| 成人欧美大片| 男女视频在线观看网站免费 | 国产高清视频在线观看网站| 国内精品一区二区在线观看| 免费在线观看成人毛片| 在线观看一区二区三区| 啦啦啦韩国在线观看视频| av超薄肉色丝袜交足视频| 亚洲av电影在线进入| 一a级毛片在线观看| 97碰自拍视频| 中文亚洲av片在线观看爽| 亚洲最大成人中文| 看片在线看免费视频| 亚洲第一电影网av| 精品午夜福利视频在线观看一区| 亚洲一卡2卡3卡4卡5卡精品中文| cao死你这个sao货| 国产黄a三级三级三级人| 亚洲精品久久成人aⅴ小说| 男女午夜视频在线观看| 一本精品99久久精品77| 久久久久性生活片| 给我免费播放毛片高清在线观看| 18禁美女被吸乳视频| 90打野战视频偷拍视频| 国产私拍福利视频在线观看| 色在线成人网| 成人国产一区最新在线观看| 国产精品久久久久久久电影 | 他把我摸到了高潮在线观看| 亚洲精品久久成人aⅴ小说| 丁香欧美五月| 在线观看一区二区三区| 亚洲片人在线观看| 两个人免费观看高清视频| 久久精品国产亚洲av香蕉五月| 亚洲精品久久成人aⅴ小说| 日韩免费av在线播放| 好男人在线观看高清免费视频| 女生性感内裤真人,穿戴方法视频| 免费在线观看完整版高清| 国产成年人精品一区二区| 亚洲激情在线av| 91麻豆精品激情在线观看国产| 国产一区二区在线观看日韩 | 亚洲国产精品sss在线观看| 黄色 视频免费看| 999久久久精品免费观看国产| 色老头精品视频在线观看| 好看av亚洲va欧美ⅴa在| 欧美乱码精品一区二区三区| 中文字幕高清在线视频| 国产aⅴ精品一区二区三区波| 法律面前人人平等表现在哪些方面| 别揉我奶头~嗯~啊~动态视频| 在线观看免费日韩欧美大片| 人成视频在线观看免费观看| 久久精品国产亚洲av高清一级| 亚洲无线在线观看| 嫩草影院精品99| 欧美性猛交╳xxx乱大交人| 天堂动漫精品| 天堂√8在线中文| 久久久水蜜桃国产精品网| 一个人免费在线观看的高清视频| 欧美一区二区国产精品久久精品 | 国产亚洲欧美在线一区二区| 天天添夜夜摸| 久久久久久久精品吃奶| 夜夜爽天天搞| 中国美女看黄片| 青草久久国产| 成年人黄色毛片网站| 国产av又大| 国产av又大| 特大巨黑吊av在线直播| 美女扒开内裤让男人捅视频| 午夜成年电影在线免费观看| 久久热在线av| 欧美一级a爱片免费观看看 | 国产精品免费一区二区三区在线| www.999成人在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久大精品| 国产精品精品国产色婷婷| 久久中文字幕人妻熟女| 男女之事视频高清在线观看| 一夜夜www| 亚洲精品中文字幕一二三四区| 亚洲国产欧美一区二区综合| 亚洲国产欧美一区二区综合| 一边摸一边抽搐一进一小说| 久久久久国内视频| 免费在线观看黄色视频的| aaaaa片日本免费| 女警被强在线播放| 狂野欧美白嫩少妇大欣赏| 精品午夜福利视频在线观看一区| 欧美另类亚洲清纯唯美| 日本一本二区三区精品| 中文字幕最新亚洲高清| 久久 成人 亚洲| 欧美乱色亚洲激情| 午夜激情av网站| 熟女电影av网| av福利片在线观看| 曰老女人黄片| 在线观看免费视频日本深夜| 国产一级毛片七仙女欲春2| 国产爱豆传媒在线观看 | 欧美成人一区二区免费高清观看 | 久久久久久九九精品二区国产 | 成人午夜高清在线视频| 欧美成人性av电影在线观看| 男女视频在线观看网站免费 | 天天一区二区日本电影三级| 欧美精品啪啪一区二区三区| 黄色成人免费大全| 999久久久国产精品视频| 婷婷精品国产亚洲av在线| 一级a爱片免费观看的视频| av国产免费在线观看| 美女黄网站色视频| 国产午夜精品久久久久久| 极品教师在线免费播放| 日韩av在线大香蕉| 嫁个100分男人电影在线观看| 99热6这里只有精品| 精品久久蜜臀av无| 观看免费一级毛片| 精品一区二区三区av网在线观看| 成人欧美大片| 又黄又粗又硬又大视频| 亚洲人成网站高清观看| 性色av乱码一区二区三区2| 精品欧美一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 麻豆国产av国片精品| 高清毛片免费观看视频网站| 桃红色精品国产亚洲av| 欧美丝袜亚洲另类 | 色哟哟哟哟哟哟| 人人妻,人人澡人人爽秒播| 午夜a级毛片| 一个人免费在线观看的高清视频| 久久亚洲真实| 亚洲五月婷婷丁香| 精品一区二区三区四区五区乱码| 国产精品久久电影中文字幕| 国产1区2区3区精品| 欧美精品亚洲一区二区| 亚洲av成人不卡在线观看播放网| 国产精品久久久久久精品电影| or卡值多少钱| 丝袜人妻中文字幕| 18禁黄网站禁片午夜丰满| 中文字幕最新亚洲高清| 搡老熟女国产l中国老女人| 中文亚洲av片在线观看爽| 女人高潮潮喷娇喘18禁视频| 一进一出好大好爽视频| 精品久久久久久久毛片微露脸| 久久精品成人免费网站| 在线看三级毛片| xxx96com| 曰老女人黄片| 好男人电影高清在线观看| 欧美午夜高清在线| 精品国产乱码久久久久久男人| 男插女下体视频免费在线播放| 亚洲人成伊人成综合网2020| 91老司机精品| 亚洲一区中文字幕在线| 亚洲精品一区av在线观看| 十八禁网站免费在线| 99久久无色码亚洲精品果冻| 国产精品美女特级片免费视频播放器 | 在线观看66精品国产| 无遮挡黄片免费观看| 成人三级黄色视频| 两个人免费观看高清视频| 亚洲熟妇中文字幕五十中出| 日韩三级视频一区二区三区| 久久精品成人免费网站| 午夜福利成人在线免费观看| 精品久久久久久久久久免费视频| www日本在线高清视频| 精品人妻1区二区| 天堂动漫精品| 一边摸一边抽搐一进一小说| 色综合欧美亚洲国产小说| 亚洲国产日韩欧美精品在线观看 | 搡老妇女老女人老熟妇| 黄色片一级片一级黄色片| 精品久久久久久久久久久久久| 搞女人的毛片| av中文乱码字幕在线| 亚洲精品国产精品久久久不卡| 亚洲成人久久爱视频| 人妻丰满熟妇av一区二区三区| 亚洲成人免费电影在线观看| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕大全免费视频| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久人妻蜜臀av| 老熟妇仑乱视频hdxx| 美女高潮喷水抽搐中文字幕| 中国美女看黄片| 国产激情久久老熟女| 老司机在亚洲福利影院| 日韩 欧美 亚洲 中文字幕| 狠狠狠狠99中文字幕| 非洲黑人性xxxx精品又粗又长| 很黄的视频免费| 91麻豆av在线| 特级一级黄色大片| 久久久久亚洲av毛片大全| 国产午夜精品久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩高清在线视频| 全区人妻精品视频| 99精品欧美一区二区三区四区| 桃红色精品国产亚洲av| 中文字幕最新亚洲高清| 全区人妻精品视频| 亚洲,欧美精品.| 亚洲色图 男人天堂 中文字幕| 精品第一国产精品| 国产精品久久久久久久电影 | 欧美黄色淫秽网站| 亚洲av片天天在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲无线在线观看| 亚洲人与动物交配视频| 熟妇人妻久久中文字幕3abv| 婷婷精品国产亚洲av在线| 黄色视频不卡| 嫁个100分男人电影在线观看| 久久伊人香网站| 岛国在线观看网站| 久久人人精品亚洲av| 国产一区二区在线av高清观看| 精品欧美国产一区二区三| 成人18禁高潮啪啪吃奶动态图| 久久国产精品影院| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| 国产成人欧美在线观看| netflix在线观看网站| 又粗又爽又猛毛片免费看| 国产高清视频在线观看网站| 毛片女人毛片| 精品第一国产精品| 身体一侧抽搐| 国产精品一区二区三区四区久久| tocl精华| 欧美久久黑人一区二区| 成人特级黄色片久久久久久久| 久久精品aⅴ一区二区三区四区| 岛国在线免费视频观看| 成人国语在线视频| 国产亚洲精品av在线| 神马国产精品三级电影在线观看 | 黄色丝袜av网址大全| 黑人巨大精品欧美一区二区mp4| 久久天堂一区二区三区四区| 男插女下体视频免费在线播放| 伦理电影免费视频| 999精品在线视频| 亚洲无线在线观看| 老司机午夜福利在线观看视频| 又黄又爽又免费观看的视频| 久久99热这里只有精品18| 免费看十八禁软件| 亚洲天堂国产精品一区在线| 中文亚洲av片在线观看爽| 国产午夜精品久久久久久| 久久久久性生活片| 黑人操中国人逼视频| 午夜福利18| 老鸭窝网址在线观看| 99热这里只有精品一区 | 亚洲第一欧美日韩一区二区三区| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av香蕉五月| 久久精品成人免费网站| 亚洲在线自拍视频| 男人舔奶头视频| 亚洲av第一区精品v没综合| 老司机午夜福利在线观看视频| 免费无遮挡裸体视频| 久久久久久久久久黄片| 一级作爱视频免费观看| 国产熟女xx| 在线观看一区二区三区| 禁无遮挡网站| 男男h啪啪无遮挡| 欧美在线黄色| 久久性视频一级片| 亚洲av中文字字幕乱码综合| av国产免费在线观看| 男插女下体视频免费在线播放| 一区二区三区国产精品乱码| 亚洲美女视频黄频| a在线观看视频网站| 精品第一国产精品| 精品不卡国产一区二区三区| 久久国产乱子伦精品免费另类| 免费在线观看亚洲国产| 日日爽夜夜爽网站| 久久国产乱子伦精品免费另类| 欧美日韩亚洲综合一区二区三区_| 精品欧美一区二区三区在线| 欧美日韩精品网址| 深夜精品福利| 在线观看免费午夜福利视频| 韩国av一区二区三区四区| 男人舔女人下体高潮全视频| 亚洲五月婷婷丁香| 精品久久久久久久人妻蜜臀av| 色在线成人网| 1024视频免费在线观看| 免费一级毛片在线播放高清视频| 免费看a级黄色片| 18美女黄网站色大片免费观看| 可以在线观看毛片的网站| 久久久国产欧美日韩av| 久久精品91无色码中文字幕| 免费在线观看视频国产中文字幕亚洲| 亚洲美女视频黄频| 欧美丝袜亚洲另类 | 久久精品成人免费网站| 看片在线看免费视频| 国产精品香港三级国产av潘金莲| 好男人在线观看高清免费视频| 欧美日韩国产亚洲二区| 丰满人妻一区二区三区视频av | 亚洲专区字幕在线| 国产精品,欧美在线| 两人在一起打扑克的视频| 三级男女做爰猛烈吃奶摸视频| 亚洲av电影在线进入| 在线播放国产精品三级| 国产av在哪里看| 十八禁人妻一区二区| 国产亚洲精品一区二区www| 黄片小视频在线播放| 久久精品国产99精品国产亚洲性色| 在线观看www视频免费| 制服丝袜大香蕉在线| 国产在线精品亚洲第一网站| 色在线成人网| 最近在线观看免费完整版| 成人高潮视频无遮挡免费网站| 变态另类丝袜制服| √禁漫天堂资源中文www| 欧美+亚洲+日韩+国产| 性色av乱码一区二区三区2| 亚洲欧美日韩高清在线视频| 搡老岳熟女国产| 在线观看日韩欧美| 欧美激情久久久久久爽电影| 19禁男女啪啪无遮挡网站| 日本在线视频免费播放| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 不卡av一区二区三区| 国产精品一区二区三区四区久久| 国产69精品久久久久777片 | 国产精品免费视频内射| a级毛片a级免费在线| 午夜福利成人在线免费观看| 免费在线观看影片大全网站| 日日干狠狠操夜夜爽| 欧美最黄视频在线播放免费| 亚洲国产看品久久| 麻豆成人午夜福利视频| 少妇熟女aⅴ在线视频| 久久精品影院6| www.精华液| 伊人久久大香线蕉亚洲五| av视频在线观看入口| 男男h啪啪无遮挡| 国产私拍福利视频在线观看| 国产单亲对白刺激| 我的老师免费观看完整版| 啪啪无遮挡十八禁网站| 两个人看的免费小视频| 国产在线观看jvid| 亚洲成人久久爱视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美性猛交黑人性爽| 免费搜索国产男女视频| 欧美极品一区二区三区四区| 男人舔女人的私密视频| 成年人黄色毛片网站| 激情在线观看视频在线高清| 中文字幕熟女人妻在线| 精品久久久久久久久久免费视频| 国产不卡一卡二| 国产亚洲欧美98| 国产高清视频在线播放一区| 午夜免费激情av| 老熟妇乱子伦视频在线观看| 精品久久久久久久毛片微露脸| 久久久精品大字幕| 啦啦啦免费观看视频1| 午夜激情福利司机影院| 麻豆成人av在线观看| 国产高清有码在线观看视频 | 久久香蕉精品热| 一夜夜www| 日日摸夜夜添夜夜添小说| 欧美又色又爽又黄视频| 国产精品自产拍在线观看55亚洲| 国产熟女午夜一区二区三区| 黄色毛片三级朝国网站| 国产精品综合久久久久久久免费| 亚洲激情在线av| 毛片女人毛片| www.熟女人妻精品国产| 久久人人精品亚洲av| 久久香蕉激情| 在线观看66精品国产| 国产高清有码在线观看视频 | 日韩欧美 国产精品| 在线观看免费日韩欧美大片| 国产精品一区二区精品视频观看| 岛国在线免费视频观看| 黑人操中国人逼视频| 亚洲av日韩精品久久久久久密| 欧美久久黑人一区二区| 日本 av在线| 狂野欧美激情性xxxx| 国产精品影院久久| 操出白浆在线播放| 黄色成人免费大全| 欧美一区二区国产精品久久精品 | 白带黄色成豆腐渣| 国产高清有码在线观看视频 | 精品人妻1区二区| 亚洲成人久久爱视频| 成人av一区二区三区在线看| 久久午夜亚洲精品久久| 亚洲成人免费电影在线观看| 亚洲国产欧美一区二区综合| 在线十欧美十亚洲十日本专区| 丝袜美腿诱惑在线| 在线观看舔阴道视频| 亚洲人成77777在线视频| 看黄色毛片网站| 91成年电影在线观看| 日日爽夜夜爽网站| 床上黄色一级片| 午夜精品一区二区三区免费看| 午夜免费观看网址| 国产又黄又爽又无遮挡在线| 久久中文看片网| 观看免费一级毛片| 免费电影在线观看免费观看| 久久热在线av| 免费在线观看完整版高清| 亚洲人成网站高清观看| 88av欧美| 怎么达到女性高潮| 日韩三级视频一区二区三区| 黄色毛片三级朝国网站| 久久久久久国产a免费观看| 精品高清国产在线一区| 精品久久久久久久毛片微露脸| 欧美高清成人免费视频www| 黄色视频,在线免费观看| 香蕉久久夜色| 岛国在线免费视频观看| 欧美不卡视频在线免费观看 | 欧美精品啪啪一区二区三区| 精品免费久久久久久久清纯| 国产午夜精品论理片| 亚洲欧美一区二区三区黑人| 特级一级黄色大片| 色播亚洲综合网| 精品不卡国产一区二区三区| 禁无遮挡网站| 老司机靠b影院| 国产欧美日韩一区二区三| 成熟少妇高潮喷水视频| 国产精品一及| av片东京热男人的天堂| av中文乱码字幕在线| 精品欧美一区二区三区在线| 一区福利在线观看| 法律面前人人平等表现在哪些方面| 亚洲激情在线av| 怎么达到女性高潮| or卡值多少钱| 免费在线观看视频国产中文字幕亚洲|