沈正峰 李加武 王峰
摘要: 為了研究變槽寬比雙主梁斷面懸索橋抖振響應(yīng),提出考慮自激力和抖振力沿展向變化的頻域和時(shí)域抖振計(jì)算方法,對(duì)某景觀大橋進(jìn)行抖振分析。頻域法研究了氣動(dòng)導(dǎo)納函數(shù)、平均風(fēng)速、脈動(dòng)風(fēng)交叉譜對(duì)抖振響應(yīng)的影響,分析不同類型氣動(dòng)導(dǎo)納函數(shù)對(duì)抖振響應(yīng)的影響差異及原因。時(shí)域法通過在每個(gè)荷載步更新三分力系數(shù)進(jìn)而更新氣動(dòng)力,并考慮結(jié)構(gòu)的幾何非線性效應(yīng)。計(jì)算結(jié)果表明:考慮氣動(dòng)力展向變化的時(shí)域法能夠捕捉到跨中單索面位置的局部峰值;時(shí)域抖振響應(yīng)計(jì)算值在豎向大于頻域計(jì)算值,在扭轉(zhuǎn)方向要小于頻域計(jì)算值;考慮氣動(dòng)力展向變化計(jì)算的抖振響應(yīng)要大于采用跨中斷面氣動(dòng)參數(shù)計(jì)算的抖振響應(yīng),其主要由抖振力的展向變化產(chǎn)生,自激力的展向變化對(duì)其影響較小,在實(shí)際工程中考慮氣動(dòng)力展向變化進(jìn)行抖振分析更加安全。
關(guān)鍵詞: 抖振; 懸索橋; 變槽寬比; 多模態(tài)耦合頻域; 氣動(dòng)導(dǎo)納; 交叉譜
中圖分類號(hào): U441+.3; U448.25 ?文獻(xiàn)標(biāo)志碼: A ?文章編號(hào): 1004-4523(2020)04-0824-10
DOI:10.16385/j.cnki.issn.1004-4523.2020.04.021
引 言
近年來,基于多幅主梁斷面氣動(dòng)特性的研究,多幅主梁斷面成為長大橋梁的優(yōu)選方案之一。比較著名的有西堠門大橋(主跨1650 m)[1],墨西拿海峽大橋(主跨3300 m)[2]。分幅式主梁能夠應(yīng)用到長大橋梁的主要原因是其出色的氣動(dòng)性能和良好的經(jīng)濟(jì)效益[3]。試驗(yàn)和理論分析認(rèn)為分幅式主梁斷面在增加槽寬比(SWR)的情況下能夠顯著提高顫振臨界風(fēng)速[4]。然而,Yang等[5]認(rèn)為這并不是無條件的,其研究結(jié)果表明雙幅箱型主梁的氣動(dòng)特性取決于箱梁的形狀和槽寬比兩個(gè)因素。大量風(fēng)洞試驗(yàn)和CFD技術(shù)的研究結(jié)果表明槽寬比會(huì)影響主梁的三分力系數(shù)、顫振導(dǎo)數(shù)和氣動(dòng)措施對(duì)提高主梁顫振穩(wěn)定性的有效性,甚至?xí)怪髁涸谳^低的風(fēng)速下發(fā)生扭轉(zhuǎn)發(fā)散[6-9]。雖然合適的槽寬比可能對(duì)主梁顫振穩(wěn)定性有提高作用,但卻造成主梁對(duì)渦振非常敏感[10]。已有研究結(jié)果表明槽寬比是引起主梁發(fā)生渦激振動(dòng)的關(guān)鍵,其對(duì)主梁周圍渦結(jié)構(gòu)尺寸、渦分離位置、脈動(dòng)壓力和渦振幅值都有較大的影響[11-13]。由于槽寬比會(huì)影響斷面的氣動(dòng)參數(shù),進(jìn)而影響到斷面所受的自激力和抖振力,所以抖振響應(yīng)必將受到槽寬比的影響。另外,周奇等[14-15]研究了雙幅主梁斷面的氣動(dòng)導(dǎo)納函數(shù)和抖振力譜特性,結(jié)果表明氣動(dòng)導(dǎo)納函數(shù)受槽寬比的影響顯著,抖振力譜可以近似地線性分解為來流紊流抖振力譜和特征紊流抖振力譜。
雖然槽寬比對(duì)主梁的穩(wěn)定性和風(fēng)致響應(yīng)影響非常大,很多機(jī)理性問題正在尋求突破,但這不妨礙學(xué)者對(duì)混合型(單-雙幅)主梁斷面進(jìn)行前瞻性研究,試圖解決長大橋梁風(fēng)致扭轉(zhuǎn)位移過大和顫振穩(wěn)定性問題[16]?;谶@個(gè)想法,國內(nèi)已經(jīng)將變槽寬比主梁斷面運(yùn)用到實(shí)際工程。對(duì)于變槽寬比主梁斷面,在具備等槽寬比主梁斷面的一切特性以外,其截面特性和所受的氣動(dòng)力因槽寬比的變化都將沿展向發(fā)生變化。以往研究結(jié)果表明普通主梁斷面的自激力沿展向相關(guān)性很高[17],因而經(jīng)典抖振分析理論認(rèn)為自激力沿展向是完全相關(guān)的。此外,影響抖振力的三分力系數(shù)與槽寬比有關(guān)[6, 8],考慮脈動(dòng)風(fēng)非定常特性的氣動(dòng)導(dǎo)納函數(shù)與主梁斷面寬度也密切相關(guān),因而抖振力沿展向也會(huì)產(chǎn)生變化。以上分析表明,對(duì)于變槽寬比主梁斷面,經(jīng)典抖振分析方法明顯不符合實(shí)際情況,那么在一定的試驗(yàn)條件下,如何通過有限的節(jié)段模型試驗(yàn)估算變槽寬比主梁斷面的風(fēng)致抖振響應(yīng),成為工程中亟待解決的問題。
目前,對(duì)變槽寬比主梁斷面的抖振響應(yīng)研究不多,如何經(jīng)濟(jì)有效地評(píng)估計(jì)算結(jié)果的正確性成為一個(gè)問題。現(xiàn)階段,抖振響應(yīng)計(jì)算方法主要有頻域法和時(shí)域法。頻域法程序化強(qiáng),但無法考慮非線性影響;時(shí)域法雖然能考慮非線性因素,但是程序編制通用性差。李永樂等[18]指出頻域結(jié)果和時(shí)域結(jié)果的一致性是計(jì)算結(jié)果可靠性的一種驗(yàn)證。因而,本文為了研究變槽寬比雙主梁斷面懸索橋抖振響應(yīng)的特性,通過風(fēng)洞試驗(yàn)實(shí)測(cè)四個(gè)典型斷面的氣動(dòng)參數(shù),提出考慮抖振力和自激力沿展向變化的頻域和時(shí)域抖振響應(yīng)計(jì)算方法,并進(jìn)行對(duì)比性研究;同時(shí)研究了沿展向變化的氣動(dòng)導(dǎo)納函數(shù)、脈動(dòng)風(fēng)交叉譜和平均風(fēng)速對(duì)抖振響應(yīng)的影響,研究結(jié)果為類似工程抗風(fēng)設(shè)計(jì)提供參考。
1.2 非線性時(shí)域分析
目前,抖振時(shí)域計(jì)算一般通過數(shù)值方法生成滿足特定功率譜密度和空間相干函數(shù)的脈動(dòng)風(fēng)時(shí)程,在有限元程序中施加等效荷載。根據(jù)文獻(xiàn)[24]自激力可以在ANSYS中使用Matrix27單元分別表示成剛度矩陣和阻尼矩陣。通過提取每個(gè)荷載步斷面位置來考慮瞬時(shí)風(fēng)攻角變化效應(yīng),在下一荷載步更新抖振力和自激力大小,這種分析方法可以考慮結(jié)構(gòu)的幾何非線性和氣動(dòng)力非線性效應(yīng),在國內(nèi)被廣泛使用。由于每個(gè)斷面特性不同,本文采用輸入每個(gè)主梁節(jié)點(diǎn)的三分力系數(shù)及其導(dǎo)數(shù),建立每個(gè)節(jié)點(diǎn)的氣動(dòng)剛度矩陣和氣動(dòng)阻尼矩陣,施加沿展向變化的氣動(dòng)力,計(jì)算抖振響應(yīng)。
2 工程概況
某景觀大橋是一座單跨400 m單雙索面交替的懸索橋,跨中為單索面,兩邊各1/4跨徑為雙索面,其跨度在單跨單索面懸索橋中居中國第一、世界第二,其效果圖如圖1所示。由圖可見此橋主梁斷面為分離式變槽寬比雙鋼箱結(jié)構(gòu),雙箱之間通過橫梁連接,兩幅鋼箱梁從跨中到橋塔距離變化為2-14.45 m,單邊箱梁寬度為11.45 m。主跨跨中橋面距水面高度為29.5 m,10 m高度處的基本風(fēng)速為32.285 m/s,地表粗糙度系數(shù)α=0.12,假設(shè)風(fēng)剖面滿足指數(shù)律,則橋面設(shè)計(jì)基準(zhǔn)風(fēng)速為36.76 m/s。
為了進(jìn)行抖振響應(yīng)計(jì)算,考慮拉索垂度效應(yīng),建立單主梁有限元模型,前10階模態(tài)分析結(jié)果如表1所示。
編制APDL命令提取主梁各階振型歸一化模態(tài)坐標(biāo),第2階振型在各自由度模態(tài)位移結(jié)果如圖2所示。
3 風(fēng)洞試驗(yàn)
槽寬比是一個(gè)尺寸比的無量綱量,一般指主梁開槽寬度和箱梁寬度的比值。本文的槽寬比定義采用文獻(xiàn)[5]中開槽寬度和兩個(gè)主梁寬度之和的比值。根據(jù)變槽寬比抖振計(jì)算理論,考慮氣動(dòng)力沿展向變化需要用到主梁斷面在各個(gè)槽寬比下的三分力系數(shù)和顫振導(dǎo)數(shù),其試驗(yàn)工作量較大,也不現(xiàn)實(shí)。為了簡便,本文通過試驗(yàn)測(cè)量典型斷面的三分力系數(shù)來表示氣動(dòng)力。節(jié)段測(cè)力模型采用的幾何縮尺比為1∶50,模型長300 mm,制作槽寬比為0.087,0.226,0.395和0.631四個(gè)節(jié)段模型,斷面位置如圖3所示。圖4是槽寬比為0.087狀態(tài)下的測(cè)力試驗(yàn)?zāi)P?。槽寬比?.087和0.631工況下的三分力系數(shù)如圖5所示,使用多項(xiàng)式擬合不同角度下的三分力系數(shù)曲線,求出三分力系數(shù)一階導(dǎo)數(shù),主梁其他節(jié)點(diǎn)三分力系數(shù)及一階導(dǎo)數(shù)按照線性插值進(jìn)行計(jì)算。
不考慮模態(tài)耦合,如圖14(a)所示,經(jīng)過移項(xiàng),得出考慮變槽寬比效應(yīng)的氣動(dòng)參數(shù)更能增加結(jié)構(gòu)的阻尼效應(yīng)。由于抖振力系數(shù)的平方將影響抖振力譜,如圖14(b)所示,采用跨中斷面的氣動(dòng)參數(shù)將減小抖振力譜值。綜合以上,采用跨中斷面氣動(dòng)參數(shù)將會(huì)降低增加結(jié)構(gòu)阻尼的幅值,同時(shí)降低抖振力,后者影響更大,總體使結(jié)構(gòu)響應(yīng)降低。同理,扭轉(zhuǎn)和豎向可以采用類似方法分析。分析三個(gè)方向抖振響應(yīng)減弱的原因表明:抖振力的展向變化導(dǎo)致模態(tài)抖振力的變化是造成抖振響應(yīng)差異的主要原因,自激力的展向變化對(duì)其影響較小。
5 結(jié) 論
本文提出考慮斷面抖振力和自激力展向變化的抖振頻域和時(shí)域分析方法,系統(tǒng)研究了變槽寬比雙主梁斷面懸索橋抖振響應(yīng)特性,得出以下結(jié)論:
(1)三種展向變化的氣動(dòng)導(dǎo)納函數(shù)對(duì)抖振響應(yīng)有明顯的減弱作用,對(duì)扭轉(zhuǎn)自由度減弱程度最小,Holmes函數(shù)對(duì)抖振響應(yīng)減弱最明顯。
(2)交叉譜密度函數(shù)對(duì)抖振響應(yīng)的影響很小,抖振響應(yīng)與平均風(fēng)速成正相關(guān),抖振響應(yīng)增加速率大于風(fēng)速增加速率。
(3)時(shí)域計(jì)算的抖振響應(yīng)在豎向要大于頻域計(jì)算值,在扭轉(zhuǎn)方向要小于頻域計(jì)算值??紤]氣動(dòng)參數(shù)展向變化的時(shí)域法能夠捕捉到跨中抖振響應(yīng)的局部峰值。
(4)時(shí)域法和頻域法都表明考慮氣動(dòng)力展向變化計(jì)算的抖振響應(yīng)要大于采用跨中斷面氣動(dòng)參數(shù)計(jì)算的抖振響應(yīng),其主要原因是由于抖振力的展向變化,自激力的展向變化對(duì)此貢獻(xiàn)較小。
參考文獻(xiàn):
[1] Zhang Z T, Ge Y J, Yang Y X. Torsional stiffness degradation and aerostatic divergence of suspension bridge decks[J]. Journal of Fluids and Structures, 2013, 40:269-283.
[2] Baldomir A, Kusano I, Hernandez S, et al. A reliability study for the Messina Bridge with respect to flutter phenomena considering uncertainties in experimental and numerical data[J]. Computers & Structures, 2013, 128:91-100.
[3] Trein Cristiano Augusto, Shirato Hiromichi, Matsumoto Masaru. On the effects of the gap on the unsteady pressure characteristics of two-box bridge girders[J]. Engineering Structures, 2015, 82:121-133.
[4] Sato Hiroshi, Kusuhara Shigeki, Ogi Kenichi, et al. Aerodynamic characteristics of super long-span bridges with slotted box girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2-3): 297-306.
[5] Yang Yongxin, Wu Teng, Ge Yaojun, et al. Aerodynamic stabilization mechanism of a twin box girder with various slot widths[J]. Journal of Bridge Engineering, 2014, 20(3): 04014067.
[6] Yang Yongxin, Zhou Rui, Ge Yaojun, et al. Aerodynamic instability performance of twin box girders for long-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145:196-208.
[7] Yang Yongxin, Zhou Rui, Ge Yaojun, et al. Flutter characteristics of twin-box girder bridges with vertical central stabilizers[J]. Engineering Structures, 2017, 133:33-48.
[8] Zhou Rui, Yang Yongxin, Ge Yaojun, et al. Comprehensive evaluation of aerodynamic performance of twin-box girder bridges with vertical stabilizers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175:317-327.
[9] Tang Haojun, Shum K M, Li Yongle. Investigation of flutter performance of a twin-box bridge girder at large angles of attack[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 186:192-203.
[10] Alvarez A J, Nieto F, Kwok K C S, et al. Aerodynamic performance of twin-box decks: A parametric study on gap width effects based on validated 2D URANS simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182:202-221.
[11] Laima Shujin, Li Hui. Effects of gap width on flow motions around twin-box girders and vortex-induced vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 139:37-49.
[12] Chen Wen-Li, Li Hui, Hu Hui. An experimental study on the unsteady vortices and turbulent flow structures around twin-box-girder bridge deck models with different gap ratios[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 132:27-36.
[13] Kwok Kenny C S, Qin Xian-rong, Fok C H, et al. Wind-induced pressures around a sectional twin-deck bridge model: Effects of gap-width on the aerodynamic forces and vortex shedding mechanisms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110:50-61.
[14] 周 奇, 朱樂東, 任鵬杰, 等. 氣動(dòng)干擾對(duì)平行雙幅斷面氣動(dòng)導(dǎo)納影響研究[J]. 振動(dòng)與沖擊, 2014, 33(14): 125-131.
Zhou Qi, Zhu Ledong, Ren Pengjie, et al. Aerodynamic interference effect on the aerodynamic admittance of paralleled double girders[J]. Journal of Vibration & Shock,2014,33(14):125-131.
[15] 周 奇, 朱樂東, 趙傳亮. 開槽斷面斜拉橋的隨機(jī)抖振數(shù)值分析[J]. 土木工程學(xué)報(bào), 2014, 47(08): 98-106.
Zhou Qi, Zhu Ledong, Zhao Chuanliang. Numerical analysis on stochastic buffeting of cable-stayed bridge with slotted deck[J] China Civil Engineering Journal,2014,47(08):98-106.
[16] Ogawa K, Shimodoi H, Oryu T. Aerodynamic characteristics of a 2-box girder section adaptable for a super-long span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 2033-2043.
[17] Haan Fred L Jr, Wu Teng, Kareem Ahsan. Correlation structures of pressure field and integrated forces on oscillating prism in turbulent flows[J]. Journal of Engineering Mechanics, 2016, 142(5): 04016017.
[18] 李永樂 廖海黎, 強(qiáng)士中. 橋梁抖振時(shí)域和頻域分析的一致性研究[J]. 工程力學(xué), 2005, 22(2): 179-183.
Li Yongle, Liao Haili, Qiang Shizhong.Bridge buffeting analysis in time and frequency domains[J]. Engineering Mechanics, 2005, 22(2): 179-183.
[19] Katsuchi Hiroshi, Jones Nicholas P, Scanlan Robert H. Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo Bridge[J]. Journal of Structural Engineering, 1999, 125(1): 60-70.
[20] iseth Ole, Rnnquist Anders, Sigbjrnsson Ragnar. Simplified prediction of wind-induced response and stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: A case study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12): 730-741.
[21] Kaimal J C, Wyngaard J C, Izumi Y, et al. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(417): 563-589.
[22] Simiu Emil, Scanlan Robert H. Wind Effects on Structures: Fundamentals and Application to Design[M]. New York:John Willey & Sons Inc., 1996.
[23] Matsuda Kazutoshi, Hikami Yuichi, Fujiwara Tohru, et al. Aerodynamic admittance and the ‘strip theory for horizontal buffeting forces on a bridge deck[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1-3): 337-346.
[24] 曾憲武, 韓大建. 大跨橋梁風(fēng)致抖振時(shí)域分析及在ANSYS中的實(shí)現(xiàn)[J]. 橋梁建設(shè), 2004, (1): 9-12.
Zeng Xianwu,Han Dajian. Time-domain analysis of wind-induced buffet on long-span bridges and implementation of analysis in ANSYS[J]. Bridge Construction,2004,(1):9-12.
[25] 李加武, 張 斐, 吳 拓. 橋梁斷面顫振導(dǎo)數(shù)識(shí)別的加權(quán)最小二乘法[J]. 振動(dòng)工程學(xué)報(bào), 2017, 30(6): 993-1000.
Li Jiawu, Zhang Fei, Wu Tuo, Weighted least square method for identification of flutter derivatives of bridge section[J]. Journal of Vibration Engineering, 2017, 30(6): 993-1000.
[26] Holmes John D. Wind Loading of Structures[M]. Boca Raton, FL:CRC Press, 2015.
Abstract: To study the buffeting response of the double main girder section suspension bridge with variable slot width ratios, the frequency domain and time domain buffeting calculation methods are proposed considering both the self-excited force and buffeting force changing along the span direction. Based on a landscape bridge, the influence of the aerodynamic admittance function, mean wind speed and turbulence wind cross spectrum on buffeting response is investigated in frequency domain analysis. The causes of the difference in buffeting response under different kinds of aerodynamic admittance functions are discussed. In the time domain analysis, the nonlinear effects of aerodynamic force are considered by updating the static wind load coefficient at each load step, where the structural geometric nonlinear effect is also taken into account. The results indicate that the time domain calculation method considering the change of aerodynamic parameters along the span direction can capture the local peak buffeting response of the single cable plane in the mid-span. Comparing the results of the two calculation methods shows that the calculated value of the buffeting response in time domain is greater than that in frequency domain in the vertical direction and smaller than that in frequency domain in the torsional direction. In addition, the buffeting response considering the change of aerodynamic parameters along the span direction is greater than that calculated by using the aerodynamic parameters of the mid-span section, which is mainly caused by the change of buffeting force. The change of self-excited force along the span direction has little effect on the buffeting response. Therefore, it is safer to consider changes of aerodynamic parameters along the span direction in buffeting analysis in the actual project.
Key words: buffeting; suspension bridge; variable slot width ratios; multimode coupled frequency domain; aerodynamic admittance; cross spectrum