摘 要:新課標(biāo)要求高中數(shù)學(xué)課堂教學(xué)應(yīng)根據(jù)內(nèi)容創(chuàng)設(shè)合適的教學(xué)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣;關(guān)注知識的生成過程,把握數(shù)學(xué)的本質(zhì),培養(yǎng)學(xué)生的再創(chuàng)造能力;注重信息技術(shù)與數(shù)學(xué)課程的深度融合,促進(jìn)學(xué)生思維的發(fā)展,提升學(xué)生的實(shí)踐能力和創(chuàng)新意識,發(fā)展學(xué)生的核心素養(yǎng)。
關(guān)鍵詞:新課標(biāo);核心素養(yǎng);課堂教學(xué)
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》強(qiáng)調(diào)高中數(shù)學(xué)課堂應(yīng)樹立以發(fā)展學(xué)生學(xué)科核心素養(yǎng)為導(dǎo)向的教學(xué)意識,激發(fā)學(xué)生的學(xué)習(xí)興趣,關(guān)注知識的發(fā)生、發(fā)展、生成過程,把握數(shù)學(xué)本質(zhì),促進(jìn)學(xué)生思維的發(fā)展。當(dāng)前的數(shù)學(xué)課堂,教師采取的做法更多是知識灌輸和應(yīng)試訓(xùn)練,忽視對學(xué)生核心素養(yǎng)的培養(yǎng)。為實(shí)現(xiàn)新課標(biāo)下以“發(fā)展學(xué)生核心素養(yǎng)”為本的教學(xué)理念,結(jié)合自己的教學(xué)實(shí)踐,談?wù)勑抡n標(biāo)下數(shù)學(xué)課堂教學(xué)的一些做法。
一、創(chuàng)設(shè)教學(xué)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣
托爾斯泰說:“成功的教學(xué)所需要的不是強(qiáng)制,而是激發(fā)學(xué)生的興趣?!迸d趣能促使學(xué)生積極主動地進(jìn)行學(xué)習(xí)、思考、求知探索。教師在數(shù)學(xué)課堂教學(xué)中,創(chuàng)設(shè)與學(xué)習(xí)內(nèi)容、學(xué)生認(rèn)知、生活環(huán)境密切相關(guān)的具體、生動、合理有效的學(xué)習(xí)情境,是一種很好的激發(fā)學(xué)習(xí)興趣,增強(qiáng)求知欲望,調(diào)動學(xué)習(xí)積極性的教學(xué)手段和方法。
(一)創(chuàng)設(shè)問題情境
創(chuàng)設(shè)合適的問題情境可以激發(fā)學(xué)生的學(xué)習(xí)興趣和動機(jī),使學(xué)生產(chǎn)生“疑而未解,又欲解之”的強(qiáng)烈愿望,進(jìn)而轉(zhuǎn)化為一種對知識的渴求,從而調(diào)動學(xué)生的學(xué)習(xí)積極性和主動性,使學(xué)生的思維盡快活躍起來。
案例1:直線與橢圓的位置關(guān)系
回顧直線與圓的位置關(guān)系及其判斷方法后,創(chuàng)設(shè)問題情境:(1)類比直線與圓的位置關(guān)系,直線與橢圓的位置關(guān)系有哪幾種?(2)類比直線與圓的位置關(guān)系的判斷方法,判斷直線l∶2x-2y-1=0與橢圓C:+y2=1的位置關(guān)系;(3)判斷直線l∶x-ky-2=0與橢圓C:+y2=1的位置關(guān)系。
對于這部分內(nèi)容的教學(xué),教師先引導(dǎo)學(xué)生回顧已學(xué)過知識的屬性,然后創(chuàng)設(shè)類比發(fā)現(xiàn)的問題情境(1),結(jié)合圖象引導(dǎo)學(xué)生去發(fā)現(xiàn)直線與橢圓的位置關(guān)系有三種(相離、相切、相交)。問題(2)的創(chuàng)設(shè)基于橢圓與圓的性質(zhì)的不同,讓學(xué)生理解通過橢圓中心到直線的距離來判斷直線與橢圓的位置關(guān)系不合理,也讓學(xué)生明確判斷直線與橢圓的位置關(guān)系有兩種常用方法:代數(shù)法(聯(lián)立直線與橢圓的方程,消元后用判別式判斷)和特殊點(diǎn)法(通過直線恒過橢圓內(nèi)一定點(diǎn)判斷相交)。問題(3)的創(chuàng)設(shè)讓學(xué)生明確特殊點(diǎn)法的局限性,代數(shù)法才是判斷直線與橢圓位置關(guān)系的通法。
蘇霍姆林斯基說:“當(dāng)學(xué)生體驗(yàn)到一種親自參與掌握知識的情感,乃是喚起青少年特有的對知識的興趣的重要條件?!苯處熢谡n堂教學(xué)中有針對性地創(chuàng)設(shè)問題情境,不但可以激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,還可以讓學(xué)生進(jìn)入積極的思維狀態(tài)。在數(shù)學(xué)教學(xué)中創(chuàng)設(shè)問題情境,重點(diǎn)應(yīng)放在如何設(shè)計(jì)問題,如何引導(dǎo)學(xué)生分析、解決問題上,只有這樣才能產(chǎn)生應(yīng)有的教學(xué)效果。
(二)創(chuàng)設(shè)現(xiàn)實(shí)生活情境
新課標(biāo)要求數(shù)學(xué)教學(xué)應(yīng)重視讓學(xué)生從生活經(jīng)驗(yàn)中學(xué)習(xí)和理解數(shù)學(xué)。引導(dǎo)學(xué)生從熟悉的現(xiàn)實(shí)生活情境中發(fā)現(xiàn)并提出數(shù)學(xué)問題,進(jìn)一步分析、解決問題,讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)來源于生活,就在我們身邊,對數(shù)學(xué)產(chǎn)生親切感,激發(fā)學(xué)生強(qiáng)烈的學(xué)習(xí)熱情,喚起學(xué)生的求知欲望,活躍學(xué)生的數(shù)學(xué)思維。
案例2:零點(diǎn)存在性定理
在學(xué)習(xí)“零點(diǎn)存在性定理”時(shí),先介紹被譽(yù)為“新世界七大奇跡”之一的港珠澳大橋:截至2018年10月,港珠澳大橋是世界上里程最長、沉管隧道最長、壽命最長、鋼結(jié)構(gòu)最大、施工難度最大、技術(shù)含量最高、科學(xué)專利和投資金額最多的跨海大橋。港珠澳大橋穿越中華白海豚自然保護(hù)區(qū),中華白海豚1988年被列為國家一級重點(diǎn)保護(hù)的瀕危野生動物,有“美人魚”和“水上大熊貓”之稱。然后創(chuàng)設(shè)兩個(gè)情境:(1)一只白海豚在兩個(gè)不同的時(shí)刻處在港珠澳大橋的同側(cè);(2)一只白海豚在兩個(gè)不同的時(shí)刻處在港珠澳大橋的異側(cè)。思考哪個(gè)情境中的白海豚一定穿過了橋。
教師通過把港珠澳大橋抽象成平面直角坐標(biāo)系中的x軸,把白海豚兩個(gè)不同時(shí)刻所處的位置抽象為函數(shù)f(x)圖象上的兩點(diǎn)(a,f(a))和(b,f(b)),引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)f(x)在區(qū)間(a,b)內(nèi)存在零點(diǎn)的條件,構(gòu)建零點(diǎn)存在性定理.
教師從學(xué)生熟悉的現(xiàn)實(shí)生活情境出發(fā),引導(dǎo)學(xué)生發(fā)現(xiàn)、提出、探究、分析與解決問題,使抽象的數(shù)學(xué)學(xué)習(xí)變得具體形象起來,把枯燥、脫離學(xué)生生活實(shí)際的數(shù)學(xué)變得生動起來,讓學(xué)生在生動具體的生活情境中學(xué)習(xí)和理解數(shù)學(xué),使學(xué)生感受到生活中的數(shù)學(xué)是隨處可見的,極大地激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(三)創(chuàng)設(shè)數(shù)學(xué)文化情境
數(shù)學(xué)文化是人類文化的一部分,是在人類漫長歷史的發(fā)展進(jìn)程中逐步形成的,是對數(shù)學(xué)知識、技能、觀念和價(jià)值等的高度概括,深刻影響著人們的行為、觀念、態(tài)度和精神等。數(shù)學(xué)文化情境的創(chuàng)設(shè),不僅能提高學(xué)生的文化修養(yǎng)和個(gè)性品質(zhì),還對激發(fā)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣起到積極的促進(jìn)作用。
案例3:對數(shù)與對數(shù)的運(yùn)算
在學(xué)習(xí)“對數(shù)與對數(shù)的運(yùn)算”時(shí),先介紹對數(shù)的發(fā)展史:16、17世紀(jì)之交,隨著天文、航海、工程、貿(mào)易以及軍事的發(fā)展,需要大量且繁雜數(shù)字的乘除開方運(yùn)算。蘇格蘭數(shù)學(xué)家納皮爾(J.Napier,1550—1617)正是在研究天文學(xué)的過程中,為了簡化其中的計(jì)算而發(fā)現(xiàn)了對數(shù)。對數(shù)的功能在于把乘除運(yùn)算化為較簡單的加減運(yùn)算,如
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,……
1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,
16384,……
上兩行數(shù)字之間的關(guān)系是:第一行表示2的指數(shù),第二行表示對應(yīng)冪。計(jì)算第二行中兩個(gè)數(shù)的乘積,可以通過第一行對應(yīng)數(shù)字的和來實(shí)現(xiàn)。如計(jì)算32×512的值,先查詢第一行的對應(yīng)數(shù)字:32對應(yīng)5,512對應(yīng)9,再把第一行中的對應(yīng)數(shù)字加起來:5+9=14,第一行的14對應(yīng)第二行的16384,所以有32×512=16384。對數(shù)的發(fā)現(xiàn)是數(shù)學(xué)史上的重大事件,恩格斯曾經(jīng)把對數(shù)的發(fā)現(xiàn)和解析幾何的創(chuàng)始、微積分的建立并稱為17世紀(jì)數(shù)學(xué)的三大成就。
數(shù)學(xué)發(fā)展到現(xiàn)在,蘊(yùn)藏著豐富的文化內(nèi)涵,蘊(yùn)含了許多數(shù)學(xué)家孜孜以求的鉆研精神。在課堂教學(xué)中創(chuàng)設(shè)數(shù)學(xué)文化情境,可以讓學(xué)生了解數(shù)學(xué)發(fā)展的艱辛歷程和知識的創(chuàng)造過程,了解數(shù)學(xué)在科學(xué)技術(shù)、社會發(fā)展中的重要作用,有利于學(xué)生進(jìn)一步理解數(shù)學(xué),激發(fā)他們的數(shù)學(xué)學(xué)習(xí)興趣,開闊學(xué)生視野,感悟數(shù)學(xué)價(jià)值,提升學(xué)生的科學(xué)精神和人文素養(yǎng)。
二、探究知識生成,培養(yǎng)學(xué)生的再創(chuàng)造能力
新課標(biāo)要求通過不同形式的自主學(xué)習(xí)、探究活動讓學(xué)生體驗(yàn)數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造過程,使學(xué)生學(xué)會學(xué)習(xí),學(xué)會思維,學(xué)會運(yùn)用,學(xué)會創(chuàng)新。荷蘭數(shù)學(xué)家弗賴登塔爾說過:“教育唯一正確的方法就是再創(chuàng)造。”數(shù)學(xué)教學(xué)是思維活動的教學(xué),在課堂中,教師要適當(dāng)放手,把時(shí)間還給學(xué)生,讓學(xué)生充分思考與討論,給學(xué)生提供思維的空間。以問題情境引發(fā)學(xué)生思考、分析、探究、概括與歸納,讓學(xué)生親身經(jīng)歷知識發(fā)生、發(fā)展、形成的過程,揭示數(shù)學(xué)的本質(zhì),使教學(xué)過程成為知識的再創(chuàng)造的過程。
案例4:冪函數(shù)的概念
在學(xué)習(xí)“冪函數(shù)”時(shí),先回顧指數(shù)函數(shù)與對數(shù)函數(shù)的概念。接著通過創(chuàng)設(shè)情境引入函數(shù)y=x,y=x2,y=x3,y=,y=x-1,讓學(xué)生思考以上函數(shù)具有什么共同特征,能否再列舉幾個(gè)相似的例子。我們把這一類函數(shù)稱為冪函數(shù),讓學(xué)生類比指數(shù)函數(shù)、對數(shù)函數(shù)的概念概括出冪函數(shù)的概念,并思考冪函數(shù)(y=xa)中底數(shù)x和指數(shù)a的取值范圍。
案例5:平面向量基本定理
引導(dǎo)學(xué)生先對向量共線定理的內(nèi)容和應(yīng)用進(jìn)行回顧,接著讓學(xué)生進(jìn)行以下的思考和探究:
思考:如果是平面內(nèi)的一個(gè)非零向量,那么對于這一平面內(nèi)的任意向量,是否都可以用形如?姿(?姿?綴R)表示?
探究:平面內(nèi)的任意向量是否可以用同一平面的幾個(gè)向量線性表示呢?
思考:如果是同一平面內(nèi)的兩個(gè)非零向量,那么對于這一平面內(nèi)的任意向量,是否都可以用形如?姿1+?姿2(?姿1、?姿2?綴R)表示?
探究:如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任意向量,是否都可以用形如(? )表示?
思考:實(shí)數(shù)?姿1、?姿2是否唯一?
通過以上的思考、探究,讓學(xué)生歸納、概括,構(gòu)建平面向量基本定理。
通過創(chuàng)設(shè)情境,讓學(xué)生始終參與知識生成的探究活動,在探究過程中經(jīng)歷知識的發(fā)生、發(fā)展、生成和理解,同時(shí)讓學(xué)生學(xué)會分析和解決問題的方法。在再創(chuàng)造的過程中,激活學(xué)生的創(chuàng)新思維,發(fā)展學(xué)生的探究能力,提升學(xué)生自身的學(xué)科素養(yǎng)。
三、運(yùn)用信息技術(shù),促進(jìn)學(xué)生思維發(fā)展
新課標(biāo)強(qiáng)調(diào)數(shù)學(xué)課程的設(shè)計(jì)與實(shí)施應(yīng)注重信息技術(shù)與數(shù)學(xué)課程的深度融合。大力開發(fā)豐富的學(xué)習(xí)資源,把信息技術(shù)作為學(xué)生學(xué)習(xí)數(shù)學(xué)和解決問題的強(qiáng)有力工具。信息技術(shù)與課堂教學(xué)的有機(jī)融合,對學(xué)生思維能力、探究精神與創(chuàng)新意識的提升起到積極的促進(jìn)作用。
案例6:冪函數(shù)的圖象
在學(xué)習(xí)冪函數(shù)的概念后,類比指數(shù)函數(shù)和對數(shù)函數(shù)的研究方式,通過冪函數(shù)的圖象研究性質(zhì)。讓學(xué)生在同一平面直角坐標(biāo)系內(nèi)作冪函數(shù)y=x,y=x2,y=x-1,y=x3,y=的圖象,根據(jù)所作圖象,研究相應(yīng)函數(shù)的性質(zhì)(包括定義域、值域、奇偶性、單調(diào)性、公共點(diǎn)),并思考能否歸納得出一般的冪函數(shù)y=xa的圖象與性質(zhì)(學(xué)生不能)。接著利用幾何畫板演示冪函數(shù)y=xa的圖象,連續(xù)改變參數(shù)a的值,讓學(xué)生觀察a從小到大變化時(shí)圖象的變化。學(xué)生清楚地看到冪函數(shù)y=xa的圖象恒過定點(diǎn)(1,1);在第一象限恒有圖象,第四象限恒沒有圖象,在區(qū)間(-∞,0)上有時(shí)沒有圖象,有時(shí)圖象落在第二象限,有時(shí)落在第三象限。從而引導(dǎo)學(xué)生應(yīng)先研究冪函數(shù)在第一象限的圖象,這有利于學(xué)生歸納和理解冪函數(shù)在第一象限的圖象應(yīng)分a<0、a=0、01五類,并引導(dǎo)學(xué)生發(fā)現(xiàn)冪函數(shù)y=xa在(-∞,0)上的圖象由定義域和奇偶性確定。
利用信息技術(shù)的動態(tài)功能繪制冪函數(shù)y=xa的圖象,極大地增加圖象的容量,使學(xué)生感受函數(shù)圖象的連續(xù)變化,再結(jié)合圖象探究函數(shù)的性質(zhì),可以加深學(xué)生對函數(shù)圖象和性質(zhì)的理解和記憶,促進(jìn)學(xué)生思維的發(fā)展。
在“互聯(lián)網(wǎng)+”時(shí)代,信息技術(shù)的廣泛應(yīng)用正在對數(shù)學(xué)教學(xué)產(chǎn)生深遠(yuǎn)影響。在課堂教學(xué)中,信息技術(shù)是學(xué)生學(xué)習(xí)和教師教學(xué)的重要輔助手段,它能將抽象的知識形象化、復(fù)雜的問題簡單化,便于引導(dǎo)學(xué)生運(yùn)用已有認(rèn)知去分析和解決問題,促進(jìn)學(xué)生思維的發(fā)展。
新課標(biāo)下的數(shù)學(xué)課堂教學(xué)以發(fā)展學(xué)生的核心素養(yǎng)為導(dǎo)向,教師必須深入學(xué)習(xí)和領(lǐng)會核心素養(yǎng)的概念和體系,關(guān)注學(xué)生的需求和個(gè)性發(fā)展,加強(qiáng)課堂教學(xué)的反思,不斷探索和創(chuàng)新教學(xué)方式,切實(shí)讓學(xué)生核心素養(yǎng)的培養(yǎng)在課堂教學(xué)中落地,從根本上落實(shí)“立德樹人”的教育目標(biāo)。
參考文獻(xiàn):
[1」李明丹,鄧勝興.以概念教學(xué)為例談學(xué)生創(chuàng)新思維的培養(yǎng)[J」.高中數(shù)理化,2019(4):43-44.
[2」洪永清.對發(fā)展學(xué)生“生物學(xué)核心素養(yǎng)”課堂教學(xué)的思考[J」.教育實(shí)踐與研究,2017(29).
[3」張全合,何苗.利用多媒體的動態(tài)功能促進(jìn)有效教學(xué)[J」.中小學(xué)數(shù)字化教學(xué),2018(4).
作者簡介:王永清(1983—),男,理學(xué)學(xué)士,高中數(shù)學(xué)一級教師。
編輯 薄躍華